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Summary

Discerning network interactions among different
species/populations in microbial communities has
evoked substantial interests in recent years, but little
information is available about temporal dynamics of
microbial network interactions in response to envi-
ronmental perturbations. Here, we modified the
random matrix theory-based network approach to
discern network succession in groundwater microbial
communities in response to emulsified vegetable
oil (EVO) amendment for uranium bioremediation.
Groundwater microbial communities from one control
and seven monitor wells were analysed with a func-
tional gene array (GeoChip 3.0), and functional
molecular ecological networks (fMENs) at different
time points were reconstructed. Our results showed
that the network interactions were dramatically
altered by EVO amendment. Dynamic and resilient
succession was evident: fairly simple at the initial
stage (Day 0), increasingly complex at the middle
period (Days 4, 17, 31), most complex at Day 80, and
then decreasingly complex at a later stage (140–269

days). Unlike previous studies in other habitats, nega-
tive interactions predominated in a time-series fMEN,
suggesting strong competition among different
microbial species in the groundwater systems
after EVO injection. Particularly, several keystone
sulfate-reducing bacteria showed strong negative
interactions with their network neighbours. These
results provide mechanistic understanding of the
decreased phylogenetic diversity during environmen-
tal perturbations.

Introduction

Uranium (U) bearing waste is a critical pollutant at U mining
and processing sites worldwide (Achtman and Wagner,
2008). Highly soluble U(VI) may migrate and spread into
groundwater systems, imposing serious problems for
human health and the environment. Previous studies
showed that a variety of microorganisms, including metal-
reducing bacteria, sulfate-reducing bacteria (SRB) and
certain fermentative bacteria, have the ability to reduce
soluble U(VI) to insoluble U(IV), resulting in immobilization of
U in situ in the subsurface environment and consequently
prevention of further U contamination in groundwater
systems (Wu et al., 2006a,b; Gihring et al., 2011). To stimu-
late U immobilization, rapidly consumed substrates (e.g.
acetate, ethanol) were injected as electron donors and
carbon sources for enhancing microbial activity (Anderson
et al., 2003; Wu et al., 2006b; Williams et al., 2011). Since
rapidly consumed substrates required multiple and periodic
injections, more recently slow-releasing substrates (spar-
ingly soluble and metabolized) like emulsified vegetable oil
(EVO) (Gihring et al., 2011; Tang et al., 2013a,b) have also
been tested for stimulating U(VI) reduction in a field experi-
ment (Gihring et al., 2011; Tang et al., 2013a,b). The experi-
mental results showed that one-time EVO injection
significantly decreased U concentrations in groundwater for
up to 4 months, suggesting that EVO injection can be a
cost-effective, sustainable approach for bioremediation of
U-contaminated sites (Tang et al., 2013a).

Analysis of microbial diversity through pyrosequencing
and quantitative polymerase chain reaction of 16S rRNA
gene demonstrated that although total bacterial biomass
dramatically increased after EVO injection, both bacterial
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community richness and diversity rapidly declined
(Gihring et al., 2011). It also found that SRB (e.g. genus
Desulforegula et al.) dominated groundwater microbial
communities during EVO amendment. All these results
suggested that only few special microbial populations
(specialists) had been stimulated by EVO injection, but
more generalists were inhibited. Meanwhile, functional
gene microarray (GeoChip) analysis of the same ground-
water microbial communities revealed that the community
structure diverged substantially away from the initial
community state after EVO injection but eventually con-
verged on a state similar to pre-EVO injection, showing
that the response of groundwater microbial communities
to EVO amendment was resilient (Zhou et al., 2014;
Zhang et al., 2015). Although such analyses have pro-
vided important insights into our understanding of the
diversity, composition and structure of groundwater micro-
bial communities in response to EVO amendment across
different time points, little could be inferred quantitatively
about the interactions among different microbial species/
populations.

In natural habitats, microorganisms live together within
complicated networks through various types of interac-
tions, which could be either positive (e.g. mutualism) or
negative (e.g. competition) (Faust and Raes, 2012). Such
interactions can be depicted as a network model, in which
each node represents a species, the edge linking two
nodes represents the relationship between these two
species, the edge weights represent the strength of the
relationship, the arrow direction represents the temporal,
regulatory or causal relationship from one species to
another, and the size of nodes represents the abundance
of species or the node properties. In the past two
decades, ecological networks such as food webs and the
mutualistic networks between plants and animal pollina-
tors or seed dispersers have been intensively studied in
macro-ecology because most of these interactions could
be observed directly (Montoya et al., 2006; Bascompte
and Jordano, 2007). However, comparable network
analyses in microbial ecology are only at infancy with the
recent advances in metagenomic technologies (Zhou
et al., 2010; 2011).

The study of interactions among different microbial taxa is
much more challenging than those in macro-ecology. Most
of these interactions could not be directly observed largely
due to their extremely high diversity and uncultivated status.
Recently developed metagenomic technologies offer an
unprecedented opportunity to examine the interactions
among different microbial taxa. Based on metagenomics
data (i.e. sequencing and microarrays) across many repli-
cate samples, pairwise correlations between different taxa
(genes, populations, Operational Taxa Units (OTUs)) can be
obtained, which then were used to infer co-occurrence net-
works (Faust and Raes, 2012). The correlation-based asso-

ciation (or relevance) network method is one of the most
commonly used network inference approaches in genomic
biology. Many studies have shown that highly correlated
proteins were often, but not always, physically interacting
(Ge et al., 2001; Dezso et al., 2003; Barabasi and Oltvai,
2004). Among several correlation-based relevance network
inference approaches, the random matrix theory (RMT)-
based network method is one of the most commonly used
approaches. It is advantageous in that the network inference
is automatically implemented mathematically and robust to
noise, which is an inherent problem associated with high-
throughput metagenomic data (Luo et al., 2007; Zhou et al.,
2010; 2011). The RMT has been used to delineate the
effects of environmental variables on soil microbial commu-
nity interactions. For instance, previous studies showed that
an important environmental parameter of elevated carbon
dioxide could dramatically alter the network interactions in
terms of microbial functional or phylogenetic groups (Zhou
et al., 2010; 2011; Deng et al., 2012a), and such shifts in
network structure are also significantly correlated with soil
properties.

