1		Supplemental Data
2	A. M	ATERIALS AND METHODS
3		
4	B. SU	JPPORTING TABLES
5	1.	Table S1. Samples and their tagged primers used for amplifying 16S rRNA genes
6	2.	Table S2. Summary of numbers of sequences and OTUs, and Shannon index for each
7		sample at aCO ₂ or eCO ₂ based on pyrosequencing data
8	3.	Table S3. The classified phylotypes detected at different taxonomical levels
9	4.	Table S4. Statistical analysis of differences in the microbial community composition and
10		structure between aCO_2 and eCO_2 at the community and phylum levels
11	5.	Table S5. Numbers of shared OTUs that were significantly ($p < 0.05$) changed at eCO ₂
12		based on the scaled abundances and unique OTUs detected only at aCO_2 or eCO_2
13	6.	Table S6. Partial Mantel analysis of the relationship between the relative abundance of
14		phylum and soil or plant properties
15	7.	Table S7. Partial Mantel analysis of the relationship between the relative abundance of
16		order and soil or plant properties
17	8.	Table S8. Partial Mantel analysis of the relationship between the relative abundance of
18		family and soil or plant properties
19	9.	Table S9. Partial Mantel analysis of the relationship between the relative abundance of
20	20	genus and soil or plant properties
21		
21	C. SI	JPPORTING FIGURES
23	1.	Fig. S1. Neighbor-Joining tree of representative sequences of 16S rRNA genes major
24	_•	phyla detected at aCO_2 and eCO_2 . Different phyla are presented by different colors on
25		the circle tree.

1	2.	Fig. S2. Significantly changed OTUs in the phylum of Actinobacteria at elevated CO_2
2		using the response ratio method (47) at 95% confidence interval.
3	3.	Fig. S3. Significantly changed microbial populations at the order levels in the phylum of
4		Proteobacteria.
5	4.	Fig. S4. Significantly changed microbial populations at the class or lower levels in the
6		phylum of Acidobacteria (A), Verrucomicrobia (B), and Firmicutes (C).
7	5.	Fig. S5. The flowchart of OTU identification processes.
8		
9	D.	SUPPLEMENTAL REFERENCES

1 A. MATERIALS AND METHODS

2 1.1. Site and sampling

3 The artificially elevated CO₂ field site is located at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA (lat. 45 °N, Long. 93 °W), which is also named as BioCON (Biodiversity, 4 CO₂ and N). It has been established on a secondary successional grassland of a sandy outwash 5 soil after removing the previous vegetation since 1997 (53). Totally, 296 plots (2 x 2 m) are 6 7 evenly distributed in six 20-meter diameter rings. Three of them are exposed to an ambient CO_2 concentration of 368 ppm, and other three are under an elevated CO₂ concentration of 560 ppm 8 by using a free-air CO₂ enrichment (FACE) system (46). Four levels of plant diversity: 1, 4, 9, or 9 16 species were randomly planted for each plot with 32, 15, 15 and 12 replicates, respectively. 10 Half of those plots, selected at random, receive the equivalent of 4 g N (NH₄NO₃) m^{-2} year⁻¹. In 11 this study, a total of 24 plots including 12 from ambient CO₂ and 12 from elevated CO₂, and all 12 have 16 plant species but without additional N supply. A series of measurements were routinely 13 14 performed, including (i) plants (including aboveground and belowground biomass, plant C and N, 15 and the C/N ratio), and (ii) soil physical (volumetric moisture and pH), chemical (soil C and N) 16 properties, and biological processes (net N mineralization and nitrification rates).

Soil samples were taken in July, 2007 under ambient and elevated CO_2 conditions for microbial community analyses. Each sample was composited from five soil cores at a depth of 0-15 cm. All samples were immediately transported to the laboratory where they were immediately frozen and stored at -80°C.

21

22 1.2. Plant species, functional groups and biomass measurements

The 16 perennial species used in this study were all native or naturalized to the Cedar Creek 1 Ecosystem Science Reserve, and they are in four functional groups: (i) four C3 grasses 2 3 (Agropyron repens, Bromus inermis, Koeleria cristata, Poa pratensis), (ii) four C4 grasses (Andropogon gerardii, Bouteloua gracilis, Schizachyrium scoparium, Sorghastrum nutans), (iii) 4 four N-fixing legumes (Amorpha canescens, Lespedeza capitata, Lupinus perennis, 5 Petalostemum villosum), and (iv) four non N-fixing herbaceous species (Achillea millefolium, 6 7 Anemone cylindrica, Asclepias tuberosa, Solidago rigida). Plots were regularly weeded to remove unwanted species, though the 16 species plots used in this study require minimal 8 weeding. Plant species hereafter are referred to by their genus, and the four functional groups of 9 plants are referred to as C3, C4, legume and forb (53). 10

11 The aboveground and belowground (0–20 cm) biomass and plant C and N concentrations were measured (52, 53). A 10 x 100 cm strip was clipped at just above the soil surface, and all 12 plant material was collected, sorted to live material and senesced litter, dried and weighed. Roots 13 14 were sampled at 0-20 cm depth using three 5-cm diameter cores in the area used for the 15 aboveground biomass clipping. Roots were washed, sorted into fine (< 1 mm diameter) and 16 coarse classes and crowns, dried and weighed. A composite sample was taken from aboveground 17 and belowground biomass from each plot from the August harvest of each year, ground and analyzed for N using a Costech ECS 4010 element analyzer (Costech Analytical Technologies, 18 19 Inc., Valencia, CA).

