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ABSTRACT

Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the
phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of
metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were
highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did,
however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes),
but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of
specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and
Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our
study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no
clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker
genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional
genes, e.g. involved in metal resistance, appears to be a more promising strategy.
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INTRODUCTION

Because of its crucial importance for nutrient turnover and
global carbon balance, the decomposition of dead organic mat-
ter has been the subject of numerous studies on the effects
of pollution on ecosystems. It is already known for many
years that litter decomposition slows down in metal-polluted
forests (Rühling and Tyler 1973), and Babich and Stotzky (1974)
suggested that the direct reason is metal toxicity to soil mi-
croorganisms. Indeed, cadmium toxicity tomicroorganismswas
confirmed later by Giesy (1978). This negative effect of metals
on carbon mineralization rates was later found in a number of
studies (e.g. Grodziński et al., 1990; Laskowski, Maryański and
Niklińska 1994; Azarbad et al., 2013). Although metal toxicity to
soil microorganisms and its ultimate effect on organic matter
breakdown have been confirmed, it remained unclear whether
it results mostly from an overall decrease in microbial diversity.
A reduced biodiversity may also lead to a decreased functional
diversity, because certain groups or soilmicroorganisms special-
ize in decomposing particular organic substrates.

More recently, such changes in the structure of microbial
communities from different environments have been confirmed
[with the term ‘microbial community structure’, we refer to
the composition of a microbial community (which species are
present) and the abundances of its members]. Gough and Stahl
(2011) observed a general restructuring of soil microbial com-
munities chronically exposed to metal pollution in lake sedi-
ments. Hemme et al. (2010) reported that prolonged exposure to
high concentrations of heavymetals, nitric acid and organic sol-
vents (∼50 years) has resulted in a massive decrease in species
diversity as well as a significant loss of metabolic diversity in
groundwater communities. They showed that the majority of
microbial populations may have become extinct after the intro-
duction of contaminants, while certain community members,
with keymetabolic activities related to denitrification andmetal
resistance, survived to form the foundation of the new com-
munity. Recently, Kang et al. (2013), using a functional gene mi-
croarray (GeoChip 2.0), studied sedimentmicrobial communities
along a gradient ofmetal contamination in Lake DePue (IL, USA),
which has been contaminated formore than 80 years by an adja-
cent Zn-smelting facility. In contrast to Hemme et al. (2010), they
showed that the functional potentials of microbial communities
were similar across all sites, although some individual gene cat-
egories showed differences. A subset of sulfate reduction genes
(dsr) and severalmetal-resistance genes (cadA, chrAB and czcABC)
were highly correlated with metal contamination.

However, despite the global importance of forests, it is vir-
tually unknown how their soil microbial communities adapt to
long-term pollution at the functional level, such as the diversity
in functional gene categories (e.g. metal-resistance genes), and
howmicrobial community structure and functional potential re-
late to each other in metal-polluted forest soils. Knowledge on
the linkage between function (traits) and phylogeny in long-term
polluted forest soils would contribute to developing a framework
for predicting the phylogenetic distribution of specific traits.

In this study, soil microbial communities in two long-term
metal-polluted areas, Olkusz and Miasteczko Śl

↪
askie, Southern

Poland, were investigated. Both areas have been seriously con-
taminated since the 1970s by two large zinc-and-lead smelters.
In close proximity to the smelters, concentrations of some met-
als exceed their natural background levels by two orders of mag-
nitude: the upper soil layers contain up to 4300 mg kg−1 total Zn
and 2900 mg kg−1 total Pb, putting them among the most pol-
luted soils in Europe (Nowicki 1993; Azarbad et al., 2013). Our ear-

lier study provided baseline knowledge onmicrobial community
structure and general soil functioning in relation to soil charac-
teristics, and demonstrated strong negative impacts of metals
on soil respiration and microbial biomass (Azarbad et al., 2013).
However, the limited taxonomic resolution of the applied
phospholipid fatty acid analyses did not allow us to identify the
specific microbial groups that shift in abundance across the pol-
lution gradients nor could we identify specific changes in key
functional gene categories, connected with carbon (C), nitrogen
(N) and sulfur (S) cycling and metal resistance.

The objective of this study was to reveal genetic details be-
hind the differences in soilmicrobial communities observed ear-
lier along the twometal pollution gradients. Studies along a gra-
dient allow for better control over confounding non-pollution
related factors, compared to more traditional approaches that
contrast polluted vs unpolluted sites or comprise random sam-
pling within an area exposed to a single pollution source
(Hurlbert 1984). Previously, we observed that simultaneously
studying these two gradients allowed for much stronger infer-
ence about effects of metal pollution (Azarbad et al., 2013). We
hypothesized that chronic metal pollution should be reflected
in soil microbial communities, not only in changes of their tax-
onomic and functional diversity but also in metabolic poten-
tials. In particular, we expected an increased frequency ofmetal-
resistance genes with increasing concentrations of metals in
soils. These goals were reached by analyzing microbial com-
munities from the two gradients with Illumina MiSeq-based se-
quencing of 16S rRNA gene amplicons and GeoChip, a high-
throughput functional gene array (He et al., 2007).

