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Site Description and Experimental Design and Sampling. Many
groundwater ecosystems are contaminated with mixtures of
metals, radionuclides, chlorinated solvents, and/or hydrocarbons
(1). Subsurface amendment with slow release substrates such as
emulsified vegetable soil (EVO) is believed to be one of the most
effective approaches for sustained uranium (U) bioimmobiliza-
tion in groundwater ecosystems (2). Thus, a long-term, in-
tegrated field-scale bioremediation experimental test was carried
out at the US Department of Energy Oak Ridge Integrated Field
Research Challenge (ORIFRC) study site, Oak Ridge, TN. The
details of the experimental setup, manipulation, and monitoring
of the groundwater system were described elsewhere (2). Briefly,
in this experiment, there are three injection wells, one upgra-
dient control well, and seven downgradient monitoring wells (2).
These wells were very close together, only meters apart. The
groundwater moves rapidly from upgradient to downgradient
wells with the residence time of ∼0.4 d based on hydraulic
conductivity measurement. The EVO mixture (Terra Systems)
contains 60% (wt/wt) soybean oil, 6% (wt/wt) food-grade sur-
factant, 0.3% yeast extract, and 0.05% (NH4)3PO4 in water.
Thus, EVO is a complex slow release carbon complex carbon
substrate due to its poor water solubility, which is capable of
yielding many intermediates, and supporting a variety of diverse
groups of microorganisms. The EVO was mixed rigorously with
groundwater pumped from the site to produce a 20% (vol/vol)
EVO emulsion. A total of 3,400 L of such emulsion was equally
injected into the three adjacent injection wells over 2 h on Feb-
ruary 9, 2009. The majority of the injected EVO emulsion trav-
eled downgradient, but a small amount of the amendment was
forced to move against the prevailing hydrological gradient
during the injection (2). Therefore, microbial changes were also
observed in the upgradient wells at days 4 and 17. For this rea-
son, the geochemistry data from the control well at these two
time points were excluded from analysis.
Groundwater samples (2 L) were taken for geochemical and

microbial analyses from the seven monitoring wells and the
control well at different time points, 28 d before EVO injection,
4, 17, 31, 80, 140, and 269 d after injection (2). For convenience,
28 d before injection was considered as day 0 in this study.
Although groundwater and sediment microbial populations may
differ, groundwater samples were focused in this study because
sampling sediment was not possible over the temporal and
spatial scales of the experiment (2). Groundwater was filtered in
situ with 8-μm filters to remove large particles, followed by fil-
tering with 0.2-μm filters for sample collection (2). The filters
were stored at −80 °C until use and distributed to different
laboratories.

GeoChip Analysis. GeoChip-based metagenomic technology was
used for dissecting microbial community functional structure as
described elsewhere (3–5). Briefly, the frozen 0.2-μm filter (1/4
of the filter for day 269 and 1/2 of the filter for other samples)
was grounded in liquid N2 with pestle and mortar as described
previously (6). The community DNA was extracted with the
SDS-based chemical lysis method (6). The purified DNA was
quantified with Quant-It PicoGreen kit (Invitrogen). A total of
50 ng DNA from each sample was amplified in triplicate using
the Templiphi 500 Amplification kit (Amersham Biosciences) in
a modified buffer DNA buffer (7) for 6 h. A total of 3 μg am-
plified DNA was labeled with Cy5 fluorescent dye and hybrid-
ized overnight with GeoChip 3.0 on a MAUI Hybridization

system (BioMicro Systems) at 42 °C with 45% formamide (3).
After hybridization, the slides were scanned with a ScanArray
5000 Microarray Analysis system (PerkinElmer) at a resolution
of 10 μm, and the images were processed with ImaGene 6.0
(BioDiscovery).
Raw data from ImaGene were submitted to Microarray Data