Here, we described a time-series, RMT-based network
inference approach to address the following questions: (i)
How do different microbial populations interact with each
other during the succession of the groundwater microbial
communities? (ii) What are the changes of key popula-
tions over time in response to EVO amendment? and (iii)
Are these changes of network interactions associated
with important environmental chemistries? To this end,
high-throughput, time-series GeoChip hybridization data
from microbial community analysis during EVO amend-
ment (Zhou et al., 2014; Zhang et al., 2015) were
employed to construct these functional molecular ecologi-
cal networks (fMENs). A modified RMT-based approach
via incorporating time-series information was developed
for determining microbial interaction networks. Our results
suggested that microbial interactions were stimulated by
EVO amendment, and the competition among microbial
species resulted in the decline of richness and diversity of
groundwater microbial communities in response to EVO
amendment.

Results

Modified network construction method based on
time-series data

To generate time-lagging networks, we modified the
regular approach for reconstructing RMT-based networks.
As described in Experimental procedures, we shifted
the microbial abundance profile one time point forward
and backward for calculating the Pearson correlation
coefficient (r) between any two microorganisms (Fig. S3).
Theoretically, if either r value from forward or backward
abundance profiles is higher than the regular correlation
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(Fig. S3B and C), the temporal order direction between
these two microorganisms can be deduced based on the
assumption that the abundance of the former appeared
microorganism is changed earlier than the later appeared
microorganism. This modified approach transformed the
network to be directional.

The overall features of time-series network construction
and topology

To discern the network interactions of the groundwater
microbial communities, GeoChip-based time-series data
were analysed by our modified approach. The time-
lagging, directional fMENs had clear general network
properties, such as scale-free, small-world and modular-
ity (Table 1), consistent with our previous studies (Zhou
et al., 2010; 2011; Deng et al., 2012a). The network
topology fitted the power law distribution very well
(R2 = 0.98), meaning that fewer microorganisms in the
fMEN had many more connections while most microor-
ganisms had only few connections. The harmonic geo-
desic distance (HD) value of 5.06 was close to the
logarithm of the total number of network nodes, suggest-
ing that the fMEN had the typical property of small
world. The modularity value (M = 0.625) was significantly
higher than the M value from the corresponding
randomized networks. Therefore, this fMEN appeared to
be modular.

There were 348 microbial taxa with at least one con-
nection in the fMEN. A total of 1435 edges were identified,
including 948 (66%) positive and 487 (34%) negative
interactions (Table S1). Notably, the percentage of nega-
tive correlations (34%) in this study was much higher
comparing with our previous observations (9.2–14%)
(Zhou et al., 2010; 2011; Deng et al., 2012a). In addition,

there were 458 edges with directions and 977 edges
without directions. Among 458 directional edges, the
majority (432 or 88.7%) were negative interactions.

Modularity and module eigengene analysis

The high modularity value (0.625) indicated that fMEN
had an evident modular architecture, resulting in 29
modules by a simulated annealing approach (Guimera
and Amaral, 2005). Among these, nine modules con-
tained more than five nodes, with 97 nodes in the largest
module (Fig. S4). To reveal higher order organization of
fMENs, the eigengene analysis (Langfelder and Horvath,
2007; Horvath and Dong, 2008; Oldham et al., 2008) was
implemented. In this approach, each module had been
decomposed into a single representative abundance
profile, which is referred to as the module eigengene. The
eigengene network analysis for Module 2 was illustrated
in Fig. 1, which consists of a heat map showing abun-
dance of all members within a module (Fig. 1A), abun-
dance represented by singular value decomposition
(SVD) analysis (Fig. 1B), module memberships (Fig. 1C)
and network interaction map (Fig. 1D). The module
eigengenes explained 37–89% variations of the abun-
dance profiles of various modules across different wells in
multiple time points (Fig. 1, Fig. S5I–VIII). Most
eigengenes (6/9) explained more than 70% of the
observed variations, which was considerably higher than
our previous observations and the human eigengene
network analysis (Dong and Horvath, 2007; Zhou et al.,
2011). In addition, the groundwater fMEN had two major
eigengene clusters (Fig. S6): modules 1–4 formed a big
cluster with almost 77% nodes in the whole network, while
modules 5–9 formed the other cluster.

Table 1. Topological properties of the empirical functional molecular ecological networks (fMENs) during U bioremediation in comparison to the
random networks.a

Datasets

Empirical networks Random networksb

Direc-
tional

Similarity
threshold
(st)

Network
size
(n)

R2 of
power
law

Average
connectivity
(avgK)

Harmonic
geodesic
distance
(HD)

Average
clustering
coefficient
(avgCC)

Modularity
(no. of
modules)

Harmonic
geodesic
distance
(HD)

Average
clustering
coefficient
(avgCC) Modularity (M)

Entire Yes 0.870 348 0.98 8.247 5.060 0.394 0.625 (29) 2.809 ± 0.045 0.101 ± 0.008 0.355 ± 0.012
Day 0

(+W8)
No 0.974 206 0.98 2.175 30.016 0.179 0.854 (47) 7.142 ± 0.432 0.009 ± 0.005 0.421 ± 0.033