MATERIALS AND METHODS
Site description and soil sampling

Two long-term polluted areas (Olkusz and Miasteczko Śl
↪
askie)

were investigated (Table 1). TheOlkusz area is themajor zinc and
lead industry region in Southern Poland. Mining in the area goes
back to medieval times, and intensive modern industry started
in 1967 when the ‘Boles�law’ zinc-and-lead smelter was estab-
lished. Many years of mining and smelting have brought high
metal concentrations in soils over a large area around the emis-
sion sources (Roberts, Scheinost and Sparks 2002). Miasteczko
Śl

↪
askie is a small town located ca. 48 km NE from the ‘Boles�law’

smelter and home to another large zinc-and-lead smelter, con-
structed also in 1967. The intensive industry, especially in the
1970s when old-fashioned technological processes were used,
resulted in heavy contamination of the environment with met-
als. The dominating tree species in the forests sampled in both
areas are Scots pine (Pinus sylvestris) followed by Common beech
(Fagus sylvatica) (Niklińska, Chodak and Laskowski 2005).

In the Olkusz area (O), a transect was established extending
from1.9 to 31.8 kmaway from the smelter, and in theMiasteczko
Śl

↪
askie area (M) from 2.1 to 52.6 km away from the source of

pollution (Table 1). Along each transect six sampling locations
were chosen, all in P. sylvestris forest stands, and at each loca-
tion a plot was laid out of approximately 100 m2. In May 2011,
from each plot 10 samples (each approximately 400–500 g wet
mass) of the organic topsoil O layer (about 10 cm thick) were ran-
domly taken with a 5-cm-diameter soil auger, and the top 10 cm
of each sample was used for analysis, sieved (mesh size 2 mm),
andmixed to obtain one representative sample per location. The
soil sampleswere stored frozen (−20◦C) untilmolecular analyses
were performed.
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All physicochemical analyseswere performed in triplicate on
subsamples taken from the same pooled sample and presented
results are the mean values with standard deviations.

Soil physicochemical analyses

Complete soil analyses and detailed soil biological characteri-
zation of the sites are available in Azarbad et al. (2013). Water
holding capacity was measured as described by Boivin (2005).
The dry weight of the organic soil wasmeasured after drying the
samples for 12 h at 105◦C, and organicmatter content was deter-
mined as loss on ignition at 550◦C (12 h). Soil pH was measured
in water and 1 M KCl at 1:10 ratio (soil: liquid, w:v) using a digital
pH meter (Nester Instr.). The total concentrations of metals (K,
Ca, Mn, Na, Fe, Zn, Cd, Pb and Cu) were measured after wet di-
gestion of 0.5 g subsamples in 10 ml concentrated HNO3 (Merck,
Darmstadt, Germany) with a gradual temperature increase from
50 to 150oC. Water-extractable concentrations of metals (K, Mn,
Fe, Zn, Cd and Pb) were measured after 1 h shaking of soil sam-
ples in water at 1:10 (w: v) ratio and filtration of the extracts
through a Whatman ffilter. Total and water-extractable metal
concentrations were measured by using a flame or graphite
furnace atomic absorption spectrophotometer (Perkin-Elmer,
model AAnalyst 800, USA). At least three blanks accompanied
every run of analysis. Additionally, each analytical run was
checked for precisionwith a certified standardmaterial (Chinese
soil: NCS ZC 73001). The measured concentrations for the refer-
ence material were within 20% of the certified reference values,
indicating accurate determination. Concentrations of themetals
in the polluted soils were highly correlated to each other, and
thus determination of the effects of any individual metal con-
taminant on soil microbial community structure is confounded.
The complex metal pollution measured in field soils was sum-
marized for each site by a toxicity index (TI) as defined by Ste-
fanowicz, Niklińska and Laskowski (2008), for subsequent use in
statistical analysis. This was done for water-extractable metal
concentrations (leading to TIwe) and total metal concentrations
(TItot). Briefly, TI was calculated as �(Ci/EC50i), where Ci is the
concentration of metal i in soil and EC50i is the concentration of
that metal causing 50% reduction in dehydrogenase activity as
reported by Welp (1999). Characteristics of each of the soils col-
lected, including total and soluble heavymetal levels, have been
reported previously (Azarbad et al., 2013). For the purpose of dis-
cussion, levels of heavy metals used to calculate the toxicity in-
dices have been included in Table S1 (Supporting Information).

DNA extraction

DNA was extracted from 0.25 g soil using the PowerSoil DNA
kit (MoBio Laboratories, Solana Beach, CA) following instruc-
tions of the manufacturer. DNA quality was assessed by mea-
suring UV absorbance at 230, 260 and 280 nm (respectively A230,
A260 and A280) using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE). UV absorbance
ratios A260/A280 and A260/A230 in the range of 1.7–2.0 indi-
cate ‘clean DNA’. DNA concentrations were measured with a
PicoGreen method.

