Supporting Information

Chan et al. 10.1073/pnas.1300643110

PNAS

Fig. S1. Heat map of GeoChip data standardized by the taxonomic lineages per gene category in carbon and nitrogen transformations and stress responses. Red shading denotes positive signals, with darker intensity indicating stronger signal. Numerical assignments in each box show mean relative signal intensity rounded to the nearest whole number (i.e., 0 denotes 0–0.49, 1 denotes 0.5–1.49, and 2 denotes 1.5–2). Blue color indicates hybridizations that would not be expected for a given taxon/gene. White boxes represent loci that are not part of the GeoChip microarray. Aceto., acetogenesis; Assim., assimilatory nitrogen reduction; C, chasmoendoliths; Degrad., degradation; Denitrif., denitrification; Dissim., dissimilatory nitrogen reduction; E, cryptoendoliths; H, hypoliths; Miner., mineralization; N limitn., nitrogen limitation; Nitrif., nitrification; Oxid., oxidation; P limitn., phosphorous limitation; Prod., production; S, soils.

Fig. 52. Relative abundance of various carbon-cycling genes grouped by the major functional processes: (*A*) autotrophy, (*B*) acetogenesis, (*C*) methanogenesis, (*D*) methane oxidation, (*E*) carbon carbohydrates degradation, and (*F*) carbon aromatics and others degradation. The signal intensity was normalized by the number of probes for each category and the relative abundance was determined by dividing the total signal of all carbon-cycling genes. Mean values of samples from respective niches (soils, hypoliths, chasmoendoliths, and cryptoendoliths) were plotted with the SEs (n = 3 for rocks and n = 5 for soils). The following pathway-critical enzymes/loci were selected to represent the functional processes: (*A*) autotrophy was depicted by the key enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCo) in Calvin–Benson–Bassham cycle, the propionyl-CoA/acetyl-CoA carboxylase (*pcc*) in the 3-hydroxypropionate/ malyl-CoA cycle, the ATP citrate lyase (ac/B), and the carbon-monoxide dehydrogenase (CODH) in the reductive acetyl-CoA pathway; (*B*) acetogenesis was represented by the Key enzyme (*D*) methane oxidation was detected by the methane monooxygenase (mmoX) and particulate methane monoxygenase (pmoA); (*E*) degradations of various carbon carbohydrates were shown by (*i*) alpha-amylase (amyA), amylopullulanase (amyX, apu), cyclomaltodextrin dextrin-hydrolase (cda), glucoamylase, isopullulanase, neopullulanase II (npIT), and pullulanase (pulA) for starch; (*ii*) cellobiose dehydrogenase, cellobiase (bgl), endoglucanase for hemicellulose; (*iv*) acetylglucosaminidase, and organic contaminants were detected by 188 different enzymes/gene loci. The variations among niches were tested with one-way ANOVA and labeled with **P < 0.01, **P < 0.05, and *P < 0.10.

Nitrogen cycling

Key: Soils Hypoliths Chasmoendoliths Cryptoendoliths

Fig. S3. Relative abundance of pathway-critical loci for various nitrogen transformation pathways: (*I*) Nitrogen fixation, nitrogenase reductase (nifH); (*II*) mineralization, glutamate dehydrogenase (gdh) and urea amidohydrolase (ureC); (*III*) nitrification, ammonia monooxygenase (amoA) and hydroxylamine oxidase (hao); (*IV*) assimilatory nitrogen reduction, assimilatory nitrate reductase (nasA) and nitrite reductase (nir, nirA, nirB); (*V*) dissimilatory nitrogen reduction, nitrate reductase (napA) and c-type cytochrome nitrite reductase (narA); (*VI*) denitrification, nitrate reductase (narG), Cu-nitrite reductase (nirK), cytochrome-nitrite reductase (nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ); and (*VII*) anaerobic ammonium oxidation (anammox), hydrazine oxidoreductase (hzo). The signal intensity was normalized by the number of probes for each gene and the relative abundance was determined by dividing the total signal of all nitrogen-cycling genes. Mean values of samples from respective niches (soils, hypoliths, chasmoendoliths, and cryptoendoliths) were plotted with the SEs. The variations among niches were tested with one-way ANOVA and labeled with ****P* < 0.01, ***P* < 0.05, and **P* < 0.10.

