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Abstract

Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it

is unknown whether similar variation occurs across pastoral agricultural systems. We exam-

ined soil microbial community properties known to be associated with disease suppression

across 50 pastoral fields varying in management intensity. The composition and abundance

of the disease-suppressive community were assessed from both taxonomic and functional

perspectives. Pseudomonas bacteria were selected as a general taxonomic indicator of dis-

ease suppressive potential, while genes associated with the biosynthesis of a suite of sec-

ondary metabolites provided functional markers (GeoChip 5.0 microarray analysis). The

composition of both the Pseudomonas communities and disease suppressive functional

genes were responsive to land use. Underlying soil properties explained 37% of the varia-

tion in Pseudomonas community structure and up to 61% of the variation in the abundance

of disease suppressive functional genes. Notably, measures of soil organic matter quality,

C:P ratio, and aromaticity of the dissolved organic matter content (carbon recalcitrance),

influenced both the taxonomic and functional disease suppressive potential of the pasture

soils. Our results suggest that key components of the soil microbial community may be man-

aged on-farm to enhance disease suppression and plant productivity.

Introduction

Agricultural grasslands are an extensive form of land use and are a key resource in terms of

biodiversity and ecosystems services [1]. As global demand for livestock production (food and

fiber) increases, pastoral agriculture is undergoing intensification. This is driven by increased
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inputs of fertilizers and water, alteration of the botanical composition, and shifts in grazing

management. Collectively, these lead to new abiotic and biotic environments within which

pasture diseases may develop [2].

Diverse and dynamic soil-borne pathogen complexes develop in pastoral agricultural sys-

tems [2]. These constrain potential primary productivity and reduce the efficiency (plant utili-

zation per unit growth) of water and nutrient utilization [3]. Due to the complexity of disease

symptoms, and their typical manifestation below-ground, yield losses directly attributable to

soil-borne pathogens in pastures are often unrecognized and greatly underestimated. Thus,

across agricultural systems, soil-borne diseases remain a costly yet intractable management

challenge [4].

In disease suppressive soils, consortia of microbial taxa protect susceptible plant hosts from

disease caused by soil-borne pathogens [5–9]. This phenomenon is driven either by the com-

petitive activity of the total soil microbiota (general suppression), or the antagonistic potential

of an individual or specific group of microorganisms (specific suppression; [10]).

Management of the soil microbial community towards inducing or enhancing disease sup-

pression presents an emerging, and potentially more enduring, approach to disease control in

agricultural systems [11]. Managing or ‘engineering’ the soil microbiome in this way may

prove to be particularly important in pastoral grasslands where the control of diverse patho-

gens is complicated by multi-plant-multi-pathogen interactions [2, 12]. To exploit the natural

processes that lead to enhanced disease suppression in pastures, and to support farmers in

managing pastoral systems towards a more suppressive state, it is important to develop under-

standing of the occurrence of suppressive microbiota in the field and how these vary spatially,

temporally, and with farm management practices.

Members of a diverse range of bacterial genera have been identified as ‘disease suppressive

bacteria’. These include Agrobacterium, Arthrobacter, Azotobacter, Bacillus, Burkholderia, Colli-
monas, Pantoea, Pseudomonas, Serratia, Stenotrophomonas , and Streptomyces spp. [13]. Of

these, Pseudomonas spp. have widely been employed as model organisms for the investigation

of biocontrol mechanisms [14], as their role in disease suppression has been consistently and

independently established across studies [5, 6].

This study surveyed the impacts of land use, biogeography, environment, and soil type on

the composition and abundance of the microbial community in pastoral soils. The community

was examined with a specific focus on both taxonomic and functional characteristics related to

putative disease suppressive potential. Phylogenetic community analyses targeted Pseudomo-
nas spp. as a general taxonomic indicator of disease suppressive potential. There is increasing

evidence that the bacterial community and specific taxa or functional groups within this are

differentially influenced by alterations in soil properties that result from varying farm manage-

ment practices in both arable (for example, [15]) and grassland (for example, [16]) systems. As

such, assessments of the total bacterial community were conducted concomitantly to enable

findings associated with Pseudomonas to be interpretable as either ‘specific’ to these taxa, or

‘general’ as part of changes in the wider bacterial community. Phylogenetic community analy-

ses was coupled with functional gene microarray analysis (GeoChip 5.0) targeting functional

genes putatively linked with suppressive activity: nutrient competition (siderophore produc-

tion; [17]), hyperparasitism (fungal cell wall degradation; [18, 19]), and antibiosis (secondary

metabolite biosynthesis; [13]). While this ecologically based study did not aim to define asso-

ciative links between soil microbial communities and plant disease incidence, a range of soil

properties were assessed to provide fundamental understanding of how Pseudomonas commu-

nities, and functional genes putatively associated with disease suppression are being signifi-

cantly modified in pastoral ecosystems.