Sample tagging, PCR amplification and sequencing

Primers 515F (5′-GTGCCAGCMGCCGCGG-3′) and 806R (5′-
GGACTACHVGGGTWTC TAAT-3′) which target the hypervariable
V4 region of the bacterial 16S rRNA gene were employed
(Caporaso et al., 2012). Both forward and reverse primers were
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tagged with adapter, pad and linker sequences. A sample-
specific barcode sequence (12 mer) was added to the reverse
primer to allow for pooling multiple samples in one run of
Illumina MiSeq sequencing. All primers were synthesized by
Invitrogen (Carlsbad, CA, USA).

PCR amplification was performed in triplicate using a Gene
Amp PCR-System R© 9700 (Applied Biosystems, Foster City, CA,
USA) in a total volume of 25 μl containing 2.5 μl 10 × PCR buffer
and 0.5 unit of AccuPrimeTM Taq DNA Polymerase High Fidelity
(Invitrogen, Carlsbad, CA, USA), 0.4 μM of each primer and 10 ng
template DNA.

Thermal cycling conditions were as follows: an initial de-
naturation at 94◦C for 1 min, and 30 cycles at 94◦C for 20 s,
53◦C for 25 s and 68◦C for 45 s, with a final extension at 68◦C
for 10 min. The triplicate PCR reactions were combined and
quantified with PicoGreen. From each sample, 200 ng of PCR
product was combined with other purified samples as a library,
and re-quantified with PicoGreen. The mixture library was di-
luted, denatured to obtain 8 pM sample DNA library and mixed
with an equal volume of 8 pM PhiX (Illumina, San Diego, CA,
USA), according to the MiSeqTM Reagent Kit Preparation Guide
(Illumina, San Diego, CA, USA). Finally, 600 μl of mixture library
was loaded with read 1, read 2 and index sequencing primers
(Caporaso et al., 2012) on a 500-cycle (2 × 250 paired ends) kit,
and run on a MiSeq at the Institute for Environmental Genomics
of the University of Oklahoma. For sequencing data process-
ing, firstly PhiX sequences were removed using BLAST (Altschul
et al., 1990) and sequences without assigned barcodes were dis-
carded. To minimize the number of sequences with sequencing
errors and ensure the quality of the sequences, both forward and
reverse reads were trimmed based on sequence quality scores
using Btrim (Kong 2011), where the sequences were trimmed if
the average quality score of five continuous bases was less than
20. After trimming, the forward and reverse reads with 50 to 250
bp overlapping were combined to obtain longer sequences (250
± 20 bp) using FLASH; reads that could not be joined together
were removed. Also, unqualified sequenceswere removed if they
were too short or contained undetermined base ‘N’. Following
this, potential chimeric sequences were detected and removed
by UCHIME (Edgar et al., 2011) using the Greengenes database for
16S rRNA genes (DeSantis et al., 2006) as reference. Sequences
were then clustered into operational taxonomic units (OTUs) at
97% sequence similarity using UCLUST (Edgar et al., 2011). Fi-
nally, the RDP Classifier was used to assign 16S rRNA sequences
to the bacterial taxa (Wang et al., 2007).

Sequencing depth (number of sequences obtained for each
sample) differed between samples (Table 1), and samples with
the highest number of sequences were expected to show a
comparatively higher diversity (Lundin et al., 2012). Therefore,
resampling was performed for each sample, with 17 581 se-
quences which corresponded to the smallest sampling effort in
our datasets (sample O4; Table 1), as described by Galand et al.
(2010). Sequence data have been deposited in the National Cen-
ter for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) under the accession number SRP028927.

Functional gene array

GeoChip 4.2 was employed to assess metabolic potential of the
bacterial communities from the study sites. It contains over
80 000 probes covering 140 000 coding sequences from 410 func-
tional gene families related to microbial carbon (C), nitrogen
(N), sulfur (S) and phosphorus (P) cycling, energy metabolism,
antibiotic resistance, metal resistance/reduction, organic re-

mediation, stress responses, bacteriophage and virulence (Tu
et al., 2014). Extracted DNA (1 μg) was labeled with Cy-3 using
random primers and the Klenow fragment of DNA polymerase I.
The labeled products were dried (45◦C, 45 min; ThermoSavant)
and rehydrated (with 2.68 μl sample tracking control to confirm
sample identity). Hybridization solution (7.32μl), containing 40%
formamide, 25% SSC, 1% SDS, 2% Cy5-labeled common oligonu-
cleotide reference standard (CORS) target, and 2.38%Cy3-labeled
alignment oligo (NimbleGen) and 2.8% Cy5-labeled CORS tar-
get for data normalization and comparison (Liang et al., 2010),
was then added to the samples. Labeled DNA was hybridized to
GeoChip 4.2 on a HS4800 Hybridization Station (MAUI, BioMicro
Systems, Salt Lake City, UT, USA) at 43◦C for 16 h. All hybridiza-
tions were carried out in triplicate on different modules. After
hybridization, the arrays were scanned with a laser power of
100% and a photomultiplier tube gain of 100% (MS 200 Microar-
ray Scanner, NimbleGen).