20

21 1.3. Soil physical, chemical, and biological properties

Soil physical properties. Soil pH and volumetric soil moisture were measured at different depths
 of 0-17, 42-59, and 83-100 cm in a KCl slurry and with permanently placed TRIME Time
 Domain Reflectometry (TDR) probes (Mesa Systems Co., Medfield MA), respectively.

Soil chemical properties. Total soil C and N were measured at depths of 0-10, 10-20, 20-40 and
40-60 cm for each plot on a Costech ECS 4010 element analyzer (Costech Analytical
Technologies, Inc., Valencia, CA).

Net N mineralization. Net N mineralization rates were measured concurrently in each plot for one-month *in situ* incubations with a semi-open core at 0-20 cm depth during the mid summer of each year (52, 53). Net N mineralization rates were determined by the difference between the final and initial NH_4^+ -N + NO_3^- -N pool sizes determined with 1 M KCl extractions. Net nitrification was determined by the difference between the final and initial NO_3^- -N pool sizes.

12

13 **1.4. DNA extraction, purification and quantitation**

Soil DNA was extracted by freeze-grinding mechanical lysis (58), and was purified using a low melting agarose gel followed by phenol extraction. DNA quality was assessed by the ratios of 260/280 nm, and 260/230 nm using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE), and final soil DNA concentrations were quantified with PicoGreen (29) using a FLUOstar Optima (BMG Labtech, Jena, Germany).

19

20 1.5. 454 pyrosequencing analysis

1.5.1. Sample tagging and PCR amplicon preparations. Based on the V4-V5 hypervariable
 regions of bacterial 16S rRNAs (*Escherichia coli* positions 515-907), the universal PCR primers,
 F515: GTGCCAGCMGCCGCGG and R907: CCGTCAATTCMTTTRAGTTT were selected.

Both primers were then checked with the ribosomal database due to July 2007 (37), and 1 covered > 95% of the 16S gene sequences in the database. To pool multiple samples for one run 2 3 of 454 sequencing, a sample tagging approach was adopted (31, 42). In this study, a unique 6mer tag for each of 24 DNA samples was added to the 5'-end of both primers, and those tag-4 primers were synthesized by Invitrogen (Carlsbad, CA) and used for the generation of PCR 5 amplicons. The amplification mix contained 10 units of Pfu polymerase (BioVision, Mountain 6 7 View, CA), 5 µl Pfu reaction buffer, 200 µM dNTPs (Amersham, Piscataway, NJ), and a 0.2 µM concentration of each primer in a volume of 50 µl. Genomic DNA (10 ng) was added to each 8 amplification mix. Cycling conditions were an initial denaturation at 94 $^{\circ}$ C for 3 min, 30 cycles 9 of 95 % 30 s, 58 % for 60 s, and 72 % for 60 s, a final 2-min extension at 72 %. Normally, 10 11 multiple (5-10) 50 μ l reactions were needed for each sample, and the products were pooled together after amplification and purified by agarose gel electrophoresis. The amplified PCR 12 13 products were recovered and then quantitated with a PicoGreen method using a FLUOstar 14 Optima (BMG Labtech, Jena, Germany). Finally, amplicons of all samples were pooled in an 15 equimolar concentration for 454 pyro-sequencing.

16 1.5.2. 454 pyrosequencing. The fragments in the amplicon libraries were repaired and ligated to 17 the 454 sequencing adapters, and the resulting products were bound to beads under conditions that favor one fragment per bead. The beads were emulsified in a PCR mixture in oil, and PCR 18 19 amplification occurred in each droplet, generating millions of copies of a unique DNA template. 20 After breaking the emulsion, the DNA strands were denatured, and beads carrying singlestranded DNA clones were deposited into wells on a PicoTiter-Plate (454 Life Sciences) for 21 pyrosequencing (48) on a FLX 454 system (454 Life Sciences, Branford, CT). For this study, we 22 23 recovered 92,120 sequence reads that represented both forward and reverse reads of 24 samples with an average length around 230 bp. All pyrosequencing reads were initially processed using
 the RDP pyrosequencing pipeline (<u>http://pyro.cme.msu.edu/pyro/index.jsp</u>) (37).

1.5.3. Assignment of sequence reads to samples. The raw sequences were sorted and
distinguished by unique sample tags. Since each sample had a unique tag, all sequence reads
with the same tag were assigned to the same sample. Also according to the primer sequences,
each sample could be further separated into two (forward and reverse) regions. Finally, the tag
and both primers were trimmed. For all 24 samples, the number of reads ranged from 2509 to
5152.

1.5.4. Removal of low-quality sequences. To minimize effects of random sequencing errors, we 9 eliminated (i) sequences that did not perfectly match the PCR primer at the beginning of a read, 10 11 (*ii*) sequences with non-assigned tags, (*iii*) sequence reads with $< 150 \ bp$ after the proximal PCR 12 primer if they terminated before reaching the distal primer, and (iv) sequences that contained more than one anonymous nucleotide (N). Finally, a total of 77,653 sequences remained with an 13 14 average length of 251 bases. There were 35,289 reads derived from the forward region and 15 42,355 reads derived from the reverse region. All these sequences can be downloaded at 16 http://ieg.ou.edu/4download/.