Key: Soils Hypoliths Chasmoendoliths Cryptoendoliths

Fig. 54. Relative abundance of stress response genes. These include (*A*) osmotic stress response genes that encode the osmoregulated proline symporter (*opuE*) and the proU operon that encodes the glycine betaine/proline ABC transporter system (proVWX) that facilitates the uptake of osmoprotectants; (*B*) the radiation (desiccation) stress response gene that encodes the GTP-binding protein (obgE) for DNA repair; (*C*) cold-shock genes that encode cold-shock proteins (cspA and cspB) and the sensor/repressor (desK and desR); (*D*) heat-shock genes that encode molecular chaperone hsp (heat-shock proteins) (dnaK, groES, and grpE) and the hsp transcriptional repressor (hrcA); (*E*) nitrogen limitation-responsive genes such as glnA that encodes glutamine synthetase (GS), which is the key enzyme in nitrogen metabolism in virtually all living cells, and the GS transcription regulators encoded by glnR and tnrA; and (*F*) phosphate limitation-responsive genes including the Alkaline phosphatase (phoA), the response regulator (phoB), and the pst operon that encodes the relative abundance was determined by dividing the total signal of all stress reponse genes. Mean values of samples from respective niches (soils, hypoliths, chasmoendoliths, and cryptoendoliths) were plotted with the SEs. The variations among niches were tested with one-way ANOVA and labeled with ****P* < 0.01, ***P* < 0.05, and **P* < 0.10.

Table S1.	Summar	<pre>/ of functional</pre>	loci detected an	d relative signa	l intensity, using	g the GeoChip	o functional microarray

	Soils					Chasmoendoliths			Cryptoendoliths			Hypoliths			
	B1	B2	B3	B4	B5	C1	C2	C3	E1	E2	E3	H1	H2	H3	Total, average
No. probes,	18,638	17,146	15,621	17,094	19,526	15,818	10,857	18,362	14,714	15,770	16,042	14,988	17,172	14,815	35,858
%	52.0	47.8	43.6	47.7	54.5	44.1	30.3	51.2	41.0	44.0	44.7	41.8	47.9	41.3	45.1
No. genes,	374	372	364	370	376	373	353	377	361	367	369	365	369	366	401
%	93.3	92.8	90.8	92.3	93.8	93.0	88.0	94.0	90.0	91.5	92.0	91.0	92.0	91.3	91.8

Chan et al. www.pnas.org/cgi/content/short/1300643110

VAS PNAS PNAS

(%)
samples
pairwise
between
overlap
gene
detected
ef
Number
Table S2.

			Soils			Ċ,	asmoendolit	hs	Ū	yptoendolith	SL		Hypoliths		
	B1	B2	B3	B4	B5	C1	C	U	E1	E2	E	H1	Н2	H3	
Soils	2 (0.53)	366 (98.4)	360 (98.9)	363 (98.1)	368 (98.4)	362 (97.1)	348 (98.6)	367 (98.1)	357 (98.9)	362 (98.6)	364 (98.6)	362 (99.2)	360 (97.6)	362 (98.9)	B1
		1 (0.27)	358 (98.4)	359 (97.0)	364 (97.8)	359 (96.5)	345 (97.7)	365 (98.1)	355 (98.3)	359 (97.8)	362 (98.1)	360 (98.6)	358 (97.0)	359 (98.1)	B2
			1 (0.27)	357 (98.1)	360 (98.9)	357 (98.1)	344 (97.5)	361 (99.2)	354 (98.1)	356 (97.8)	356 (96.5)	355 (97.5)	354 (97.3)	353 (97.0)	B3
				4 (1.1)	363 (98.1)	358 (96.8)	345 (97.5)	364 (98.4)	355 (98.3)	358 (97.5)	358 (97.0)	356 (97.5)	357 (96.7)	355 (97.0)	B4
					1 (0.27)	366 (98.1)	349 (98.9)	370 (98.4)	357 (98.9)	364 (99.2)	365 (98.9)	362 (99.2)	362 (98.1)	361 (98.6)	B5
Chasmoendoliths						0	347 (98.3)	365 (97.9)	357 (98.9)	362 (98.6)	359 (89.5)	360 (98.6)	363 (98.4)	359 (98.1)	ŋ
							0	347 (98.3)	345 (97.7)	345 (97.7)	348 (86.8)	346 (98.0)	344 (97.5)	344 (97.5)	0
								0	359 (99.4)	365 (99.5)	364 (90.8)	363 (99.5)	366 (99.2)	362 (98.9)	ტ
Cryptoendoliths									0	356 (98.6)	355 (88.5)	356 (98.6)	354 (98.1)	353 (97.8)	Ξ
										0	360 (89.8)	358 (98.1)	359 (97.8)	356 (97.3)	E2
											0	360 (98.6)	358 (97.0)	359 (98.1)	Ш
Hypoliths												0	358 (98.1)	360 (98.6)	Ħ
													1 (0.27)	358 (97.8)	H2
														0	НЗ
															1