Day 4 No 0.974 401 0.97 5.292 11.998 0.333 0.768 (41) 3.520 ± 0.063 0.024 ± 0.004 0.401 ± 0.022
Day 17 No 0.974 559 0.99 6.537 13.756 0.271 0.553 (92) 3.406 ± 0.078 0.062 ± 0.006 0.378 ± 0.019
Day 31 No 0.974 565 0.98 9.526 9.310 0.355 0.550 (65) 3.005 ± 0.045 0.074 ± 0.006 0.396 ± 0.021
Day 80 No 0.974 490 0.97 21.069 5.435 0.406 0.367 (47) 2.512 ± 0.030 0.200 ± 0.007 0.159 ± 0.008
Day 140 No 0.974 533 0.94 5.373 8.020 0.338 0.738 (48) 3.583 ± 0.051 0.021 ± 0.003 0.345 ± 0.024
Day 269 No 0.974 459 0.97 4.135 8.580 0.272 0.710 (62) 4.067 ± 0.079 0.016 ± 0.003 0.412 ± 0.026

a. Various parameters of the empirical networks and generation of random networks are explained in Deng and colleagues (2012a).
b. The parameters of random networks were generated from 100 times of randomly rewired networks. The parameters presented here were the
mean values and standard derivations from these 100 random networks.
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Identification of keystone functional populations

Based on within-module connectivity (Zi) and among-
module connectivity (Pi) (Olesen et al., 2007), seven key
module hubs (Fig. 2A, Table 2) were observed, but no
network hubs or connectors were identified (Fig. S7).
Those seven module hubs were highly connected to
many other nodes within their own modules; thus, they
could be regarded as central nodes in the network. Three
module hub microorganisms (46307850, 88062432 and
63029733) were all not-yet cultivated SRB with dsrA
encoding sulfite reductase. The changes of these three
sulfate-reducing microorganisms in abundance had
strong correlations with the changes of acetate, nitrate,
sulfate, iron and/or U(VI) (Table 2). Notably, the module

hub microorganism 92109658, Nitrobacter hamburgensis,
contained multiple metal resistance genes czcA, cadA
and copA, which were reported to be associated with
heavy metal (e.g. cadmium, zinc, copper) resistance or
transport (Tsai et al., 1992; Solioz and Vulpe, 1996;
Goldberg et al., 1999). Although N. hamburgensis
was mainly characterized in the nitrification process
(Starkenburg et al., 2008), no nitrification-related genes in
this organism were detected. In contrast, metal resistance
genes were frequently detected, suggesting it might
participate in heavy metal recycling. In addition, three
other module bacteria containing ppx encoding
polyphosphatase, carbon monoxide dehydrogenase
(CODH) or small multidrug resistance (SMR) genes were
identified.

Fig. 1. A conceptual example of the eigengene network analysis on Module 2 of the entire fMEN of groundwater microbial communities.
A. Heat map of standardized relative abundance (SRA) of functional microorganisms across different samples. Rows correspond to individual
organisms in the module, whereas columns are the samples. Red corresponds to the OTUs whose SRAs are more than 0, and green signifies
whose SRAs are less than 0.
B. The corresponding eigengene (y axis) across the samples (x axis). The parameter indicates the percentage of the total variance explained
by the eigengene.
C. Five nodes with the highest module membership values in this module. The values in parentheses are module memberships to identify
nodes that could be well represented by corresponding module eigengene. The y axis is SRAs and the x axis is individual samples.
D. Module visualization showing the interactions among different nodes within the module. The different colours of nodes represent different
functional groups.
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To further investigate the succession of keystone popu-
lations, these seven module hubs were classified into
three groups based on their abundance profile (Fig. 2B):
the first group included two SRB (46307850 and

88062432) carrying dsrA genes with high abundance
at Day 17; the second group included two bacteria
(57168052 and 50285095) carrying SMR and ppx genes,
respectively, with high abundance detected at latest time

Fig. 2. Seven module hub microorganisms identified from network modular connectivity analysis of the entire fMEN.
A. The interactions of module hub organisms and their neighbours. The colours of nodes represent the ecological functions of
microorganisms, and the node sizes represent their connectivity values. The blue lines represent the positive connections, while the red lines
represent the negative connections. The arrow direction is assigned from ahead organism pointing to lagged one in time dynamics.
B. The abundance of the hub microorganisms in time points and three general groups can be classified according to their abundance profiles.
The colour from red to green represents the abundance of this organism from high to low.
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point (Day 269); the third group included three hubs
(218751178, 92109658 and 63029733) detected in all
time points but with higher abundance before EVO injec-
tion and substantially decreased abundance after EVO
injection. Interestingly, none of these hubs were from the
most abundant microorganisms in the communities.
Among about 1000 detected microorganisms, the most
abundant microorganisms detected at each time point
varied from 0.45% to 0.70%, but the highest relative abun-
dance of hub microorganism 218751178 was 0.35%,
which was ranked to the 32nd abundant microorganisms
at Day 0, suggesting that keystone microorganisms in the
network might not be the most abundant species in the
community.

The positive and negative interactions and directions of
these keystone microorganisms were further investigated.
For example, the hub microorganism 92109658 (the
member of Group 3) was positively connected with its 15
neighbours non-directionally (Fig. 3A), suggesting that
this hub microorganism interacted with its neighbours
synchronously during the U bioremediation process. On
the contrary, another hub microorganism 88062432

(uncultured Desulfohalobiaceae bacterium, first group
member) was negatively connected with its 54 neigh-
bours. Based on the directions, this microorganism nega-
tively influenced 34 neighbours and was negatively by 10
neighbours. The rest of 10 neighbours did not have
defined directions, but were still found to be negatively
associated with this hub organism. Interestingly, most
neighbouring organisms that carried carbon cycling genes
as detectable on the arrays were negatively affected by
this module hub, implying that their growths may be
restricted by this model hub bacterium.