17 1.5.5. Classification of 454 sequences and OTUs assignment. Since the average length of PCR amplicons produced from this used primer pair is 390 bases, it is expected that there was an approximately150-base overlap between the forward and reverse regions if an amplicon was from the same molecule. To address this issue, we develop a flowchart to classify all sequences into OTUs (Fig. S1). Two major steps were performed: (i) independent OTU identification for either forward or reverse region, and (ii) a combination of forward and reverse OTUs identified in (i). First, for independent OTU identification, all forward or reverse sequences from 24

samples were pooled together, independently aligned by a RDP Infernal Aligner (50), and then 1 classified into OTUs within a 0.03 difference (55), resulting in two (forward and reverse) sets of 2 3 OTUs. Second, all sequences from both regions of each tag were performed BLASTN against 4 each other. If two reads from the forward and reverse parts had an overlap region, which had 100% identity and was more than 100-base long, these two reads were considered from the same 5 molecule, and then combined as a single sequence. Thereafter, if reads from a forward OTU and 6 7 a reverse OTU had one or multiple overlapped regions, all reads of these OTUs were pooled together and formed a new OTU, and OTUs whose reads had no overlaps in forward and reverse 8 9 regions were kept unaffected (56). Any singleton OTUs (with only one read) were removed and all other remained sequences from forward, reverse and combined OTUs were sorted into each 10 11 sample based on OTUs. Finally, all sequences were gone through QIIME (33) chimera check 12 program and all potential chimera sequences were removed. Eventually, the distribution of all 13 OTUs was output as a $n \times m$ matrix where n is the number of OTUs and m is the number of 14 samples.

15 1.5.6 OTUs filtering and phylotype assignment. Based on the OTU dataset, if an OTU appeared 16 in only one among a total of 12 samples for each CO₂ condition, it was removed. This stringent 17 OTU filtering criterion was to reduce noises (e.g., sequencing error, chimera and random 18 sampling) of pyrosequence data, resulting in 3500 OTUs for further analysis. Finally, the longest 19 sequences of each OTU were selected to assign a taxonomy by the RDP classifier (57). The 20 confidence cutoff was set to 0.5.

1.5.7 Species richness, rarefaction and diversity calculations. The OTU numbers which were
classified within a 0.03 distance were counted at different taxonomic (phylum, class, order,
family or genus) levels for each sample or each CO₂ condition as the species richness. Also, the

estimated species richness was calculated by Chao's estimation method according to the rare 1 species in each sample (34, 54), and the rarefaction method (40) was used to compare the species 2 3 richness from two CO₂ conditions. Both calculations were carried out by the Mothur program (54). In addition, the Shannon index (43), also called as Shannon-Weaver index, was used to 4 measure the diversity of each sample or each CO₂ condition. It was performed by the Vegan 5 package (v.1.15-1) in R program (51), and principal coordinates analysis (PCoA) integrating the 6 7 phylogenies of pyrosequencing data was performed by Fast UniFarc program (41) which was a phylogenetic-based β -diversity measurement. 8

9 *1.5.8 Relative abundance calculation.* Since the sequence numbers for individual samples were
10 different, in order to compare the difference between both CO₂ conditions, we standardized the
11 OTU distribution matrix into the relative abundance (RA) based on the following equation:

12
$$RA_{ij} = \frac{S_{ij}}{\sum_{i=1}^{n} S_{ij}} \times M_{i=1}^{m} \left(\sum_{j=1}^{n} S_{ij}\right)$$

where *i* is the ith sample (1 to *m*), *j* is the jth OTU (1 to *n*) and S_{ij} is the number of sequences in ith sample and jth OTU. $\sum_{j=1}^{n} S_{ij}$ is the sum of sequences in ith sample and $M_{i=1}^{m} \left(\sum_{j=1}^{n} S_{ij} \right)$ is the maximal number of total reads in all samples. Here *m* equals to 24 samples and *n* equals 3500 OTUs. All

16 following statistical analyses were calculated based on this RA matrix.

17

18 **1.6.** Statistical analysis

19 *1.6.1 Response ratio calculation.* The effects of elevated CO_2 on phylogenetic composition and 20 structure of microbial communities were analyzed by computing the response ratio (RR) using

the formula described by Luo et al. (47). Briefly, the mean and standard deviation (SD) of each 1 treatment were extracted. The RR of each variable was calculated by dividing the mean of the 2 3 treatment group to that of the control group. The variances for all comparisons were estimated by 4 the means, the standard deviations, and the sample sizes in treatment and control groups, which were used to calculate the standard errors for each RR. Based on the standard error, the 95% 5 confident interval for each response variable was obtained and the statistical difference between 6 7 the elevated and ambient CO_2 conditions was estimated. For the response ratio analysis, the total relative abundance of each taxonomic level (phylum, class, order, family, or genus) was the sum 8 9 of the relative abundance for all OTUs involving in this level.

1.6.2 Multivariate and direct gradient analysis. In this study, three different non-parametric 10 11 analyses for multivariate data were used to examine whether eCO_2 has significant effects on soil 12 microbial communities. These methods included analysis of similarities (ANOSIM) (35), non-13 parametric multivariate analysis of variance (adonis) using distance matrices (30), and multi-14 response permutation procedure (MRPP) (49). All three methods are based on Bray-Cutis 15 dissimilarities among samples and their rank order in different ways to calculate test statistics, 16 and the Monte Carlo permutation is used to test the significance of statistics. These three 17 procedures were performed with the Vegan package (v.1.15-1) (39) in R project (51).