Scanned images were processed using ImaGene version 6.1
(BioDiscovery, El Segundo, CA) by averaging the intensities of ev-
ery pixel inside the target region (segmentation method). The
mean signal intensity was determined for each spot, and the lo-
cal background signals were subtracted automatically from the
hybridization signal of each spot. The spot signals, spot qual-
ity and background fluorescence intensities of scanned images
were quantified with ImaGene. After this step all bad spots,
which were flagged by the image processing software using pre-
determined criteria (defined as spots whose signals could not
be accurately quantified due to their irregular shapes and/or
contaminations), were removed and acceptable spots intensity
data were extracted from ImaGene output files. Raw data ob-
tained using ImaGene were uploaded to the laboratory’s mi-
croarray data manager and analyzed using a GeoChip 4.2 data
analysis pipeline (http://ieg.ou.edu/microarray). Spots with a
signal-to-noise ratio [SNR = (signal intensity-background inten-
sity)/standard deviation of the background] greater than 2 were
used for further analysis (including potential empty spots and
good spots).

Normalization was performed as described by He et al. (2007)
and Liang et al. (2010). The hybridization signal was normalized
by the mean signal intensity across all genes on the array. The
across-array mean was calculated based on all intensities on
the arrays after the removal of poor spots and outliers. Then,
a ratio was calculated for each positive spot by dividing the sig-
nal intensity of the spot by the mean signal intensity to obtain
the normalized ratio. The average signal intensities across all of
the genes were expected to be approximately equal because the
same amount of DNA was used for labeling and hybridization.
A matrix was then generated from the normalized pixel inten-
sities of all protein-encoding genes. Microarray data has been
deposited in NCBI GEO and are accessible through GEO series
accession number GSE59620.

Denaturing Gradient Gel Electrophoresis (DGGE)
profiling

DGGE analyses of specific groups (Fungi, Bacteria, Acidobacteria,
Actinobacteria,Alphaproteobacteria andGammaproteobacteria)were
performed as described by de Boer et al. (2012) [see Table S2 (Sup-
porting Information) for primers and amplification details].

Statistical analysis

The number of OTUs in the subset was used for estimating
total species richness as predicted by the Chao-1 estimator
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(Colwell and Coddington 1994). The Shannon index (H) was
calculated according to the formula: H = � pi ln pi, where
pi is the proportion of OTU i relative to the total number
of OTUs.

Canonical correspondence analysis (CCA) was performed to
link microbial communities to environmental variables. The
relative abundances of OTUs, signal intensities of individual
functional gene variants in Geochip or functional gene cate-
gories (summed intensities of all genes belonging to a certain
functional gene category) (Zhou et al., 2008) were used for CCA
analysis. Selection for CCA modeling was conducted by an iter-
ative procedure of eliminating redundant environmental vari-
ables based on significance level of the effect of each variable
which was tested by a Monte Carlo permutation test (Ter Braak
and Verdonschot 1995).

To estimate community similarity among samples, hierar-
chical cluster analysis was applied on the basis of the abun-
dance of all OTUs observed using Bray–Curtis similarity in the
program PAST (PAleontological STatistics) (Hammer, Harper and
Ryan 2001) and the Jaccard coefficient which takes only pres-
ence/absence of OTUs into account (Jaccard 1912). As described
in the result section, large species richness was observed and
many OTUs that did not appear in all samples. Their absence
might be due to either chance or be significant. In order to cor-
rect for absence by chance, we determined the total numberN of
a particular OTU i required to ensure that each sample contains
at least one count of that OTU i. A permutation approach was
used, coded in Maple 9 (Maplesoft, Waterloo, Canada). N counts
were randomly divided over the 12 samples, to obtain a series
of counts. This procedure was repeated 106 times after which
the number of series (n) was determined that contained at least
one sample with zero counts. Probability P was calculated as n
× 10−6. The permutation approach was repeated with increas-
ing values for N until a P < 0.00001 was achieved (derived from
the usual value P = 0.05, after correcting for multiple testing by
dividing with the number of different OTUs observed (5 × 103)).
N was found to be 165. Therefore, all OTUs with a total abun-
dance of less than 165 were removed from the data set, and the
trimmed data set was used to calculate Bray–Curtis and Jaccard
similarities.

The Mantel test was used to test for significance (P ≤ 0.05) of
relationships between different microbial phyla (relative abun-
dance of OTUs) and TI. A partial Mantel test, controlling for the
confounding effect of pH, was applied to establish the correla-
tion between microbial community composition (either based
on presence/absence of OTUs or structure taking relative abun-
dance of all OTUs into consideration) and TI. Correlations be-
tween relative abundances of bacterial phyla and TI were deter-
mined by using Spearman’s rank correlation (with correction for
multiple testing).

DGGE profiles were analyzed in the GelCompar II soft-
ware package (Applied Maths, Kortrijk, Belgium) using a band
assignment-independent method (Pearson product-moment
correlation coefficient and unweighted pair-group clustering
method using arithmetic averages). The correlation matrix
generated was used for non-metric multidimensional scal-
ing to visualize how microbial community structure changed
in both gradients. Statistical analyses were performed us-
ing the vegan package in R 2.9, PAST (Hammer et al., 2001)
and Statgraphics Centurion XV software (StatPoint, Herndon,
VA, USA).