Network succession of microbial communities after
EVO amendment

In order to determine the network succession after EVO
amendment, individual fMENs were constructed for each
time point. An identical threshold was chosen for all of
the fMENs to allow for direct comparisons (Table 1). In
general, the constructed fMENs obeyed the principles of
scale-free, small-world and modular, although their
network sizes varied considerably (Table 1). The R2 of

Table 2. The correlations between seven keystone species and important environmental parameters.

Node ID Functional category Microorganism

Correlations with environmental parameters

Acetate NO3
− SO4

2+ Fe2+ U(VI)

46307850 Sulfur Uncultured sulfate-reducing bacterium −0.021 −0.439*** −0.167 0.565*** −0.160
88062432 Sulfur Uncultured Desulfohalobiaceae bacterium 0.243 −0.584*** −0.246 0.497*** −0.071
63029733 Sulfur Uncultured sulfate-reducing bacterium −0.395** 0.306* 0.471*** −0.384** 0.360**
92109658 Metal resistance Nitrobacter hamburgensis −0.369** 0.449*** 0.504*** −0.400** 0.330*
57168052 Antibiotic resistance Campylobacter coli 0.000 −0.071 −0.427** −0.937*** 0.514***
50285095 Phosphorus Candida glabrata 0.000 0.244 −0.258 0.217 −0.826***
218751178 Carbon cycling Uncultured bacterium −0.299* 0.453*** 0.460*** −0.315* 0.247

*P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 3. The interactions between hub microorganism (A) Nitrobacter hamburgensis and (B) uncultured Desulfohalobiaceae bacterium and their
neighbours in the entire fMEN.
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power law was consistently high (0.94–0.99), indicating
that all individual fMENs were scale-free. Their HD and M
values were significantly higher than the random net-
works, indicating that small-world and modular properties
were also prevalent. Average clustering coefficient
(avgCC) was used to describe how well nodes were con-
nected with the neighbours (Zhou et al., 2011), which is
another parameter to measure the small-world property
(Steele et al., 2011). It varied from 0.179 to 0.406, but all
were greater than the random avgCC, showing the nodes
in these networks were more connected than their corre-
sponding random networks of same sizes.

The connections of the module hub microorganisms
identified based on the entire network were examined for
those time-series fMENs. Only three hub microorganisms
(218751178 from uncultured bacterium for C cycling,
92109658 from N. hamburgensis for metal resistance and
63029733 for sulfate reduction) were frequently detected
in most of fMENs. From their connections with the neigh-
bours (Fig. 4, Fig. S8), the topologies of all three hubs in
the networks were dramatically changed across all time
points.Although the connections of three hubs were scarce
in both the prior and last days, the most complex time
points for hub microorganisms were slightly different. For
instance, the uncultured SRB 63029733 had no neigh-
bours at Day 0 but quickly gained 12 closest neighbours in
Day 4 and reached a maximum of 17 connections in Day
17. After that, its connections gradually decreased (Fig. 4).
Similar trends were observed in both 218751178 and
92109658, with a maximum of 55 and 16 connections at
Day 80 and Day 4 respectively (Fig. S8). According to the
functional genes they carried, three SRB hubs (46307850
uncultured sulfate-reducing bacterium, 88062432 uncul-
tured Desulfohalobiaceae bacterium and 63029733 uncul-

tured sulfate-reducing bacterium) and one metal-related
hub (92109658 N. hamburgensis) should play important
roles in U bioremediations. Therefore, they either had
higher abundance at the earlier stage after EVO injection
(e.g. 46307850 and 88062432 had highest abundances at
Day 17, Fig. 2B) or had higher connectivity/activity at the
earlier stage after EVO injection (e.g. 63029733 in Fig. 4
and 92109658 in Fig. S8B). On the contrary, the other three
hubs that carried functional genes less related to U
bioremediation (57168052 Campylobacter coli, 50285095
Candida glabrata and 218751178 uncultured bacterium)
either had higher abundance at the latest time point (e.g.
57168052 and 50285095 in Fig. 2B) or had higher
connectivity/activity at the later stage (e.g. 218751178 in
Fig. S8A). All these results implied that although the hub
microorganisms were substantially affected by the EVO
injection in succession, their activities might vary consid-
erably. The U bioremediation-relevant microorganisms
could be more abundant and active at the earlier stage
after EVO injection.

The network properties of these fMENs showed some
similar increased or decreased trends across different
time points. The network of Day 0 appeared to have
the sparsest connections among network members
(Fig. S9A), which was reflected by its biggest value of
harmonic geodesic distance (HD), the smallest values of
average connectivity (avgK) and the avgCC (Table 1,
Fig. S9B). Between Days 4 and 80 after EVO injection,
the time-series fMENs became thicker and thicker with
increasing network sizes and avgK but decreasing HD
values (Fig. S9). Thereafter, the density of fMENs gradu-
ally decreased in terms of avgK and avgCC. However, the
final fMEN (Day 269) still showed higher density than the
initial state (Day 0) as indicated by both higher avgCC and

Fig. 4. The dynamic network connections of hub microorganism 63029733 (uncultured sulfate-reducing bacterium) in individual fMENs. The
bright blue lines linked the hub organism with its neighbours and the opacified lines linked between neighbours.
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much lower HD, suggesting that microbial interactions
were greatly altered until the last time point (Day 269). By
considering both avgCC and HD, which are commonly
used to measure the small-world property (Watts and
Strogatz, 1998; Watts, 1999; Chow et al., 2014), the
fMENs were dynamically changed from fairly simple at the
initial stage (Day 0) to more complex in the middle period
(Days 4, 17, 31), to the most complex at Day 80 and to
less complex again at the late stage (140–269 days).