We also evaluated the correlations between the microbial population and soil or/and plant variables, to elucidate the inter-relationships among plant, soil, and microbial community. They were normalized to average 0 and standard deviation 1 before all other statistical analyses. First, all soil variables or plant variables were included in the Mantel test. They were virtually meaningless due to the noise and redundancy among those variables for soil or plant. Second, the BioENV procedure (36) was used to select the most correlated variables. The Bio-Env procedure

selected four soil variables, including the proportion of soil moisture at the depth of 0-17 cm 1 (PSM0-17), %C at the depth of 0-10 cm (C0-10), %N at the depth of 0-10 cm (N0-10), and net N 2 3 mineralization, and four plant variables, including belowground carbon % (BPC), aboveground carbon % (APC), aboveground total biomass (ATB), and total biomass (TB). To control possible 4 co-varying effects between soil and plant variables, the partial Mantel test was performed. For 5 the Mantel test, Euclidean distance was used to construct both dissimilarity matrices of 6 7 communities and environmental variables respectively. All the analyses were performed by functions in the Vegan package (v.1.15-1) (39) in R v. 2.8.1 (51). 8

9

10 **1.7.** Phylogenetic analysis

A representative sequence was selected from each of 3500 OTUs, which was the longest sequence among all members for each OTU. Those 3500 sequences were aligned by PyNAST (32) with QIIME (33) integrated core 16S aligned sequences from Greengenes (38). The aligned sequences were used to construct the Neighbor-Joining tree with 500 times of bootstraps by using MEGA5 (44). Finally, the unrooted circle tree was visualized through the iTOL online program (45).

B. SUPPORTING TABLES

Sample	Tag	Tag seq.	16SForwardprimersequence (F515)	16Sreverseprimersequence (R907)
a67	C075	CGCAGA	CGAAGAGTGCCAGCMGCCGCGG	CGCAGACCGTCAATTCMTTTRAGTTT
a69	C077	CGCAGT	CGCAGTGTGCCAGCMGCCGCGG	CGCAGTCCGTCAATTCMTTTRAGTTT
a104	C079	CGCATG	CGCATGGTGCCAGCMGCCGCGG	CGCATGCCGTCAATTCMTTTRAGTTT
a107	C081	CGCGAT	CGCGATGTGCCAGCMGCCGCGG	CGCGATCCGTCAATTCMTTTRAGTTT
a184	C086	CGCTGA	CGCTGAGTGCCAGCMGCCGCGG	CGCTGACCGTCAATTCMTTTRAGTTT
a188	C083	CGCGTC	CGCGTCGTGCCAGCMGCCGCGG	CGCGTCCCGTCAATTCMTTTRAGTTT
a201	C084	CGCTAC	CGCTACGTGCCAGCMGCCGCGG	CGCTACCCGTCAATTCMTTTRAGTTT
a222	C094	CGTCGA	CGTCGAGTGCCAGCMGCCGCGG	CGTCGACCGTCAATTCMTTTRAGTTT
a306	C130	CTCGAG	CTCGAGGTGCCAGCMGCCGCGG	CTCGAGCCGTCAATTCMTTTRAGTTT
a344	C156	CTGCTG	CTGCTGGTGCCAGCMGCCGCGG	CTGCTGCCGTCAATTCMTTTRAGTTT
a355	C157	CTGTAC	CTGTACGTGCCAGCMGCCGCGG	CTGTAC CCGTCAATTC M TTT R AGTTT
a358	C160	CTGTCG	CTGTCGGTGCCAGCMGCCGCGG	CTGTCGCCGTCAATTCMTTTRAGTTT
e23	C125	CTCAGT	CTCAGTGTGCCAGCMGCCGCGG	CTCAGTCCGTCAATTCMTTTRAGTTT
e33	C126	CTCATA	CTCATAGTGCCAGCMGCCGCGG	CTCATACCGTCAATTCMTTTRAGTTT
e45	C127	CTCATC	CTCATCGTGCCAGCMGCCGCGG	CTCATCCCGTCAATTCMTTTRAGTTT
e51	C128	CTCATG	CTCATGGTGCCAGCMGCCGCGG	CTCATGCCGTCAATTCMTTTRAGTTT
e147	C082	CGCGTA	CGCGTAGTGCCAGCMGCCGCGG	CGCGTACCGTCAATTCMTTTRAGTTT
e163	C088	CGCTGT	CGCTGTGTGCCAGCMGCCGCGG	CGCTGTCCGTCAATTCMTTTRAGTTT
e173	C089	CGTACG	CGTACGGTGCCAGCMGCCGCGG	CGTACGCCGTCAATTCMTTTRAGTTT
e179	C090	CGTAGC	CGTAGCGTGCCAGCMGCCGCGG	CGTAGC CCGTCAATTC M TTT R AGTTT
e250	C098	CGTCTG	CGTCTGGTGCCAGCMGCCGCGG	CGTCTGCCGTCAATTCMTTTRAGTTT
e270	C096	CGTCGT	CGTCGTGTGCCAGCMGCCGCGG	CGTCGTCCGTCAATTCMTTTRAGTTT
e272	C085	CGCTAG	CGCTAGGTGCCAGCMGCCGCGG	CGCTAGCCGTCAATTCMTTTRAGTTT
e283	C099	CGTGAC	CGTGACGTGCCAGCMGCCGCGG	CGTGACCCGTCAATTCMTTTRAGTTT

Table S1 Samples and their tagged primers used for amplifying 16S rRNA genes.

Sample	No. of sequences	No. of OTUs (0.03)	Shannon Index
a104	2598	859	6.07
a107	3087	982	6.14
a184	2260	791	6.03
a188	2683	865	6.01
a201	2180	811	6.10
a222	2312	789	5.96
a306	2985	941	6.05
a344	1854	643	5.80
a355	2069	736	5.95
a358	2351	786	5.86
a67	2880	1012	6.23
a69	2749	946	6.24
aCO ₂	30008	2527	6.58
e147	2854	883	6.07
e163	3299	919	5.97
e173	2119	752	5.96
e179	2584	820	5.97
e23	1810	665	5.92
e250	2547	779	5.97
e270	2845	931	6.14
e272	2821	952	6.22
e283	2690	931	6.18
e33	2065	702	5.81
e45	1759	619	5.66
e51	1698	653	5.88
eCO ₂	29091	2354	6.51

Table S2 Summary of numbers of sequences and OTUs, Chao and Shannon indices, and coverage for
each sample at aCO₂ or eCO₂ based on pyrosequencing data.