RESULTS
Soil characteristics

Soil properties of the study sites were described in detail by
Azarbad et al. (2013). In brief, the toxicity indices including the
four main metals (TItot) at the most polluted sites in the Mi-
asteczko Śl

↪
askie area, M1 and M2, were 41.3 and 39.8, respec-

tively, and in the Olkusz area 43.5 (O1) and 22.6 (O2) (Table 1).
For comparison, at the unpolluted sites M6 and O6, TItot reached
1.0 and 3.0, respectively. Also TIwe values were substantially el-
evated near the smelters: the difference between the most and
least polluted sites in the Olkusz area was over 12-fold, and in
the Miasteczko Śl

↪
askie area over 67-fold (Table 1). Soil pHwater

ranged from 3.91 (M5) to 5.81 (O1). Values of pHwater were more
or less similar at all study sites (acidic or highly acidic), except
for O1 (pH 5.81) and O5 (pH 5.10), where pH was higher than at
the other sites (Table 1).

Microbial diversity and community structure in relation
to metal contamination

After quality filtering the raw reads, we obtained 17 581 to 28 500
16S rRNA gene sequences per sample, with an average of 23 655.
The numbers of different bacterial OTUs at the 97% similarity
level ranged from 1571 to 2964 per sample with an average of
2308 OTUs (Table 1). Neither Shannon H’ diversity nor Chao-1
richness indices were correlated with contamination level (TI)
(P > 0.05).

Representative sequences of each OTU were classified into
the domains bacteria (99.8% of the total data set; 20 phyla) and
archaea (0.2%; 2 phyla). Themajormicrobial phyla, i.e. those rep-
resented by ≥1% of the identified sequences, are presented in
Table 2. Proteobacteria were the most dominant phylum ob-
served, accounting for 38.2% of the sequences. Acidobacteria
were the second most abundant phylum, at 10.6%.

Several multivariate analyses revealed a significant impact
of TItot on the microbial community structure. CCA indicated
a significant relationship between the bacterial community
structure and TItot (P = 0.037). Besides pollution level, there
were significant and stronger correlations of overall commu-
nity composition with soil pH (P = 0.001) and concentrations of
several nutrients (Na: P = 0.018, Fe: P = 0.008, Mn: P = 0.004)
(Fig. 1). A partial Mantel test, controlling for the confounding
effect of pH, showed that microbial community composition
(based on presence/absence of OTUs only) and structure (tak-
ing relative abundance of all OTUs into consideration) signifi-
cantly correlated with TIwe and TItot (P = 0.008 and P = 0.004,
respectively).

To reveal how the 11 most abundant bacteria phyla were af-
fected by soil properties, relative abundances of OTUs belonging
to a particular phylum togetherwith all soil propertieswere used
in CCA (Table 2). TI significantly explained the community struc-
tures of Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planc-
tomycetes and Proteobacteria (Table 2). pH again appeared to be the
most significant explanatory factor (Table 2). PartialMantel tests,
controlling for the confounding effect of pH, indicated nearly the
same phyla as significantly affected by TItot (Acidobacteria, Acti-
nobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and
Proteobacteria). TIwe significantly affected the community struc-
tures ofActinobacteria, Bacteroidetes, Chloroflexi, Firmicutes and Pro-
teobacteria (Table 2).
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Figure 1. Ordination triplot based on CCA (the model significant at P = 0.005)
of the relationship between the structure of soil microbial communities (rela-

tive abundances of OTUs) and environmental variables along twometal-polluted
gradients in southern Poland: Miasteczko Śl

↪
askie (M1–M6) and Olkusz (O1–O6);

see Table 1. Environmental variables were chosen based on significance levels
calculated from individual CCA results in comparison with other variables (TItot:

P = 0.037, pH: P = 0.001, Na: P = 0.018, Ca: P = 0.045, Fe: P = 0.008, Mn: P = 0.004).
The percentage of total variance explained by each axis is shown next to the axis
title.

Spearman correlation tests revealed that relative abun-
dances of Chloroflexi, Gemmatimonadetes and Proteobacteria in-
creased with increasing pollution level, while the relative abun-
dance of Verrucomicrobia was negatively correlated with TI
(Table 2). Frequently, pollution-related changes in the relative
abundances of classes within other phyla were observed, while
the relative abundances of the phyla itself were not affected by
metal concentrations. Among members of the dominant phy-
lum Acidobacteria, the Acidobacteria subgroup 1 correlated nega-
tively with pollution (TIwe: P = 0.05, TItot: P = 0.013), while pos-
itive correlations with TI were found for the Acidobacteria sub-
groups 7 (TItot: P = 0.02), 10, 15, 16 and 17 (TIwe: P = 0.04, TItot: P
= 0.009). Within the Firmicutes, relative abundances of Clostridia
were negatively correlated to pollution level (TItot: P = 0.013).