Manager on our website (http://ieg.ou.edu/microarray/default.cgi)
and analyzed using the data analysis pipeline with the following
major steps: (i) The spots flagged as 1 or 3 by ImaGene and with
a signal to noise ratio (SNR) less than 2.0 were removed as poor-
quality spots. (ii) After removing the bad spots, the normalization
was performed at three levels: individual subgrids on a single
slide, technical replicates among samples, and across the whole
data set. First, the mean Cy3 intensity of the universal standards
in each subgrid was used to normalize the Cy5 intensity for
probes in the same subgrid. Second, the Cy5 intensity after the
first normalization was normalized again by the mean value of
three technical replicates. In addition, the data were normalized
by the mean intensity of universal standards (Cy3 channel) in all
slides for Cy5 intensity of samples. (iii) If any replicates had
(signal–mean) more than two times the SD, this replicate was
removed as an outlier. This process continued until no such
replicates were identified. (iv) If a probe appeared in only one
sample among the total of seven wells for each time point, it was
removed for all further analyses.
The signal intensities were normalized based on the mean

signal intensity across all genes on the arrays. Because the same
amounts of DNA from all samples were used for amplification,
labeling, and hybridization, it is expected the average signal in-
tensity across all of the genes should be approximately equal. A
mean ratio was calculated for each positive spot by dividing the
signal intensity of each spot with the mean signal intensity in each
array. These normalized mean ratio data were then used for
further analysis.

Statistical Analysis.The matrices of microarray data resulting from
our pipeline were considered as “species” abundance in statistical
analyses. Detrended correspondence analysis (DCA) was used to
determine the overall functional changes in the microbial com-
munities by R software version 2.9.1. DCA is an ordination
technique that uses detrending to remove the arch effect, where
the data points are organized in a horseshoe-like shape, in cor-
respondence analysis (8).
To understand whether EVO amendment impacts microbial

community structure, the site-to-site variability in gene/pop-
ulation compositions, known as β-diversity, was measured with
two commonly used dissimilarity indexes, Jaccard’s incidence-
based (DJ) and Bray–Curtis’s abundance-based (DBC) indexes,
which both range from 0 to 1 (9, 10).
Different data sets of microbial communities generated by

different analytical methods were used to examine whether el-
evated temperature has significant effects on soil microbial
communities. Typically, it is difficult for all data sets to meet the
assumptions (e.g., normality, equal variances, independence) of
parametric statistics. Thus, in this study, three different com-
plementary nonparametric analyses for multivariate data were
used: analysis of similarity (ANOSIM) (11), nonparametric multi-
variate analysis of variance (Adonis) using distance matrices (12),
and multiresponse permutation procedure (MRPP). We used
the Bray–Curtis similarity index to calculate a distance matrix
from GeoChip hybridization data for entire communities or in-
dividual functional gene categories for ANOSIM, Adonis, and
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MRPP analyses. MRPP is a nonparametric procedure that does
not depend on assumptions such as normally distributed data or
homogeneous variances, but rather depends on the internal
variability of the data (13). It is also interesting to notice that
Adonis function in R program is also named as permutation
multivariate analysis of variance (PERMANOVA) proposed by
Anderson (12). All three methods are based on dissimilarities
among samples and their rank order in different ways to calcu-
late test statistics, and the Monte Carlo permutation is used to
test the significance of statistics. All three procedures (ANOSIM,
Adonis, and MRPP) were performed with the Vegan package
(v.1.15–1) in R software version 2.9.1 (The R Foundation for
Statistical Computing).

Null Model Analysis. β-Diversity represents the compositional
variations among communities from site to site, which serves as
a bridge to link local (α-diversity) and regional (γ-diversity)
communities. β-Diversity is useful to understand patterns of
species diversity across various spatial scales (14–17) and pro-
vides critical insights into the role of deterministic and stochastic
processes in shaping community compositions and structure (14,
18–20). Low dissimilarity among communities that are otherwise
identical in environmental conditions would imply a pre-
dominant role for deterministic assembly, whereas high dissim-
ilarity would suggest a large role of stochastic assembly (19, 21).
However, the measures of β-diversity are dependent on both
α- and γ-diversity (22). It is not clear whether a change in β-diversity
is due to the differences in the underlying assembly processes that
generate β-diversity or to the differences in α- and γ-diversity (22).
The apparent variations of the measured β-diversity could just
simply be due to the differences in α- and γ-diversity. Thus, null
model analysis, which assumes that an assemblage (a commu-
nity) is not structured by species interactions (23), can provide
a straightforward way to determine whether species/gene com-
positional differences among sites are caused by the changes in
α- and γ-diversity or by the forces causing communities to be
different from the expectations by random chance.
Two types of null model analyses were performed in this study.