Domain	Phylum	Class	Order	Family	Genus	
2	17	35	48	112	281	
2	16	31	39	96	213	
0	1	4	6	10	33	
0	0	0	3	6	35	
	Domain 2 2 0 0	Domain Phylum 2 17 2 16 0 1 0 0	DomainPhylumClass2173521631014000	DomainPhylumClassOrder2173548216313901460003	DomainPhylumClassOrderFamily217354811221631399601461000036	DomainPhylumClassOrderFamilyGenus2173548112281216313996213014610330003635

Table S3. The classified phylotypes detected at different taxonomical levels.

		MR	PP ^a	ano	sim ^b	ado	onis ^c
	No. OTUs	δ	р	R	р	\mathbb{R}^2	р
All phylotypes	3500	0.481	0.001	0.209	0.003	0.082	0.001
Acidobacteria	369	0.478	0.006	0.157	0.007	0.078	0.002
Actinobacteria	596	0.370	0.020	0.132	0.042	0.086	0.023
Bacteroidetes	448	0.693	0.001	0.310	0.001	0.079	0.001
BRC1	2	0.935	0.102	0.048	0.958	0.000	1.000
Chlamydiae	36	0.936	0.001	0.198	0.001	0.000	1.000
Chloroflexi	94	0.620	0.099	0.043	0.142	0.067	0.163
Crenarchaeota	10	0.935	0.542	0.140	0.996	0.000	1.000
Cyanobacteria	3	0.641	0.061	0.103	0.038	0.069	0.059
Firmicutes	118	0.531	0.002	0.204	0.002	0.099	0.002
Gemmatimonadetes	86	0.538	0.057	0.091	0.058	0.088	0.101
Nitrospira	6	0.944	0.005	0.309	1.000	0.000	1.000
OP10	8	0.760	0.001	0.404	0.001	0.110	0.001
Planctomycetes	251	0.458	0.023	0.078	0.050	0.061	0.018
Proteobacteria	811	0.889	0.003	0.213	0.002	0.083	0.002
TM7	52	0.554	0.012	0.117	0.024	0.108	0.008
Verrucomicrobia	127	0.852	0.125	0.026	0.142	0.000	1.000
WS3	6	0.481	0.001	0.209	0.003	0.082	0.001

Table S4. Statistical analysis of differences in the microbial community composition and structure between aCO_2 and eCO_2 at the community and phylum levels.

2 ^aMPRR: Multiple Response Permutation Procedure (49)

3 ^banosim: Analysis of similarities (35)

4 ^cadonis: Analysis of variance using distance martrices (30)

5

		Shared	OTUs	Unique OTUs	
Domain	Phylum	Down-eCO ₂ ^a	Up-eCO ₂ ^b	aCO_2	eCO ₂
Archaea	Crenarchaeota	0	0	3	1
	Unclassified	0	0	1	0
Bacteria	Acidobacteria	5	2	134	68
	Actinobacteria	7	19	170	150
	Bacteroidetes	3	1	128	117
	BRC1	0	0	1	1
	Chlamydiae	0	0	14	19
	Chloroflexi	0	0	35	24
	Cyanobacteria	0	0	2	0
	Firmicutes	2	0	41	32
	Gemmatimonadetes	3	0	33	19
	Nitrospirae	0	0	2	0
	OP10	0	0	8	0
	Planctomycetes	1	2	99	79
	Proteobacteria	2	9	213	243
	TM7	0	0	22	17
	Verrucomicrobia	4	0	49	34
	WS3	0	0	2	3
	Unclassified	0	2	184	158
Unclassified		0	1	5	8
Total		27	36	1146	973

Table S5. Numbers of shared OTUs that were significantly (p < 0.05) changed at eCO₂ based on the scaled abundances and unique OTUs detected only at aCO₂ or eCO₂.

3 a: Down-eCO₂ means the shared OTUs were significantly lower in eCO₂ samples than aCO₂ samples by

4 unpaired Stundent T tests.

5 b: Up-eCO₂ means the shared OTUs were significantly higher in eCO₂ samples than aCO₂ samples by

6 unpaired Student t tests.

7

		Sc	oil ^a	Plant ^b		
In as	sociation with: controlling	Pla	int ^b	Soil ^a		
Domain	Phylum	r	р	r	р	
All detect	ed OTUs	-0.018	0.508	0.266	0.065	
Archaea	Crenarchaeota	-0.145	0.829	0.074	0.269	
	Acidobacteria	-0.027	0.560	-0.045	0.582	
	Actinobacteria	0.000	0.396	0.137	0.112	
	BRC1	-0.248	0.977	0.107	0.229	
	Bacteroidetes	0.173	0.164	0.152	0.127	
	Firmicutes	0.190	0.122	0.357	0.027	
	OP10	0.057	0.281	-0.172	0.921	
	Planctomycetes	0.234	0.113	-0.023	0.488	
	Proteobacteria	0.170	0.155	0.414	0.014	
Bacteria	TM7	-0.026	0.549	0.002	0.459	
	Chlamydiae	-0.037	0.517	0.406	0.008	
	Chloroflexi	-0.004	0.411	-0.160	0.889	
	Cyanobacteria	0.050	0.374	0.097	0.282	
	Gemmatimonadetes	0.246	0.055	0.480	0.000	
	Nitrospirae	-0.066	0.594	0.416	0.018	
	Verrucomicrobia	-0.185	0.940	0.091	0.183	
	WS3	-0.122	0.847	-0.085	0.761	

Table S6. Partial Mantel analysis of the relationship between the relative abundance of phylum and soil or plant properties. Selected soil and plant variables are described in Table 2.