Relationships of network structure to
environmental variables

First, a Pearson correlation was calculated between each
environmental variable and each node in the entire fMEN.
The r values ranged from −0.950 to 0.933 (Table S2) and

about 24.6% of them were significant (P < 0.01) by using
the t-distribution tests without multiple P value correc-
tions. However, only 13 of these r values were greater
than 0.870, which was the minimal threshold for 1435
detected interactions among microorganisms in the
fMEN. It suggested that association between available
environmental variables and microorganisms was much
weaker than the interactions among microorganisms
themselves.

To reveal the relationship between network structure
and environmental variables, several ecologically impor-
tant environmental variables were selected. The associa-
tions between nodes’ connectivity and environmental
variables were examined by Mantel test as previously
described (Deng et al., 2012a). First, the trait-based gene
significance (GS) was calculated as the square of
Pearson correlation coefficient (r2) of gene abundance
profile with environmental variables. Then, the correlation
between multiple GS of important environmental variables
and nodes’ connectivity degrees was analysed by Mantel
tests. Our results showed that the nodes’ connectivity
was significantly correlated with the GS of acetate,
NO3

−, SO4
2+, Fe2+ and U(VI) concentrations (rM = 0.223,

P = 0.001) (Table 3). By examining this association
between the aforementioned variables and the nodes
in each functional category, we found that microorganisms
carrying C (rM = 0.625, P = 0.004), P (rM = 0.944,
P = 0.047) and metal resistance (rM = 0.580, P = 0.022)
functions were significantly correlated. Very strong corre-
lations were observed in both bacteria and fungi, and α-
and γ-Proteobacteria within bacteria. Additionally, α- and
γ-Proteobacteria and those microorganisms involved in N,
P and metal cycling functions were most sensitive to the
changes of important environmental variables.

Discussion

Microbes, including bacteria, archaea, fungi, protists and
viruses, are the majority of the Earth’s biosphere which
play indispensable roles in various biogeochemical
processes. With recent advances in metagenomic tech-
nologies, novel insights in terms of microbial diversity,
distributions and responses to environmental changes
have been obtained (e.g. Zhou et al., 2008; 2012; 2014;
He et al., 2010a). However, the majority of current micro-
bial ecology studies focused on the diversity, composition
and structure of microbial communities across space and
time, and/or experimental treatments, and hence little is
known about the interactions among different microbial
populations and with their environments (Zhou et al.,
2010; Faust and Raes, 2012; Bissett et al., 2013). Surely,
it is difficult to elucidate microbial interactions among
various populations and link them to ecosystem pro-
cesses and functions (Zhou et al., 2010; 2011; Steele

Table 3. The Mantel tests on connectivity versus the gene signifi-
cance of important environmental variablesa in overall fMEN.

Category rM P

Whole fMEN 0.223 0.001*
Functional categories

Nitrogen cycling 0.625 0.004*
nifH −0.047 0.567
ureC 0.640 0.054
napA −0.009 0.306
amoA 0.086 0.612
nirS −0.208 0.547
Carbon cycling 0.063 0.637
CODH 0.458 0.121
amyA −0.198 0.825
Rubisco −0.172 0.644
AceB 0.544 0.170
Phenol oxidase −0.297 0.724
Antibiotic resistance 0.113 0.245
Organic remediation 0.165 0.095
catB −0.255 0.577
linB −0.311 0.760
alkB 0.955 0.091
Metal resistance 0.580 0.022*
Phosphorus 0.944 0.047*
Sulfur 0.110 0.624
AprA 0.405 0.136
dsrA 0.144 0.089
dsrB −0.205 0.755

Taxonomic categories
Bacteria 0.205 0.013*
Proteobacteria 0.246 0.027*
α- 0.595 0.023*
β- 0.117 0.161
δ- 0.122 0.600
γ- 0.202 0.045*
ε- 0.211 0.213
Bacteroidetes 0.499 0.149
Cyanobacteria 0.221 0.967
Firmicutes 0.031 0.497
Actinobacteria 0.037 0.334
Fungi 0.944 0.045*
Archaea 0.100 0.505

a. The important environmental variables used for gene significance cal-
culations included acetate, NO3

−, SO4
2+, Fe2+ and U(VI) concentrations.

*Significance of Mantel test P < 0.05.

212 Y. Deng et al.

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 18, 205–218



et al., 2011) because the interactions among microbes, in
contrast to the situations in plants and animals, have
rarely been observed. In this study, we used RMT-based
network approaches to examine the succession of
co-occurrence networks of groundwater microbial com-
munities in response to the EVO amendment. Our results
indicated that EVO injection dramatically shifted the inter-
actions of microbial populations. Particularly, it greatly
enhanced competitive interactions. These results pro-
vided mechanistic insights on how the groundwater
microbial communities respond to environmental
perturbations.

One of the biggest advantages of network modelling is
to simplify the most complicated relationships among
species into one integrated net system (Bascompte,
2007). The interactions of microbial species could be
mutualism, competition, predation, parasitism, commen-
salism and amensalism (Faust and Raes, 2012);
however, all of these interactions are extremely hard to
be observed in natural conditions. Therefore, multiple
network approaches were developed to infer the interac-
tions of species simply based on their co-occurrence
(positive) or mutual-exclusion (negative) patterns. In the
constructed network, a positive relationship is most likely
due to the mutualism or commensalism, while a negative
relationship may result from competition, predation,
amensalism and so on (Faust and Raes, 2012). But it is
also possible that multiple species might interact with
each other indirectly via an external environmental driver.
Here, we regarded most of negative relationships in our
networks as competitions rather than predations because
of two reasons. First, our current networks interpreted the
relationships only among bacterial species. The typical
predator–prey relationships in microbiology were ciliates–
bacteria and bacteriophages–bacteria (Pernthaler, 2005),
but very few of bacteria–bacteria predations were
observed naturally and experimentally (Varon and Zeigler,
1978). Second, our experiment was implemented by pro-
viding additional nutrients to natural groundwater system,
and thus we expected most negative relationships result
from direct food competitions or indirect incompatible
niche rather than their direct predations.