The first null model analysis is based on the method proposed by
Chase et al. (22) with the following steps: (i) calculating the
observed gene richness in each site (i.e., the control or moni-
toring well here) 1 (α1) and 2 (α2) at a particular time point and
the number of shared species/genes (SSobs) between these two
sites; (ii) calculating the total number of species/genes detected
in the “species/gene pool” (γ-diversity) from all sites at the
particular time point, and the proportion of the sites occupied by
each species/gene; and (iii) calculating the distribution of the
expected shared species/genes from null model (SSexp) by ran-
domly drawing α1 and α2 species/genes from the species/gene
pool. The probability of species/gene to be drawn is proportional
to the among-site occupancy of this gene. Then SSexp and the
null expected Jaccard’s similarity (Jexp) can be obtained for each
drawing. This procedure is repeated 1,000 times. An average null
expected Jaccard’s similarity (Jexp) and its SD can be estimated
based on 1,000 drawings (σexp). The permutational analysis
of multivariate dispersions (PERMDISP) was used to test the
significance of the differences of the groundwater microbial

communities at a particular time point from null model ex-
pectations (19).
Based on the observed Jaccard’s similarity (Jobs) between two

communities and the average null expected Jaccard’s similarity
and its SD, several similar metrics can be defined. One is stan-
dard effect size (SES), which can be calculated as: SES = (Jobs −
Jexp)/σexp. SES is an index to measure the influence of de-
terministic factors on community composition and abundance
(24). In this study, we introduced another similar quantitative
metric, selection strength (SS), which is the proportion of the
difference between the observed similarity and the null expected
similarity divided by the observed similarity, SS = (Jobs − Jexp)/
Jobs. Because it provides a quantitative estimation of the role of
niche-based deterministic selection processes in shaping com-
munity composition and structure, such ratio is termed as se-
lection strength. The complement of selection strength (1-SS)
should provide the quantitative assessment of the importance of
stochastic processes in regulating community composition and
structure. Based on all pairwise comparisons, an average of each
metric (SES, deviation, or SS) and its SD can be estimated.
Hence, standard statistical significance tests such as t test and
ANOVA can be used to test the significance of a metric across
different experimental conditions (21). However, because such
metrics are originally derived from every pairwise comparison,
they could be not independent. Therefore, the nonparametric
permutation test, permutational multivariate analysis of variance
(PERMANOVA), was used to test whether these communities
differed in their SES and SS.
Because the results from null model analyses are very sensitive

to the models, approaches, and algorithms used (25), the second
null model analysis (19) was also performed based on EcoSim
(26), keeping the number of species per site and the number of
sites occupied by each species constant. The null community is
generated by randomly shuffling the original community with the
independent swap algorithm by holding the number of genes/
populations in each reactor and the number of reactors in which
each gene/population appears constant. Because our microarray
data set is too large to efficiently compute in EcoSim, the “ran-
domizeMatrix function” of R program was carried out to gener-
ate 1,000 null communities. Then, PERMDISP was also used to
assess the significance of the differences of the groundwater mi-
crobial communities at a particular time point from null model
expectations (19).
A modified Raup–Crick metric was also used to assess whether

the null-expected number of shared species between any two
communities is different from the observed number of shared
species (19). The proportion that the expected number of shared
species between any two communities is greater than their ob-
served number of shared species is calculated, which is termed
the “modified Raup–Crick metric.” This metric ranges from 0 to
1 (19). Low values indicate that the communities are highly
deviant from the null expectation by random chance, whereas
high values mean that the communities are more similar to those
based on null model expectation. Similarly, PERMDISP was
used to determine whether this metric is significantly different
among the groundwater communities at various time points.
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Fig. S1. Overview of the experimental system. The map of the wells for in situ U(VI) immobilization with injection of EVO. W1-7, downgradient monitoring
wells; W8, upgradient control well.
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Fig. S2. Changes of acetate (A), DNA concentrations (B), and diversity (C) during the experiment. α-Diversity is represented by the average number of the genes
detected across all monitoring wells at a particular time point. The γ-diversity is the total number of genes detected across all wells at a particular time point.

Fig. S3. Changes of microbial community structure across different time points. (A) Percentages of the overlap of genes detected at day 0 with the other time
points. The percentage was calculated as the proportion of the overlapped gene number divided by the total number of genes detected at either day 0 or day
269. (B) Percentages of the overlap of genes detected at day 269 with the other time points. (C) The numbers and proportions of the unique functional genes
detected in the early (day 0), middle (days 4–140), and final phase (day 269) of the succession.
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Fig. S4. Response ratios of major functional gene categories showing their significant changes between days 17 and 0 after EVO amendment. Based on DNA
yields (Fig. S2B), day 17 represented the peak of the community shift so that it was selected for comparison, showing the maximum impacts of EVO on mi-
crobial community structure.