- **Table S7.** Partial Mantel analysis of the relationship between the relative abundance of order and soil or
- 2 plant properties. Only significantly (p < 0.05) correlated phylotypes are shown. Selected soil and plant
- 3 variables are listed in Table 2.

			Soil		Plant	
In association wit	th: controlling		Pla	int	Soil	
Phylum	Class	Order	r	р	r	р
Firmioutos	Bacilli	Bacillales	0.180	0.133	0.381	0.022
Fifficules	Clostridia	Clostridiales	0.335	0.049	0.552	0.008
	a Protochastoria	Caulobacterales	-0.125	0.799	0.295	0.039
	u-Proteobacteria	Rhizobiales	0.170	0.087	0.284	0.006
		Burkholderiales	0.243	0.075	0.468	0.003
Proteobacteria		Chromatiales	0.242	0.032	-0.071	0.712
	β-Proteobacteria	Legionellales	0.214	0.120	0.373	0.030
		Pseudomonadales	0.257	0.057	0.318	0.041
		Thiotrichales	0.095	0.278	0.519	0.006
TM7	Unclassified	Unclassified	-0.066	0.596	0.416	0.019
Chlamydiae	Chlamydiae	Chlamydiales	0.190	0.136	0.357	0.030
Nitrospirae	Nitrospira	Nitrospirales	-0.037	0.516	0.406	0.010

Table S8. Partial Mantel analysis of the relationship between the relative abundance of family and soil or

2 plant properties. Only significantly (p < 0.05) changed phytotypes are shown, and selected soil and plant

3 variables are listed in Table 2.

				Sc	oil	Pla	ant
In association wit	h: controlling			Plant			oil
Phylum	Class	Order	Family	r	р	r	р
Actinobactoria	Actinohactoria	Actinomycotales	Microbacteriaceae	-0.198	0.983	0.185	0.047
Actinobacteria	Actinobacterra	Actinomycetales	Thermomonosporaceae	0.254	0.044	-0.202	0.979
Chlamydiae	Chlamydiae	Chlamydiales	Parachlamydiaceae	0.177	0.151	0.355	0.022
			Bacillaceae	0.206	0.116	0.414	0.015
Einniautaa	Bacilli	Bacillales	Paenibacillaceae	0.155	0.184	0.360	0.038
Firmicutes			Planococcaceae	0.075	0.270	0.274	0.035
	Clostridia	Clostridiales	Clostridiaceae	0.421	0.015	0.553	0.003
Nitrospirae	Nitrospirae	Nitrospirales	Nitrospiraceae	-0.037	0.580	0.406	0.008
		Caulobacterales	Caulobacteraceae	-0.125	0.793	0.299	0.040
		Rhizobiales	Aurantimonadaceae	0.357	0.031	0.098	0.188
	α-		Beijerinckiaceae	0.138	0.216	0.297	0.033
	Proteobacteria		Bradyrhizobiaceae	0.207	0.046	0.232	0.030
			Rhodobiaceae	0.129	0.148	0.397	0.023
		Rhodospirillales	Rhodospirillaceae	-0.162	0.865	0.472	0.004
		Unclassified	Alphaproteobacteria	0 106	0.262	0 360	0.012
Proteobacteria		onenassinea	incertae sedis	0.100	0.202	0.500	0.012
Troteobueteriu	2		Burkholderiaceae	0.416	0.019	0.377	0.034
	β-	Burkholderiales	Burkholderiales incertae	-0.183	0.938	0 371	0 009
	Proteobacteria	Buildideffules	sedis	0.105	0.950	0.571	0.009
			Oxalobacteraceae	0.254	0.035	0.372	0.009
		Chromatiales	Chromatiaceae	0.500	0.001	-0.267	0.991
	γ-	Legionellales	Coxiellaceae	0.171	0.147	0.426	0.016
	Proteobacteria	Pseudomonadales	Pseudomonadaceae	0.262	0.059	0.320	0.033
		Thiotrichales	Unclassified	0.095	0.292	0.519	0.008
TM7	Unclassified	Unclassified	Unclassified	-0.066	0.575	0.416	0.019

Table S9 Partial Mantel analysis of the relationship between the relative abundance of genus and soil or

2 plant properties. Only significantly (p < 0.05) changed phytotypes are shown, and selected soil and plant

3 variables are listed in Table 2.