Various approaches have been developed and used
to examine microbial co-occurrence networks by using
both microarray and high-throughput sequencing (HTS)
metagenomics technologies (Reshef et al., 2011; Deng
et al., 2012a; Faust and Raes, 2012; Faust et al., 2012;
Friedman and Alm, 2012; Xia et al., 2013; Kurtz et al.,
2015). Except technical differences (Zhou et al., 2015),
the data generated by these technologies are substan-
tially different. The raw microarray data are obtained from
signal intensities of scanned images, resulting in quanti-
tative, continuous values. Usually, these raw signal inten-
sities are also log-transformed and normalized by multiple

steps, including both internal and external standards (Li
et al., 2014), and the final normalized signal intensities
typically follow the normal distribution (Hoyle et al., 2002).
Therefore, Pearson correlations performed fairly well in
network inferences of microarray data (Luo et al., 2007;
Zhou et al., 2010; Deng et al., 2012a), and it is appropri-
ate to use it in our current study. However, HTS data, such
as 16S rRNA gene amplicon sequences, are usually
sparse and discrete with large numbers of zeros and
positive integers. After transformed into relative fractions,
these data are neither independent nor normally distrib-
uted. So the improved algorithms based on sparse
data could be more appropriate than Pearson relevant
approaches in network inferences for HTS datasets
(Friedman and Alm, 2012; Kurtz et al., 2015).

In this study, a modified RMT-based approach via incor-
porating time-lagging information was developed based
on time-series data. Our results showed that the modified
RMT-based network approach is effective in discerning
the network interactions during the succession of the
groundwater microbial communities in response to EVO
amendment. Obtaining directional information for relevant
networks is generally very difficult. Therefore, most of
the current networks are non-directional. By considering
time-lag information, we are able to assign directions to
the constructed network (Fig. 2). Based on time-series
datasets, not only ordinary associations but also other
potentially time-delayed associations can be inferred
since the response of one organism to the change in
another organism may exist in time lags (Xia et al., 2011).
These time-lagging associations could be expressed as
directional connections where the change of one organ-
ism leads to a change in another organism in a temporal
order. As a result, the network can be transformed from
undirected into directed network. The constructed direc-
tional networks provide more directions for further experi-
mental testing and validation (Steele et al., 2011; Chow
et al., 2014).

Interestingly, consistent with the increase of functional
gene richness and diversity as defined by functional
probes at the taxonomic resolution of strain and/or
species (Zhou et al., 2014; Zhang et al., 2015), microbial
network interactions were stimulated by EVO injection,
but the overall phylogenetic diversity as defined by
pyrosequencing of the V4 region at the taxonomic reso-
lution of genus or higher decreased after EVO injection
(Gihring et al., 2011), which was different from previous
observations that the overall phylogenetic diversity was
stimulated by ethanol amendments (Cardenas et al.,
2008; Hwang et al., 2009). Apparently, EVO injection
dramatically stimulated a narrow group of bacterial taxa,
especially SRB for sulfate reduction. Intuitively, addi-
tional carbon sources, especially compounded nutrients
such as EVO which is a mixture of vegetable oil,
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surfactants, yeast extract and (NH4)3PO4, would stimu-
late the growth of broader groups of microorganisms.
Thus, the overall phylogenetic richness and diversity of
the microbial communities as a whole are expected to
increase after EVO injection. However, it did not hold
true in this study. One likely interpretation for the
decrease of the overall phylogenetic diversity is that the
rapid growth of certain directly stimulated microorgan-
isms (e.g. SRB) would restrain the growth of other broad
distantly related microorganisms due to competitive
interactions (i.e. negative associations). This is sup-
ported by network results revealing a lot of negative
interactions, which were much higher than our previous
observations with soils, sediments and other groundwa-
ter samples (Zhou et al., 2010; 2011; Deng et al.,
2012a). In particular, the two module hub microorgan-
isms, SRB 46307850 and 88062432, showed higher
abundance after EVO injection (Fig. 2B) with all negative
interactions to its neighbours (Fig. 2A). In addition, hub
organism 88062432 had 81% (44/54) of directional
neighbours (Fig. 3B). Among them, the eight neighbour
microorganisms with C cycling genes were
all negatively linked. These results indicated that this
network hub SRB restrained the growth of its neighbour-
ing organisms. Collectively, all of the above network
results suggested the competitions among microbial
species were stimulated by EVO injection, and the
stimulated microorganisms, especially SRB, restrained
the growth of other broad distantly related microbial
species, resulting in the decline of phylogenetic richness
and diversity of the entire microbial community.

The dominant species were often regarded as function-
ally important species in a community (Walker et al.,
1999; Loreau et al., 2001; Smith and Knapp, 2003). Espe-
cially in macro-ecology, dominant taxa were thought to
be more functionally important than other taxa (Walker
et al., 1999). In HTS studies, abundant taxa and their
distributions solicited even more attentions in both human
microbiomes (Huttenhower et al., 2012) and environmen-
tal microbiomes (Nealson and Venter, 2007; DeLong,
2009) since the dominant species in a habitat could con-
tribute more to ecosystem function or performance for a
long run (Walker et al., 1999). However, when a sudden
perturbation occurred, dominant and rare species might
temporally ‘switch’ their positions to cope with the pertur-
bation (Walker et al., 1999). Here, seven hub microorgan-
isms have been identified from the entire time-series
fMEN, but none of them were the top 50 most abundant
species. The most abundant hub microorganism,
218751178, was at the 55th position. Although they were
not the most abundant species in this groundwater micro-
bial community, they could play central roles in this short-
term period in response to EVO amendment for U
bioremediation.