Fig. S5. Changes of standard effect size (SES) during the succession of the groundwater microbial communities. SES is the differences between the observed
similarity and the null expected similarity divided by the SD of community similarity from null expectation, which is used to measure the influence of de-
terministic factors on community composition and abundance.
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Fig. S6. Effects of long-term fertilization and tillage on microbial functional community structure. (A) Fertilization. Soil samples were from a long-term
grassland fertilization experiment in Rothamstead, England. Diamond, samples from fertilization plots for 150 y; circle, samples from control plots without
fertilization. (B) Tillage. Soil samples were collected from tillage and nontillage plots with monoculture of annually rotating corn, soybean, and wheat at the
Kellogg Biological Station (KBS) Long-Term Ecological Research (LTER) experimental site at Hickory Corners, MI.

Table S1. Unique (bold) and overlapped detected probes in seven different wells (W1 to W7)
at day 0

Sample name W1_0 (%) W3_0 (%) W4_0 (%) W5_0 (%) W6_0 (%) W7_0 (%)

W1_0 39 (3.90) 845 (37.27) 810 (50.63) 606 (45.33) 867 (43.92) 937 (28.10)
W3_0 348 (16.49) 1154 (48.77) 795 (35.21) 1282 (48.03) 1672 (45.08)
W4_0 53 (3.76) 694 (41.88) 1168 (56.13) 1307 (38.76)
W5_0 51 (5.41) 721 (34.98) 836 (24.76)
W6_0 33 (1.79) 1787 (53.78)
W7_0 954 (29.17)
Total detected probes 1,001 2,111 1,409 942 1,840 3,270

The data for W2 at day 0 were missing due to the low biomass concentration and an error during handling.
The map of the well location is seen in Fig. S1.

Table S2. Significance tests of the differences of the microbial communities at days 269 and
0 and control wells

Data sets

Adonis* ANOSIM† MRPP‡

F P R P δ P

Whole communities 4.870 0.004 0.512 0.001 0.408 0.007
Antibiotic resistance 7.921 0.004 0.713 0.003 0.429 0.004
Carbon cycling 5.265 0.002 0.557 0.005 0.408 0.002
Energy process 2.723 0.021 0.311 0.009 0.414 0.023
Metal resistance 4.032 0.008 0.456 0.004 0.400 0.007
Nitrogen 4.227 0.006 0.440 0.004 0.413 0.005
Organic remediation 4.293 0.005 0.429 0.003 0.411 0.004
Phylogenetic marker 3.435 0.028 0.356 0.012 0.351 0.019
Phosphorus 5.376 0.003 0.475 0.002 0.403 0.006
Sulfur 5.989 0.006 0.558 0.003 0.403 0.002

Different statistical approaches were used with Bray–Curtis distances, which were estimated based on GeoChip
hybridization data. P values are of corresponding significance tests.
*Permutational multivariate analysis of variance using distance matrices. Significance tests were performed by F
test based on sequential sums of squares from permutations of the raw data.
†Analysis of similarities. Statistic R is based on the difference of mean ranks between groups and within groups.
The significance of observed R is assessed by permuting the grouping vector to obtain the empirical distribution of
R under the null model.
‡Multiresponse permutation procedure. Statistic δ is the overall weighted mean of within-group means of the
pairwise dissimilarities among sampling units. The significance test is the fraction of permuted δ that is less than
the observed δ.
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Table S3. List of the functional genes showing significant differences in abundance between days 269 and 0

Gene Gene category Subcategory
Abundance differences
between days 269 and 0 F value Pr (>F)