Microbial community structure and function in pasture soil
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We hypothesised that: (1) the Pseudomonas community structure would be under different

selective pressure compared with the wider bacterial community; (2) the abundance of puta-

tive disease suppressive functional genes would be lower in soils used for intensive dairy pro-

duction, compared with lower input pastoral soils (e.g. those used for expansive sheep

grazing); and (3) variables associated with changes in the abundance of functional genes would

be similar to those associated with the Pseudomonas community, but dissimilar to those associ-

ated with the total bacterial community.

Materials and methods

Soil sampling, physicochemical properties, and DNA extraction

Soil samples were collected from across the North and South Islands of New Zealand between

November 2011 and January 2012, as part of the ‘New Zealand 50 Pastures Project’ described

by Wakelin et al. [20]. Briefly, a broad survey of 50 New Zealand pasture soils was conducted

covering 10 geographical regions and 11 of New Zealand’s major soil types (sensu New Zealand

soil orders as defined by Hewitt [21]). Soils were sampled with full permission from the private

land-owners for each site. No samples were collected without permission, nor from public

conservation land.

From each of the 50 pasture sites, a single soil sample was collected. The aim of this work

was not to determine variation within a field, farm, or catchment, but rather to assess changes

across wider geographical ranges and with underlying soil properties. As such, the microbial

community composition was compared within the soil type, nutrient status, and environmen-

tal properties associated with each individual site of collection, and comparisons made over

the 50 pastures.

Approximately 2 kg of soil was collected at each site from a single sampling point, to a

depth of approximately 15 cm [20], and stored at 4˚C. Within 5 days of collection, DNA was

extracted from 0.25 g of each of the 50 soils, in triplicate, using the PowerSoil DNA extraction

kit (MoBio Inc, USA). Triplicate samples were pooled to increase total quantity of DNA avail-

able for analysis. The DNA concentration in each sample was quantified by spectrophotometry

(ND-1000; ThermoFisher Inc).

For each soil, a comprehensive set of edaphic and environmental properties is available

[20]. In addition, hot water extractable carbon (HWEC) and the aromatic content of the dis-

solved organic carbon (DOC) fraction were empirically measured. HWEC was extracted from

3 g (oven dry-weight equivalent) of field moist soil using the two-step process described by

Ghani et al. [22]. HWEC solutions were filtered to 0.45 μm and analyzed by a Shimadzu 5000A

TOC analyzer. Aliquots of the HWEC fraction were normalized by total dissolved organic car-

bon (DOC = total carbon–inorganic carbon) to a final concentration of 45 μg/ml before the

aromatic component of the carbon (DOC aromatic content) was quantified by UV absorbance

at 254 nm (FLUOstar Omega microplate reader, BMG Labtech; [23]). The complete abiotic

dataset used for analysis in this study is given in S1 Table.

Analysis of the data utilised two broad approaches. The first utilised comparison of soil

microbial communities among two groups of pastures: those used to support cow grazing for

dairy production (pasture group 1 = Dairy), and ‘other’ grazing systems used to support sheep

and/or beef grazing (pasture group 2 = Other). At the time of sampling, soils were divided into

the two landuse groups, which are synonymous with intensification of grazing systems. In

New Zealand’s farming systems, dairy-based grazing is typically highly intensified with inputs

of nutrients, and often irrigation, to support continuous pasture production. For example,

dairy farms in New Zealand typically use approximately 110 kg ha-1 of N fertiliser annually,

compared with just 10 kg ha-1 N on sheep or beef farms [24]. The underlying differences
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between dairy and ‘other’ grazed systems, reflecting high or low system intensification, are

reflected in a range of nutrients across the two groups [20]. For example, the concentrations of

phosphorus, nitrogen and Sulphur (elements associated with fertilizer inputs) are significantly

higher in dairy-based systems [20]. This grouped-based analysis aided in testing of H2. The

second analysis approach assessed relationships between the soil microbial communities (phy-

logenetic and functional) and abiotic properties across the entire dataset. Here, it was not

expected that variables associated with soil pedology, such as bulk density or Al concentra-

tions, nor environmental variables, such as annual temperature, would be related to landuse or

intensification. Analysis across the dataset allowed for testing of potential expression of associ-

ations between microbial communities and these variables. Hereon in, we classify soils to high

or low farming intensity (dairy or other grazing systems), but use underlying nutrient levels as

a measure of the continuum of intensification.

Community (DNA) fingerprinting

Total bacteria: Terminal restriction fragment length polymorphism (TRFLP). For

bacterial community TRFLP analysis, primers 8F and 1520R ([25]; S2 Table) were fluores-

cently labelled at the 5´ and 3’ ends with FAM and HEX, respectively [16]. Each 25 μl reac-

tion mixture contained 400 nM of each primer, 1 × Bioline MyHSTaq reaction buffer, 1 U

MyHSTaq DNA Polymerase (BioLine Pty Ltd.), and 2 μl of template DNA (1:100 dilution of

10 ng/μl DNA). Thermocycling conditions are given in S2 Table. Reactions were validated

by agarose gel electrophoresis. PCR products were digested (separate reactions), with AluI

and CfoI (Promega) to generate fluor-labelled terminal restriction fragments (TRFs) of

varying size. Pre- and post-digestion PCR products were purified using AxyPrep Mag PCR

paramagnetic bead solution and 96 well magnetic plates, according to the manufacturer’s

protocol.