Numbers of unique genes in each sample are shaded in peach.

	So	ils	Нуре	oliths	Chasmo	endoliths	Cryptoendoliths		
Biodiversity estimates	rRNA	gyrB	rRNA	gyrB	rRNA	gyrB	rRNA	gyrB	
Alpha Diversity Indexes									
Shannon's diversity	3.3	5.2	2.3	5.2	2.8	5.0	2.8	5.1	
Simpson diversity index	1	1.0	0.8	1.0	0.9	1.0	0.9	1.0	
Pielou's evenness	0.9	0.9	0.7	0.9	0.7	0.9	0.7	0.9	
Relative abundance, %									
Archaea									
Euryarchaeota	_	3.833	_	5.225	_	4.746	_	5.506	
Bacteria									
Uncultured bacterium	12.778	1.720	0	1.704	7.848	2.404	1.998	1.866	
Thermobaculum	0	1.872	0	5.904	0	3.576	0	3.605	
Acidobacteria	31.111	0.583	1.998	0.660	1.962	1.035	4.995	0.281	
Actinobacteria	32.778	6.892	1.998	5.990	4.905	4.319	3.996	4.914	
Aquificae	0	0.857	0	0.392	0	0.000	0	1.560	
Bacteroidetes	2.222	0.768	0	1.205	6.867	0.954	15.984	1.065	
Chlamydiae	0	1.686	0	0.128	0	0.067	0	0.389	
Chlorobi	0	2.281	0	1.809	0	3.160	0	2.432	
Chloroflexi	2.778	0.480	0	0.205	0	1.560	0	0.047	
Cyanobacteria	0	2.980	94.905	5.018	63.765	5.177	55.944	5.184	
Deinococcus-Thermus	5.556	0.873	0	0.000	0	0.251	1.998	1.463	
Firmicutes	0	3.564	0	3.368	0	2.616	0	2.343	
Gemmatimonadetes	8.3333	0.000	0	0.000	0	0.000	0	0.000	
Lentisphaerae	0	4.968	0	1.165	0	1.423	0	0.927	
Planctomycetes	0.555	5.089	0	9.506	0	6.024	1.998	8.408	
Alphaproteobacteria	0	7.051	0.999	6.575	3.924	5.370	3.996	5.835	
Betaproteobacteria	3.889	5.479	0	5.019	0	3.068	0	5.610	
Deltaproteobacteria	0	8.500	0	8.266	0	4.526	0	6.144	
Epsilonproteobacteria	0	8.890	0	7.852	0	4.730	0	5.219	
Gammaproteobacteria	0	2.344	0	2.214	7.848	1.728	3.996	1.926	
Unclassified Proteobacteria	0	21.435	0	19.136	0	39.591	0	29.987	
Spirochaete	0	1.140	0	1.524	0	0.686	0	0.567	
Tenericutes	0	1.470	0	2.214	0	1.286	0	1.021	
Thermotogae	0	3.252	0	3.363	0	0.039	0	0.944	
Verrucomicrobia	0	1.992	0	1.559	0	1.662	0	2.757	
Eukarya									
Ascomycota	_	_	0	_	0.323	_	0.011	_	
Basidiomycota	_	_	0	_	0.076	—	0.013	_	
Chlorophyta	_	_	0.1	_	2.482	_	4.072	_	

Table S3.	Biodiversity	estimates	using	phylogenetic	marker	gyrB	from	GeoChip	and	comparison	with	16S	rRNA
gene-base	d estimates fi	rom clone	librarie	es									

In each library, n = 250 approximately. Relative abundance of taxa was estimated and standardized at the phylum level for all domains. —, data not available.