B_lactamase_A Antibiotic resistance Beta-lactamases 0.416 29.52 <0.001
B_lactamase_B Antibiotic resistance Beta-lactamases 0.634 4.27 0.046
B_lactamase_C Antibiotic resistance Beta-lactamases 0.115 8.74 0.003
Tet Antibiotic resistance Other 0.430 25.02 <0.001
ABC antibiotic transporter Antibiotic resistance Transporter 0.509 15.16 <0.001
MATE antibiotic Antibiotic resistance Transporter 0.368 25.94 <0.001
Mex Antibiotic resistance Transporter 0.644 17.23 <0.001
MFS antibiotic Antibiotic resistance Transporter 0.268 42.96 <0.001
SMR antibiotics Antibiotic resistance Transporter 0.502 292.86 <0.001
cellobiase Carbon cycling Carbon degradation 0.317 8.78 0.003
endoglucanase Carbon cycling Carbon degradation 0.141 4.99 0.026
exoglucanase Carbon cycling Carbon degradation 0.317 4.72 0.031
acetylglucosaminidase Carbon cycling Carbon degradation 0.193 9.86 0.002
endochitinase Carbon cycling Carbon degradation 0.154 11.47 0.001
ara_fungi Carbon cycling Carbon degradation 0.433 13.93 <0.001
xylA Carbon cycling Carbon degradation 0.127 7.72 0.006
phenol_oxidase Carbon cycling Carbon degradation 0.315 17.58 <0.001
AceA Carbon cycling Carbon degradation 0.150 22.35 <0.001
AceB Carbon cycling Carbon degradation 0.260 71.88 <0.001
AssA Carbon cycling Carbon degradation 1.478 177.03 <0.001
vdh Carbon cycling Carbon degradation 0.273 4.44 0.039
amyA Carbon cycling Carbon degradation 0.192 20.75 <0.001
isopullulanase Carbon cycling Carbon degradation 0.097 4.40 0.048
pulA Carbon cycling Carbon degradation 0.344 19.27 <0.001
CODH Carbon cycling Carbon fixation 0.121 35.27 <0.001
pmoA Carbon cycling Methane 0.244 15.37 <0.001
cytochrome Energy process Energy process 0.109 10.40 0.001
Al Metal resistance Aluminum 0.450 15.47 <0.001
arsB Metal resistance Arsenic 0.291 5.75 0.017
CadA Metal resistance Cadmium 0.200 12.40 <0.001
czcA Metal resistance Cadmium, cobalt, zinc 0.105 6.94 0.009
ChrA Metal resistance Chromium 0.227 43.45 <0.001
CopA Metal resistance Copper 0.149 29.12 <0.001
CueO Metal resistance Copper 0.456 5.92 0.018
CusF Metal resistance Copper 1.603 5.79 0.035
mer Metal resistance Mercury 0.217 7.26 0.007
merT Metal resistance Mercury 1.706 28.74 <0.001
silP Metal resistance Silver 0.392 19.74 <0.001
TerC Metal resistance Tellurium 0.262 8.56 0.004
TerZ Metal resistance Tellurium 0.306 25.58 <0.001
ZntA Metal resistance Zinc 0.108 11.20 0.001
ureC Nitrogen Ammonification 0.084 12.63 <0.001
hzo Nitrogen Anammox 0.294 10.40 0.002
nasA Nitrogen Assimilatory N reduction 0.259 4.57 0.033
nirA Nitrogen Assimilatory N reduction 0.349 34.69 <0.001
NirB Nitrogen Assimilatory N reduction 0.286 5.04 0.026
narG Nitrogen Denitrification 0.125 7.09 0.008
nirK Nitrogen Denitrification 0.067 4.06 0.044
nirS Nitrogen Denitrification 0.102 4.38 0.037
norB Nitrogen Denitrification 0.299 12.39 0.001
nosZ Nitrogen Denitrification 0.097 15.10 <0.001
nrfA Nitrogen Dissimilatory N reduction 0.208 12.22 0.001
amoA Nitrogen Nitrification 0.103 4.30 0.039
nifH Nitrogen Nitrogen fixation 0.247 71.28 <0.001
BpH Organic remediation Aromatics 0.370 4.70 0.033
GcdB Organic remediation Aromatics 0.516 16.44 <0.001
GCoADH Organic remediation Aromatics 0.172 15.72 <0.001
hmgA Organic remediation Aromatics 0.097 5.88 0.016
hmgB Organic remediation Aromatics 0.136 7.88 0.005
hmgC Organic remediation Aromatics 0.170 10.63 0.001
mdlA Organic remediation Aromatics 0.300 29.53 <0.001
mdlB Organic remediation Aromatics 0.817 10.47 0.002
mdlC Organic remediation Aromatics 0.182 11.49 0.001
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Table S3. Cont.