When all OTUs and their relative abundanceswere taken into
account, the average Bray–Curtis similarity between microbial
communities was 52% (± a standard deviation of 12%). When
the absence and presence of OTUs were taken into account, av-
erage Jaccard similarity between all samples was 41 ± 7%. These
relatively low similaritiesmay relate to the high species richness
of the samples (on average 2308 OTUs), so the ∼20 000 reads we
obtained per sample may not be sufficient to quantitatively rep-
resent the community structure. Illumina sequencing only re-
covers a subset of the 16S rRNA genes in the DNA template used.
Instead DGGE analysis will profile a PCR product containing bil-
lions of 16S rRNA gene amplicons derived from a DNA template,
andwould allow for better representation and comparison of the
structures of complex communities. Indeed, when DGGE analy-
sis of bacteria was done, a much higher average similarity was
observed: 79 ± 11% (Fig. S1A, Supporting Information). There-
fore, we corrected the OTU dataset by removing all OTUs that
might be absent in one or more samples due to chance (see ‘Ma-
terial andmethods’ section for procedure). After this correction,
the cluster analysis revealed a higher Bray–Curtis similarity of
61 ± 12% and, more importantly, a much higher average Jaccard
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Figure 2. (A) Ordination triplot based on CCA (the model is significant at P = 0.03) of the relationship between GeoChip 4.2 hybridization signal intensities (circles) and

environmental variables (arrows) along two metal-polluted transects in southern Poland: Miasteczko Śl
↪
askie (M1–M6) and Olkusz (O1–O6). Environmental variables

were chosen based on significance levels calculated from individual CCA results in comparison with other variables (S: P = 0.28, TIwe: P = 0.18, K: P = 0.18, Mnwe: P =
0.08). Axis 1 explains 43% of variance, while Axis 2 describes additional 25% of the variance among samples. (B) CCA (themodel significant at P= 0.015) for all functional

gene categories (total number of positive genes in each category) (circles) and environmental variables (arrows) in the 12 study sites (red circles, Miasteczko Śl
↪
askie;

black circles, Olkusz). Four environmental variables were chosen (TIwe, P = 0.312; Mnwe, P = 0.02; K, P = 0.014; Ca, P = 0.131). The percentage of variation explained by
each CCA axis is shown.

similarity of 92 ± 5% among the 12 bacterial communities. This
high Jaccard similarity suggests that the impact of pollution on
community composition is only minor; we did not observe any
OTU that solely occurred in either the heavily polluted (O1–O3,
M1–M3) or less polluted soils (O4–O6, M4–M6) (Table S3, Support-
ing Information). The high Jaccard similarity is also in line with
DGGE analysis of bacteria (Fig. S1A, Supporting Information).
The high similarity observed for DGGE profiles of bacteria was
also observed at higher phylogenetic resolution for Gammapro-
teobacteria, Alphaproteobacteria and Actinobacteria (Fig. S1B, C and
D, Supporting Information), although considerable variationwas
observed in Acidobacteria communities (Fig. S1E, Supporting In-
formation). The fungal community profiles revealed a high di-
versity within and between samples, but no significant rela-
tionships to pollution or location of the gradient were detected
(Fig. S2, Supporting Information).

Functional gene diversity and metabolic potentials in
metal-impacted microbial communities

The number of detected functional genes ranged from 35 809 to
43 107 per sample with an average of 40 090 (Table 1). No rela-
tionships were observed between the total number of functional
genes and the level of metal pollution as indicated by TI, sug-
gesting that pollution level did not affect the overall functional
gene diversity.

The average Bray–Curtis similarity between microbial com-
munities was 80 ± 4%. There was no significant effect of metal
pollution level on functional gene-based community structure
when the individual signal intensities of all gene variants (indi-
vidual genes) were used in CCA, as shown in Fig. 2A. However,
when CCAwas performed on distinct functional gene categories
(based on summed intensities of all genes belonging to a partic-
ular functional gene category) a significant model was revealed
(P = 0.015), explaining 94% of the total variance (Fig. 2B). Abun-

dance of genes related to sulfur metabolism was positively af-
fected by pollution level. Other functional gene categories, such
as antibiotic resistance, virulence and soil-borne pathogen, were
negatively affected by pollution level.

Subsequently, each functional gene category was examined
separately, using signal intensities of individual genes belong-
ing to that particular category. TI was only significant for metal-
resistance genes (P = 0.013) (Fig. 31). GeoChip 4.2 contains 44
functional gene subgroups involved in metal resistance (e.g.
genes that are involved in zinc, copper and lead resistance), ac-
counting for 9% (9272 out of 95 847) of all probes. A total of 3931
to 4877 probes were positive for the 12 sampling locations in-
vestigated. These probes related to the resistance against a va-
riety of metals, including Cd (corresponding to on average 23%
of all probes relating to metal resistance), Cu (19%), Te (12%), Cr
(12%), As (10%), Hg (9%), Zn (6%), Ag (6%), Al (1%), Pb (1%) and Ni
(1%). Total signal intensity for these probes ranged from 3750 to
4785; however, no significant relationships between total metal-
resistance gene intensities and pollution level were observed.
Pollution level correlated positively with several genes, in par-
ticular arsA, pbrT and cusF (Fig. 31). Spearman correlation with
Bonferroni correction corroborated this finding, indicating a pos-
itive relationship between pollution level and the genes arsA (P
= 0.0004), pbrT (P = 0.001) and cusF (P = 0.001); however, no sig-
nificant relation was observed with any other metal-resistance
genes.