PNAS PNAS

Table S4. Abiotic data for soil and rocks

PNAS PNAS

			Soils				Hypolith	s	smoendo	oliths	Cryptoendoliths			
Abiotic measures	B1	B2	B3	B4	B5	H1	H2	H3	C1	C2	C3	E1	E2	E3
Moisture content	0.6	0.6	0.6	0.6	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total organic content	0.5	0.5	0.5	0.5	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
pH	8.6	9	8.6	8.8	8.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Porosity	NA	NA	NA	NA	NA	ND	ND	ND	0.89	0.3	1.35	1.61	0.56	1.71
Soluble salts	<0.05	0.15	< 0.05	<0.05	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total carbon	0.082	<0.05	< 0.05	<0.05	0.068	12.92	13.7	13.8	6.06	0	0	36.53	14.91	11.51
Total nitrogen	<0.05	<0.05	< 0.05	<0.05	<0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND
Al	ND	ND	ND	ND	ND	0.91	0.75	1.71	ND	ND	ND	0.78	1.14	0.48
Ca	7,200	6,700	7,100	6,800	13,000	0.81	1.01	3.73	1.29	0	0.94	ND	ND	ND
Cl	ND	ND	ND	ND	ND	0.09	0.03	0.2	ND	ND	ND	ND	ND	ND
Fe	11,000	14,000	13,000	11,000	19,000	ND	ND	1.06	ND	ND	ND	ND	ND	ND
К	520	620	580	500	1,000	0.19	0.07	0.34	ND	ND	ND	ND	ND	ND
Mg	2,900	3,800	3,900	3,000	5,600	0.24	0.3	2.17	ND	1.39	ND	0.89	1.36	0.13
Na	1,400	2,200	1,200	1,500	2,000	ND	0.12	0.36	ND	ND	ND	0.34	0.87	ND
0	ND	ND	ND	ND	ND	63.56	64.8	60.33	72.61	74.01	74.85	48.97	62.8	65.43
Р	240	370	310	250	350	21.29	19.23	16.26	20.04	23.66	25.15	ND	ND	ND

Moisture content, total organic content, and porosity are expressed as percentage wt/wt. Soluble salts, total carbon, and total nitrogen are expressed in g/100 g dry mass. Elemental analysis is expressed as mg/kg dry mass for soil and as percentage of relative abundance for rocks. NA, not applicable; ND, not detectable.

Code	Таха
Ad	Acidobacteria
Ар	Alphaproteobacteria
Aq	Aguificae
Ar	Archaeoglobi
As	Ascomycota
At	Actinobacteria
Ba	Basidiomycota
Bd	Bacteroidetes
Bp	Betaproteobacteria
Ch	Chlorobi
Cd	Chlamydiae
Cf	Chloroflexi
CK CI	Candidatus Korarchaeum
Cr	Crenarchaeota
Cr Cr	Crenarchaeota
Cy Df	Deferribactores
Dr Dr	Dictuoglami
Dg	Dictyogioini
Dp DT	
	Deinococcus-i nermus
Em Fa	Elusimicropia
Ep	Epsilonproteobacteria
Ey	Euryarchaea
	Fibrobacteres
FC _	Firmicutes
Fu	Fusobacteria
Gm	Gemmatimonadetes
Gp	Gammaproteobacteria
Hb	Halobacteria
Ко	Korarchaeota
Ls	Lentisphaerae
Mb	Methanobacteria
Mc	Methanococci
Mm	Methanomicrobia
Мр	Methanopyri
My	Mycetozoa
Na	Neocallimastigomycota
Ns	Nitrospirae
Pm	Planctomycetes
Sc	Schizosaccharomycetes
Sp	Spirochaetes
Sy	Synergistetes
Та	Thaumarchaeota
Tb	Thermobaculum
Tc	Thermococci
Тд	Thermotogae
Tm	Thermoplasmata
Tn	Tenericutes
Тр	Thermoprotei
Ua	Uncultured archaea
Ub	Uncultured bacteria
Uc	Uncultured crenarchaeote
Ue	Uncultured eurvarchaeote
Uf	Uncultured fungi
Un	Unidentified
Up	Unclassified proteobacteria
Vm	Verrucomicrobia
7n	Zetaproteobacteria
 7v	Zvgomycota
-y	Lygomycota

Table S5. Two-character codes for the taxa in Figs. 2-4

PNAS PNAS