					Se	oil	Pl	ant
I	n association with: cor	trolling			Pla	ant	S	oil
Phylum	Class	Order	Family	Genus	r	р	r	р
				Microbacterium	-0.050	0.585	0.422	0.002
			Microbacteriaceae	Plantibacter	-0.058	0.590	0.401	0.003
				Unclassified	-0.008	0.504	0.301	0.007
		A - C	Nocardiaceae	Rhodococcus	0.270	0.078	-0.088	0.693
Actinobacteria	Actinobacteria	Actinomycetales	XX	Actinopolymorpha	0.173	0.151	0.461	0.034
			Nocardioidaceae	Marmoricola	0.284	0.050	-0.146	0.874
			Propionibacteriaceae	Micropruina	0.528	0.009	-0.294	0.996
			Thermomonosporaceae	Actinoallomurus	0.267	0.042	-0.192	0.977
	Flavobacteria	Flavobacteriales	Cryomorphaceae	Fluviicola	0.116	0.224	0.504	0.011
				Flavisolibacter	0.171	0.124	0 374	0.004
Bacteroidetes			Chitinophagaceae	Terrimonas	0.115	0.247	0.414	0.017
Ductoroldetes	Sphingobacteria	Sphingobacteriales	Cytophagaceae	Sporocytophaga	0.344	0.026	-0.172	0.942
			Sphingobacteriaceae	Solitalea	0.382	0.020	0.006	0.742
Chlamydiae	Chlamydiae	Chlamydiales	Parachlamydiaceae	Parachlamydia	0.143	0.202	0.368	0.018
Cinamyulae	Cilialitydiae	Cillalitydiales	Taraemaniyulaeeae	Tumebacillus	0.334	0.084	0.500	0.010
			Bacillaceae	Upglassified	0.034	0.004	0.394	0.007
			Desillalas	incassified	0.028	0.413	0.310	0.020
E	Bacilli	Bacillales	Bacillales	America	0.150	0.218	0.357	0.037
Firmicutes			Paenibacillaceae	Ammoniphilus	0.287	0.063	0.372	0.029
			DI	Paenibacilius	0.146	0.223	0.360	0.046
	<u></u>	<u> </u>	Planococcaceae	Sporosarcina	0.076	0.228	0.275	0.036
	Clostridia	Clostridiales	Clostridiaceae	Clostridium	0.421	0.012	0.553	0.006
Nitrospirae	Nitrospirae	Nitrospirales	Nitrospiraceae	Nitrospira	-0.037	0.539	0.406	0.006
Planctomycetes	Planctomycetacia	Planctomycetales	Planctomycetaceae	Gemmata	-0.109	0.754	0.371	0.017
	α-Proteobacteria	Caulobacterales	Caulobacteraceae	Phenylobacterium	-0.130	0.820	0.372	0.036
		Rhizobiales eobacteria	Aurantimonadaceae	Aurantimonas	0.357	0.025	0.098	0.203
			Beijerinckiaceae	Chelatococcus	0.278	0.065	0.462	0.012
			Bradyrhizobiaceae	Bradyrhizobium	0.199	0.054	0.228	0.034
			Bradymizoblaceae	Rhodopseudomonas	0.261	0.016	0.032	0.327
			Brucellaceae	Ochrobactrum	0.376	0.033	0.367	0.055
			Methylobacteriaceae	Unclassified	0.215	0.047	-0.124	0.825
			Rhodobiaceae	Anderseniella	0.146	0.145	0.375	0.013
			Acetobacteraceae	Roseomonas	0.202	0.077	-0.052	0.635
		D1		Skermanella	-0.294	1.000	0.333	0.042
		Rhodospirillales	Rhodospirillaceae	Thalassobaculum	0.288	0.056	-0.200	0.971
				Unclassified	0.061	0.314	0.270	0.043
			Erythrobacteraceae	Unclassified	-0.254	0.979	0.191	0.098
		Sphingomonadales	Sphingomonadaceae	Unclassified	-0.028	0.488	0.317	0.038
Proteobacteria		Unclassified	Unclassified	incertae	0.106	0.257	0.360	0.021
rioteoodeteria	-			Burkholderia	0.437	0.016	0.365	0.044
			Burkholderiaceae	Ralstonia	0.019	0.400	0.321	0.025
				incertae sedis	0.230	0.115	0.360	0.033
	B Proteobacteria	Burkholderiales	Burkholderiales	incertae sedis	-0.188	0.955	0.431	0.007
	p=110teobacteria	Durkholdenaies	Comamonadaceae	Unclassified	-0.028	0.755	0.409	0.007
			Comamonadaecae	U	-0.020	0.400	0.125	0.047
			Oxalobacteraceae	Herminiimonas	0.301	0.050	-0.135	0.897
	S.D. (1) (1	N 1	D 1	Massilia	0.176	0.110	0.376	0.021
	o-Proteobacteria	Myxococcales	Polyangiaceae	Unclassified	0.319	0.046	0.106	0.221
		Chromatiales	Chromatiaceae	Nitrosococcus	0.500	0.000	-0.267	0.995
		Legionellales	Coxiellaceae	Aquicella	0.171	0.140	0.426	0.006
	v-Proteobacteria		Legionellaceae	Unclassified	0.321	0.058	0.447	0.021
	1 1000000000000	Pseudomonadales	Pseudomonadaceae	Pseudomonas	0.266	0.064	0.317	0.040
		Thiotrichales	Unclassified	Unclassified	0.095	0.272	0.519	0.011
		Xanthomonadales	Xanthomonadaceae	Lysobacter	-0.038	0.510	0.268	0.063
TM7	Unclassified	Unclassified	Unclassified	TM7	-0.066	0.598	0.416	0.017
Varmaomiarchia	Subdivision2	Unalassified	Upplessified	Subdivision3	0.285	0.028	0.100	0.009
venucomicropia	Suburvision3	Unclassified	Unclassified	genera	0.285	0.038	-0.190	0.908

D. SUPPORTING FIGURES 1

2

3 4 Fig. S1. Neighbor-Joining tree of representative sequences of 16S rRNA genes major phyla 5 detected at aCO₂ and eCO₂. Different phyla are presented by different colors on the circle tree. The relative abundance of each OTU is indicated on the periphery of the circle tree by the color 6 bar with blue for aCO₂ and red for eCO₂ samples, which is proportion to the bar height. All 7 unclassified OTUs (13.6%) at the phylum level were excluded from tree construction. Also, four 8 phyla (BRC1, Cynobacteria, WS3 and Nitroapirae) with six or fewer OTUs detected are not 9 10 shown in this tree.

2 Fig. S2 Significantly changed OTUs in the phylum of Actinobacteria at elevated CO_2 using the

3 response ratio method (47) at 95% confidence interval.

Fig. S3. Significantly changed microbial populations at the order levels in the phylum of
Proteobacteria. Significance was tested by response ratios (47). *: p < 0.05; **: p < 0.01.