A Mantel test, comparing similarity matrices derived from
sequencing data and GeoChip data, did not reveal a significant
correlation between microbial community structure and func-
tional potential gene diversity.

DISCUSSION

Although microorganisms are major drivers of many soil
processes, the relationship between microbial community
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Figure 3. CCA of genes related to metal resistance (1; the model significant at P = 0.013, TIwe P = 0.013) and sulfur metabolism (2; model P = 0.17, Mnwe P = 0.03)

obtained by using total normalized intensity of detected genes and soil properties along two metal-polluted transects in southern Poland: Miasteczko Śl
↪
askie (M1–M6,

red circles) and Olkusz (O1–O6, black circles). The percentage of the total variation explained by each axis is shown.

composition and their functional potential in long-termpolluted
forest soils remains unclear. The response of soil microbial com-
munities to metals in the natural field situation is in general
confounded by soil properties. Our experimental design involv-
ing sampling along multiple gradients allows for better control
over these confounding factors (Azarbad et al., 2013). Both 16S
rRNA gene sequencing and GeoChip data indicate that the soil
microbial community had adapted to the elevated metal con-
centrations in the polluted soils as evidenced by changes in rel-
ative abundances of particular groups of microorganisms and
increased frequency of certain metal-resistance genes (such as
arsA, pbrT and cusF).

The remarkable high similarity in community composition
along the two forest gradients suggests a great robustness of
the soil bacterial communities. The findings are in agreement
with the observations of de Boer et al. (2012), who studied the ef-
fects of nearly 27 years of Cu pollution on themicrobial commu-
nity structure (using DGGE) in agricultural fields. They showed
thatmicrobial community structure had stabilized after the shift
caused by an artificial Cu amendment (<200 mg kg−1). Adap-
tation of microbial communities to metal pollution has been
suggested to be controlled by the diversity of metal-resistance
genes (Lejon et al., 2007). These genes can be located on plasmids
(Monchy et al., 2006) and might be exchanged between species
leading to a community acquiring metal resistance but other-
wise largely similar in composition to communities not exposed
tometals (de Boer et al., 2012). Using a high-resolution functional
gene array, we observed that indeed differences were mainly
in metal-resistance genes, and that other functional gene cat-
egories were not significantly affected, at least not to an extent
that can be detected with the GeoChip.

While composition of the communities was rather similar,
community structure was more variable along the two investi-
gated gradients. It isworth noting that the sequencing suggested
larger variation in community structure than indicated by DGGE
analysis. Sequencing ∼20 000 amplicons per sample may not
be enough for a quantitative representation of the highly di-
verse microbial communities (with over 5000 different OTUs ob-
served), impacting the comparison of community structures. In-

stead, DGGE profiled billions of amplicons per sample, and ro-
bust, whole curved-based analysis (Röling et al., 2001) of these
DGGE fingerprints suggested that the differences in communi-
ties were minor, even quantitatively (species and their abun-
dances). This notion is also supported by qualitative comparison
of the sequencing data after the removal of OTUs which might
vary in their occurrence in the various samples simply due to
chance. Methodological biases might also have dampened ob-
serving differences in community structure in relation to metal
pollution. These are related to the low resolution of DGGE, which
only detects the most abundant bacterial taxa, or the fact that
we analyzed the structure of the total community, i.e. both the
active and inactive members of the community are represented
in the results.

Effect of metal pollution on microbial diversity

Our results demonstrated that long-term pollution with met-
als (including Zn, Cd and Pb) does not reduce microbial diver-
sity in forest soils. This conclusion is consistent with a study
by Berg et al. (2012), who found that long-term copper exposure
did not affect OTU richness at relatively crude taxonomic level,
although it selected for copper-tolerant soil bacterial commu-
nities with changed composition. They used pyrosequencing of
the 16S rRNA gene to elucidate the impacts of copper on bacte-
rial community composition and diversity within a copper gra-
dient (20–3537mg kg−1). Gough and Stahl (2011) investigatedmi-
crobial community structure (by using terminal restriction frag-
ment analysis of the 16S rRNA gene) in the metal-contaminated
anoxic sediments of a eutrophic lake that were impacted for
80 years by nearby zinc-smelting activities. They showed that
bacterial diversity and similarity remained high among micro-
bial communities at the different sites along the gradient of
metal contamination (Gough and Stahl 2011). In contrast, Sheik
et al. (2012) observed a marked reduction in bacterial alpha di-
versity in soils contaminated for a long time with arsenic and
chromium (three spatially isolated tanning facilities) compared
to their paired control soils.
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Addressing problems in studies relating biodiversity and
ecosystem function, Bengtsson (1998) argued that for the man-
agement and development of sustainable ecosystems, it is prob-
ably more important to understand the linkages between key
species or functional groups and ecosystem function, rather
than focusing on species diversity. Therefore, we sought to de-
scribe the effects of metals at the community composition and
phyla level in more details in the following section.