Although the fMENs across different time points had the
general topological features of scale-free, small-world and
modular architecture as many microbial interaction net-
works, the properties were dynamically changed during
the process of U bioremediation (Table 1 and Fig. S9),
which could have important implications for the stability of
microbial ecosystems (Barabasi and Oltvai, 2004; Zhou
et al., 2010). As indicated by the changes of avgCC and
HD of the whole fMENs, the networks were greatly altered
from fairly simple at the initial stage (Day 0) to more
complex until Day 80 after EVO injection. When the per-
turbation gradually vanished, the network structure
became simpler again. This result was consistent with our
previous studies (Zhou et al., 2010; 2011) showing that
elevated atmospheric CO2 would increase the interactions
among microbial species, although the richness and
diversity were slightly decreased (Deng et al., 2012b).
These experimental results were also in accordance
with our general notion that nutrient input may stimulate
microbial interactions as well (Zhou et al., 2010; 2011).
However, we also noticed the final fMEN on Day 269 was
significantly different from that on Day 0 (Fig. S9) in terms
of avgCC and HD, suggesting the EVO amendment fun-
damentally altered the stability of the groundwater micro-
bial communities as our previous results showed (Zhou
et al., 2010; 2011).

In summary, a new RMT-based directional network
approach was used to discern network association
during the succession of the groundwater microbial com-
munities in response to EVO amendment for uranium
bioremediation. Our results showed that the most intense
competition among microbial populations occurred imme-
diately following EVO injection. This was reflected by
EVO-stimulated microorganisms, especially SRB that
restricted the growth of other species, resulting in the
decline of richness and diversity of groundwater microbial
communities. Our analyses also identified seven potential
keystone functional microorganisms, and suggested they
may play important roles in U bioremediation even if they
were not the most abundant species in the community.
Overall, this study offers novel insights and new quantifi-
able interaction evidence that increases our understand-
ing of the dynamics of microorganisms during the
succession of groundwater microbial communities in
response to EVO injection.

Experimental procedures

The following is the summary of methods in this study. More
details are provided in Appendix S1.

Site description and sampling

A long-term field-scale experiment for U bioremediation with
EVO amendment was performed at the U.S. Department of
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Energy’s Oak Ridge Integrated Field Research Challenge
study site, Oak Ridge, TN. A total of 3400 litters of EVO
suspension containing 60% (w/w) vegetable oil were injected
into three injection wells on 9 February 2009. Groundwater
samples were collected from one upstream control well and
seven downstream monitor wells at different time points: −28
(labelled as 0 for convenience), 4, 17, 31, 80, 140 and 269
days (Gihring et al., 2011). According to previous groundwa-
ter flow experiment and measured environmental variables,
the seven monitor wells were spatially adjacent, and their
microbial communities were synchronously stimulated by the
added vegetable oil but not identical (Zhou et al., 2014;
Zhang et al., 2015). These wells were treated as biological
replicates for network inferences.

GeoChip data preprocessing for network analysis

GeoChip-based metagenomic technology was used for dis-
secting microbial community functional structure as previ-
ously described (He et al., 2007; 2010b; Zhou et al., 2012). In
the present study, except two missing samples, a total of 54
samples were analysed with GeoChip (Zhang et al., 2015). In
order to reconstruct the organism-oriented network with func-
tional traits, each detected microorganism was explicitly
linked to one of the ecological functions of carbon, nitrogen,
phosphorus, sulfur cycling, metal resistance, organic reme-
diation, antibiotic resistance and other categories. The
assignment of ecological functions to microbial taxa was
performed according to the function of detected genes and
existing knowledge from the literature (Fig. S2). For the
microorganism with only a single detected gene, its function
was assigned by the category that the detected gene
belonged to (Fig. S2, Step 1). If multiple genes were detected
but all of them were derived from same functional category,
its function was assigned by this category and the mean
value of these genes was used (Fig. S2, Step 2). For the
microorganism with multiple genes in various functional cat-
egories, the most relevant function was assigned according
to its major function or original habitat based on literature
information. If multiple functional genes were detected in a
single functional category, the mean value was taken from the
normalized signals of these genes (Fig. S2, Step 3). Finally, if
there was no literature information showing the function of a
microorganism, the micro-organism was assigned to the cat-
egory with the maximum number of detected genes, and the
mean value was calculated from this category (Fig. S2, Step
4). Through this procedure, each microorganism was
assigned a representative ecological function, and only a
single vector across a set of samples was retained.

The fMEN construction with regular
RMT-based approach

The network generated from functional genes of microbial
community was defined as functional molecular ecological
network (fMEN) (Deng et al., 2012a). In this study, fMEN for
each time point was constructed by regular RMT-based
network inference approach across seven monitor wells (Luo
et al., 2007; Zhou et al., 2010; 2011; Deng et al., 2012a).
First, a symmetric correlation matrix was calculated at each
sampling time point. The correlation between each of the two

detected microorganisms was measured by Pearson corre-
lation coefficient (r value). The correlation matrix was con-
verted into the similarity matrix by taking the absolute values
(Horvath and Dong, 2008). Thereafter, a series of thresholds
from 0.30 to 1.00 with 0.01 intervals were applied to the
matrix, and only the similarity values above certain threshold
were kept for calculating matrix eigenvalues. The finest
threshold was chosen when the nearest neighbour spacing
distribution (NNSD) of eigenvalues followed Poisson distribu-
tion, which represents specific and non-random properties of
complex systems (Luo et al., 2007; Deng et al., 2012a). In
addition, in order to compare network topologies under the
same condition, all fMENs of different time points were gen-
erated with a uniform threshold that was determined by two
criteria: (i) all the NNSD of eigenvalues of the correlation
matrices under this threshold still followed the Poisson distri-
bution; and (ii) the threshold should be as low as possible.