Fig. S4. Significantly changed microbial populations at the class or lower levels in the phylum of
Acidobacteria (A), Verrucomicrobia (B), and Firmicutes (C). Significance was tested by
response ratios (47). *: p < 0.05; **: p < 0.01.

Fig. S5 The flowchart of OTU identification processes.

1 \$

2

SUPPLEMENTAL REFERENCES

- Ahn, S., J. Costa, and J. Emanuel. 1996. PicoGreen quantitation of DNA: effective
 evaluation of samples pre- or post-PCR. Nucl. Acids Res. 24:2623-2625.
- 5 30. Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of
 6 variance. Austral Ecol 26:32-46.
- 31. Binladen, J., M. T. Gilbert, J. P. Bollback, F. Panitz, C. Bendixen, R. Nielsen, and E.
 Willerslev. 2007. The use of coded PCR primers enables high-throughput sequencing of
 multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2:e197.
- Caporaso, J. G., K. Bittinger, F. D. Bushman, T. Z. DeSantis, G. L. Andersen, and R.
 Knight. 2010. PyNAST: a flexible tool for aligning sequences to a template alignment.
 Bioinformatics 26:266-267.
- Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K.
 Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T.
 Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D.
 Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J.
 Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis
 of high-throughput community sequencing data. Nat Methods 7:335-336.
- 19 34. Chao, A. 1987. Estimating the population size for capture-recapture data with unequal
 20 catchability. Biometrics 43:783-791.
- 21 35. Clarke, K. R. 1993. Nonparametric Multivariate Analyses of Changes in Community
 22 Structure. Aust J Ecol 18:117-143.
- 23 36. Clarke, K. R., and M. Ainsworth. 1993. A Method of Linking Multivariate Community
 24 Structure to Environmental Variables. Mar Ecol-Prog Ser 92:205-219.
- Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, and J. M. Tiedje. 2009. The
 Ribosomal Database Project: improved alignments and new tools for rRNA analysis.
 Nucleic Acids Res 37:D141-145.
- 38. DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T.
 Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a chimera-checked

16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 1 72:5069-5072. 2 Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 3 39. 4 **14:**927-930. 40. Gotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls 5 in the measurement and comparison of species richness. Ecol. Lett. 4:379-391. 6 Hamady, M., C. Lozupone, and R. Knight. 2010. Fast UniFrac: facilitating high-7 41. throughput phylogenetic analyses of microbial communities including analysis of 8 9 pyrosequencing and PhyloChip data. ISME J. 4:17-27. 10 42. Hamady, M., J. J. Walker, J. K. Harris, N. J. Gold, and R. Knight. 2008. Errorcorrecting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. 11 12 Methods **5:**235-237. 43. Krebs, C. J. 1989. Ecological methodology. Harper & Row, New York. 13 14 44. Kumar, S., M. Nei, J. Dudley, and K. Tamura. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 15 16 **9:**299-306. 45. Letunic, I., and P. Bork. 2007. Interactive Tree Of Life (iTOL): an online tool for 17 phylogenetic tree display and annotation. Bioinformatics 23:127-128. 18 46. Lewin, G. R., E. Mckintosh, and S. B. Mcmahon. 1994. Nmda Receptors and Activity-19 20 Dependent Tuning of the Receptive-Fields of Spinal-Cord Neurons. Nature 369:482-485. 21 47. Luo, Y. Q., D. F. Hui, and D. Q. Zhang. 2006. Elevated CO2 stimulates net 22 accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology **87:**53-63. 23 48. Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. 24 Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. 25 V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. 26 L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. 27 Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. 28 McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. 29 Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. 30

Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. 1 Wang, M. P. Weiner, P. Yu, R. F. Begley, and J. M. Rothberg. 2005. Genome 2 sequencing in microfabricated high-density picolitre reactors. Nature **437**:376-380. 3 4 49. Mielke, P. W., K. J. Berry, P. J. Brockwell, and J. S. Williams. 1981. A Class of Nonparametric-Tests Based on Multiresponse Permutation Procedures. Biometrika 5 **68:**720-724. 6 7 50. Nawrocki, E. P., and S. R. Eddy. 2007. Query-dependent banding (QDB) for faster 8 RNA similarity searches. PLoS Comput Biol 3:e56. 9 51. **R** Development Core Team 2010, posting date. R: A Language and Environment for 10 Statistical Computing. [Online.] 52. Reich, P. B., S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West, D. Tilman, J. M. 11 12 Knops, S. Naeem, and J. Trost. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922-925. 13 53. Reich, P. B., J. Knops, D. Tilman, J. Craine, D. Ellsworth, M. Tjoelker, T. Lee, D. 14 Wedin, S. Naeem, D. Bahauddin, G. Hendrey, S. Jose, K. Wrage, J. Goth, and W. 15 16 Bengston. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and 17 nitrogen deposition. Nature **410**:809-812. 54. Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. 18 A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. 19 20 Thallinger, D. J. Van Horn, and C. F. Weber. 2009. Introducing mothur: open-source, 21 platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. 22 55. Stackebrandt, E., and B. M. Goebel. 1994. Taxonomic Note: A Place for DNA-DNA 23 Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in 24 Bacteriology. Int J Syst Bacteriol 44:846-849. 25 Sun, Y., Y. Cai, L. Liu, F. Yu, M. L. Farrell, W. McKendree, and W. Farmerie. 2009. 26 56. ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. 27 Nucleic Acids Research 37:e76. 28

1	57.	Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier
2		for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ
3		Microbiol 73: 5261-5267.
4	58.	Zhou, J. Z., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse
5		composition. Appl. Environ. Microbiol. 62:316-322.
6		
7		