Effect of metal pollution on microbial community
structure

Although we did not detect a significant impact of TI on OTU
richness, our results showed significant correlation between
overall community structure and TI. Microbial communities
shift in response to metal pollution by either selective growth
or invasion of metal-resistant species (Turpeinen, Kairesalo and
Häggblom 2004). In our study, potential population shifts were
indicated by the correlation of relative abundances of some bac-
terial groupswith pollution level (Table 2). Our results agree with
earlier reports (Akob, Mills and Kostka 2007; Rastogi et al., 2010)
that Proteobacteria-related lineages constituted the most diverse
group in the metal polluted sites.

The increased abundance of the phyla Chloroflexi and Gem-
matimonadetes in metal-polluted sites, as found in our studies, is
in line with the observations of Chodak et al. (2013). The pres-
ence of these groups suggests that they may play an important
role in contaminated soils and that their presence may also pro-
vide a stabilizing element as they can be highly adapted to ex-
treme environments (Spain, Krumholz and Elshahed 2009). A
negative correlation between the relative abundance of Verru-
comicrobia and pollution levels has been reported for copper-
contaminated soils by Berg et al. (2012). However, as this phylum
contains only few cultivable species, their physiological roles in
natural environments remain unknown (Rastogi et al., 2010).

Effect of metal pollution on microbial functional
potentials

Among functional gene categories, the effect of metal pollution
was only significant for metal-resistance genes. As might be ex-
pected, metal contamination appeared to be the primary factor
in the selection of metal-resistance genes since the functional
genes of the less polluted soils were well separated from those
of the metal-contaminated soils.

We related metal pollution to metal-resistance genes by us-
ing a TI that summarizes the concentrations of all encountered
heavy metals (Stefanowicz et al., 2008). This approach, instead
of relating individual metals to individual resistance genes, was
chosen for a number of reasons. Firstly, concentrations of most
heavy metals were strongly correlated. Secondly, while concen-
trations of Cd, Pb and Zn were present at the highest concen-
trations in the investigated transects, and we thus would expect
populations to be resistant to all these metals, very few probes
for genes relating to resistance to these metals are currently
present on the Geochip. Also other metals (e.g. Ni, As, Hg) can
also be emitted by Zn-Pb smelters, but at much lower concen-
trations (Pasieczna and Lis 2008; Stefanowicz et al., 2008). There-
fore, we should also consider possible increase in resistance to
thesemetals. Finally, whilemetal-resistance genes are generally
named after themetal for which theywere first described to pro-
vide resistance, there are hardly anymetal-resistance genes that
provide resistance against a single metal. Resistance systems

often provide cross-resistance to several metals (Diaz-Ravina,
Bååth and Frostegård 1994; Nies 2003).

A number of studies have used GeoChip to relate commu-
nity functioning to metal pollution (Epelde et al., 2010; Kang
et al., 2013; Singh et al., 2014). The results of Epelde et al. (2010)
and Singh et al. (2014) are not in agreement with our study. Likely
reasons for the differences are types and concentrations of con-
taminatingmetals and environmental settings, e.g. the presence
of metal hyperaccumulating plants (Epelde et al., 2010). Our re-
sults are in agreement with Kang et al. (2013), who studied func-
tional potential in sediments of Lake DePue (IL, USA), which has
been contaminated for over 80 years by a Zinc smelter.

While stable functional composition was observed along the
two metal gradients, we noted previously that total microbial
biomass and functional potentials, i.e. substrate-induced respi-
ration, were repressed at elevated metal concentrations. These
declines may have increased the accumulation of organic mat-
ter in forest floor in polluted sites (Azarbad et al., 2013).The work
we report here supports the idea that shifts in the structure of
the forest floor decomposer community have functional impli-
cations for C cycling and C storage in forest ecosystems but no
effect on general functional potential gene categories.

Linkages between taxonomy and functions

Knowing the composition of the microbial community alone
does not necessarily lead to an understanding of its functional
potential, as indicated by the absence of significant correlation
between taxonomic and functional gene structure. We found
that, despite the variance in phylogeny, functional potential ap-
peared to be similar among microbial communities. Similar ob-
servations have been made for the human microbiome: despite
the highly divergent compositions of gut microbiota commu-
nities across individuals, the functional gene profiles are alike
(Turnbaugh et al., 2009).

In an attempt to link the microbial community composi-
tion, structure and potential function along two metal pollution
transects in forest soils, this study has shown that long-term
exposure to varying levels of metal contamination influences
abundance of several microbial populations while not result-
ing in large shifts in community composition nor in functional
gene structure. Metal pollution was expected to exert a major
stress on the community. However, since only abundances and
diversity of predicted metal efflux proteins were significantly
affected, acquiring metal resistance appears to be the defining
force to adaptation. Our data also indicate that screens of phy-
logenetic marker genes, such as the 16S rRNA gene, and general
functional genes may provide only limited insight into adapta-
tion ofmicrobial communities tometal contamination. Analysis
of specific functional genes, e.g. involved inmetal resistance, ap-
pears to be a more revealing strategy for monitoring changes in
microbial communities.

SUPPLEMENTARY DATA

Supplementary data is available at FEMSEC online.
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