The fMEN construction with a time-lagging
RMT-based approach

For the entire network across all time points, we have made
some modifications on correlation calculation in RMT-based
approach. Because one microbial species may have a
delayed response to the other species, we allowed one time
point shifted when r value was calculated between two organ-
isms. First, one r value was calculated across all 54 samples
in an order without time lagging (Fig. S3A). Then two r values
for time lagging were calculated by shifting the values to the
previous and next time point within each well. If the absolute
value of any time lagging r value was higher than the normal
r value (Fig. S3B and C), this time-lagging r value was
recorded as the similarity between these two populations, and
meanwhile the direction was assigned according to the order
of the maximum r value. If a maximum r value was derived
from a regular correlation, there was no direction assigned
(Fig. S3A). If the r value obtained from lagged correlation is
greater than the regular one, the arrow of direction is assigned
from the microorganism that appeared earlier to the one that
appeared later (Fig. S3B and C). The new modified RMT-
based network inference method for time-series experiments
has been integrated into our network online analysis pipeline
at http://ieg2.ou.edu/MENA, which is openly accessible world-
wide. All other network topology characterization, module
detection, module eigengene analysis, keystone node identi-
fication and the association of network topology with gene
significance were described in Appendix S1.
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Fig. S1. The concentrations of uranium and sulfate in
groundwater samples across different time points. The final
sampling points have been marked in red. Both of U and
sulfate were dramatically dropped within 31 days after EVO
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injection, and then gradually resumed within 269 days. The
final U concentrations were declined after bioremediation
procedure.
Fig. S2. The steps for function assignment of each GeoChip
detected microorganism. The percentage of microorganisms
assigned in each step was signified in red.
Fig. S3. The modified step for Pearson correlation coeffi-
cient (r value) calculation for time-series dataset. The
maximal r value from three situations was retained for follow-
ing RMT-based modelling, and meanwhile the directions
have been assigned from backward organism pointing to the
forward one. (A) The maximal r value is derived from the
normal unlagged order. (B) The maximal r value is derived
from the forward lagging. (C) The maximal r value is derived
from the backward lagging. In each panel, the above curve
figure demonstrated the successional changes of two organ-
isms; the middle colorful block figure showed the paired rule
of all values in seven replicate wells across seven time points
when Pearson correlation was calculated, and the bottom
similarity values showed the way to assign direction.
Fig. S4. Modular organization of the fMEN in groundwater.
The colours of the nodes indicate different functional catego-
ries. Clear modular architecture was observed in this fMEN.
Each node signifies a microorganism that carried out certain
ecological function detected by GeoChip. A blue line indicates
a positive interaction between two individual nodes, while a
red line indicates a negative interaction. The numbers indi-
cate different modules determined by the simulated anneal-
ing approach. All data showed that the fMEN with time series
has a clear modular architecture.
Fig. S5. Eigengene network analysis on all modules of
entire fMEN except Module 2. For each figure from I to VIII:
(A) Heat map of the standardized relative abundance (SRA)
of functional microorganisms across different samples. Rows
correspond to individual organisms in the module, whereas
columns are the samples. Red corresponds to the OTUs
whose SRAs are 0s, and green signifies whose SRAs are 0.
(B) The corresponding eigengene (y axis) across the samples
(x axis). The parameter indicates the percentage of the total
variance explained by the eigengene. (C) Five nodes of
highest module membership values in this module. The

values in parentheses are module memberships. The module
membership values were used to identify the nodes that
could be well represented by corresponding module
eigengene. The y axis is SRAs and the x axis is individual
samples. (D) Module visualization showing the interactions
among different nodes within the module. The different
colours of nodes represent different functional groups.
Fig. S6. The correlations and heat map to show the relation-
ships among module eigengenes. The right part is the hier-
archical clustering based on the Pearson correlations among
module eigengenes, and the below heat map shows the
coefficient values (r). Red colour means higher correlation,
whereas green colour signified lower correlation.
Fig. S7. ZP-plot showing distribution of microorganisms
based on their module-based topological roles. Each dot
represents a microorganism in the dataset. The topological
role of each node was determined according to the scatter
plot of within-module connectivity (Z) and among-module
connectivity (P).
Fig. S8. The network connections of (A) hub microorganism
218751178 (uncultured bacterium) and (B) hub microorgan-
ism 92109658 (Nitrobacter hamburgensis) in individual
fMENs for all of the time points.
Fig. S9. (A) Functional molecular ecological networks for
individual time points from Day 0 to Day 269. (B) The biodi-
versity value (Shannon index) of the community in all time
points and the corresponding average connectivity, harmonic
geodesic distance and average clustering coefficient from
network topologies. Since the scale of clustering coefficient is
different with other variables, the values were marked in the
dots directly.
Table S1. The identified edges in the entire network by using
RMT network inference approach.
Table S2. The Pearson correlation between identified nodes
with all available environmental variables. The sheet ‘r
values’ includes all Pearson correlation coefficient between
nodes and environmental variables. The sheet ‘P values’
includes all significance, and the P values less than 0.05
were marked in red.
Appendix S1. Supplemental materials and methods.
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