Gene Gene category Subcategory
Abundance differences
between days 269 and 0 F value Pr (>F)

mhpA Organic remediation Aromatics 0.048 3.98 0.050
mhpB Organic remediation Aromatics 0.334 12.33 0.002
nagG Organic remediation Aromatics 0.247 16.14 <0.001
nagI Organic remediation Aromatics 0.172 5.22 0.023
nagK Organic remediation Aromatics 0.180 9.70 0.003
nagL Organic remediation Aromatics 0.427 10.89 0.002
ohbAB Organic remediation Aromatics 0.255 16.54 <0.001
phtA Organic remediation Aromatics 0.295 15.73 <0.001
pimF Organic remediation Aromatics 0.216 56.59 <0.001
PobA Organic remediation Aromatics 0.065 4.43 0.036
akbF Organic remediation Aromatics 0.167 6.03 0.015
catB Organic remediation Aromatics 0.159 12.53 <0.001
todC Organic remediation Aromatics 0.164 8.31 0.005
tutFDG Organic remediation Aromatics 0.365 7.41 0.007
fcbA Organic remediation Aromatics 0.844 16.36 0.001
tfdA Organic remediation Aromatics 0.196 16.87 <0.001
tfdB Organic remediation Aromatics 0.648 5.20 0.027
tftH Organic remediation Aromatics 0.149 10.00 0.002
mhqA Organic remediation Aromatics 0.283 5.87 0.034
nbzB Organic remediation Aromatics 0.164 10.11 0.003
nhh Organic remediation Aromatics 0.131 5.50 0.019
nphA Organic remediation Aromatics 1.521 4.39 0.047
AmiE Organic remediation Aromatics 0.215 6.31 0.014
Arylest Organic remediation Aromatics 0.322 5.94 0.016
BADH Organic remediation Aromatics 0.277 8.85 0.003
Catechol Organic remediation Aromatics 0.116 8.40 0.004
catechol_B Organic remediation Aromatics 0.122 5.67 0.019
nitA Organic remediation Aromatics 0.184 18.53 <0.001
pcaG Organic remediation Aromatics 0.163 13.99 <0.001
pheA Organic remediation Aromatics 0.175 7.29 0.007
bphC Organic remediation Aromatics 0.207 5.25 0.023
bphD Organic remediation Aromatics 0.199 6.40 0.016
nahF Organic remediation Aromatics 0.438 7.73 0.008
phdA Organic remediation Aromatics 0.618 20.83 <0.001
phdCI Organic remediation Aromatics 0.272 15.29 <0.001
phdJ Organic remediation Aromatics 0.760 31.76 <0.001
qorL Organic remediation Aromatics 0.434 14.75 0.001
cmuA Organic remediation Chlorinated solvents 0.621 4.88 0.034
dehH109 Organic remediation Chlorinated solvents 0.099 6.97 0.009
exaA Organic remediation Chlorinated solvents 0.208 18.50 <0.001
rd Organic remediation Chlorinated solvents 0.274 5.94 0.015
mauAB Organic remediation Herbicides related compound 0.247 9.17 0.003
pcpB Organic remediation Herbicides related compound 0.535 11.79 0.001
pcpE Organic remediation Herbicides related compound 0.253 8.42 0.004
phn Organic remediation Herbicides related compound 0.129 7.39 0.007
trzA Organic remediation Herbicides related compound 0.153 6.23 0.014
trzN Organic remediation Herbicides related compound 0.272 10.03 0.002
alkB Organic remediation Other Hydrocarbons 0.314 20.22 <0.001
alkH Organic remediation Other Hydrocarbons 0.473 20.26 <0.001
chnB Organic remediation Other Hydrocarbons 0.154 7.11 0.008
alkK Organic remediation Others 0.219 10.77 0.001
dmsA Organic remediation Others 0.422 10.72 0.001
linB Organic remediation Pesticides related compound 0.194 11.19 0.001
linC Organic remediation Pesticides related compound 0.320 6.12 0.014
gyrB Other category Phylogenetic marker 0.113 8.84 0.003
ppk Phosphorus Phosphorus utilization 0.244 10.31 0.001
ppx Phosphorus Phosphorus utilization 0.247 30.84 <0.001
AprA Sulfur Other 0.285 12.47 <0.001
dsrA Sulfur Sulfite reductase 0.287 70.76 <0.001
dsrB Sulfur Sulfite reductase 0.340 48.99 <0.001
sox Sulfur Sulfur oxidation 0.231 14.47 <0.001

The abundance of a gene was the average of mean-signal-ratio across different probes within this gene. The mean-signal-ratio is the ratio of the signal
intensity of a probe divided by the mean signal intensity across all probes detected.
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