Restriction fragments were separated by capillary electrophoresis (ABI 3730 DNA Ana-

lyzer) at the Australian Genome Research Facility (Adelaide, Australia). The lengths (base

pairs) of individual TRFs were calculated by comparison to the internal size standard

GS500LIZ (Applied Biosystems). Electropherograms were imported into Peak Scanner

(Applied Biosystems), visually inspected for sizing quality and peak areas (in base pairs) deter-

mined for TRFs 50–500 bp in length. The online tool T-Rex [26] was then used to distinguish

true peaks from background fluorescence [27]. The custom R script ‘interactive binner’ [28]

provided bacterial community fingerprints by binning peaks to operational taxonomic units

(OTUs). Each peak was inferred to be an OTU and the height of each peak used as a measure

of the relative abundance of each OTU.

Pseudomonas: Denaturing gradient gel electrophoresis (DGGE). A nested PCR

approach was taken for the amplification of Pseudomonas-specific 16S rRNA gene fragments.

Initially, Pseudomonas-specific PCR was conducted using primers F311Ps and R1459Ps ([29];

S2 Table). The presence of amplicons of the expected size was validated by agarose gel electro-

phoresis. Resultant PCR products were diluted 1/10 and used as template DNA for the second,

general bacterial amplification using DGGE primers F968-GC and R1378 ([30]; S2 Table).

Each 25 μl reaction mixture contained 200 nM of each primer, 1 × Bioline MyTaq reaction

buffer, 1 U (Pseudomonas) or 0.625 U (Bacteria) MyHSTaq DNA Polymerase (BioLine Pty

Ltd.), and 2 μl (20 ng) of template DNA. Thermocycling conditions (S2 Table) and DGGE

methodology as described by Wakelin et al. [31]. The 50 PCR products were analyzed in a ran-

domized order across three DGGE gels. Band location and intensity data were collected using

TotalLab TL120 software (Nonlinear Dynamics, UK). Each band was inferred to be an OTU

and band intensity data considered a measure of the abundance of each OTU.

Microbial community structure and function in pasture soil
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Utilising a community approach, the primary focus of this study was to investigate relation-

ships between indigenous bacterial and Pseudomonas communities, and edaphic, environmen-

tal, and farm-management factors. DNA fingerprinting techniques provide a useful

exploratory approach to identify ecological patterns and, although affording lower taxonomic

resolution than high throughput sequencing, have a similar capacity to correlate abiotic vari-

ables with separation in microbial community structure (β-diversity) [32, 33].

Quantitative PCR (qPCR)

Quantitative PCR was used to assess the size of the bacterial and Pseudomonas communities in

each DNA sample. Assays were conducted on a Rotor-Gene 6000 detection system (Qiagen).

Bacteria-specific qPCR used primers Eub338 and Eub518 ([34]; S2 Table) with SYBR-Green

detection. Each 25 μl reaction mixture contained 1 × SensiMix SYBR no-Rox master mix (Bio-

Line Pty Ltd.), 500 nM of each primer, and 2 μl (20 ng) of template DNA. TaqMan-based

qPCR was used to quantify Pseudomonas-specific 16S rRNA gene fragments. Primers Pse435F

and Pse686R were used in combination with the dual-labelled hydrolysis probe Pse449 ([35];

S2 Table). Each 25 μl reaction mixture contained 1 × SensiMix II Probe master mix (BioLine

Pty Ltd.), 300 nM of each primer, 150 nM probe and 2 μl (20 ng) template DNA. Thermocy-

cling conditions for both reactions are detailed in S2 Table. Assay specificities were validated

by melt curve analysis over a 50–95˚C temperature gradient (SYBR-Green) or agarose gel elec-

trophoresis (TaqMan).

The copy numbers of each gene were quantified against a standard curve that related stan-

dards of defined DNA concentration with threshold cycle (CT) values. Standard curves were

generated from 10-fold serial dilutions of plasmid DNA containing the gene fragments of

interest with five standard concentrations run in triplicate per assay. The target gene regions

were amplified from DNA extracted from either soil or a reference strain (Pseudomonas fluor-
escens F113; AgResearch culture collection no. 1911) and PCR products cloned using the

TOPO-TA cloning vector (Invitrogen). Samples were analyzed in triplicate across three

machine runs. To account for run-to-run variation, an inter-run calibrator [36] was included

in triplicate per run and standard curves adjusted accordingly.

Copy numbers were expressed per gram soil and the relative abundance of Pseudomonas
spp. was calculated as the ratio between the group-specific qPCR assay and the bacteria-spe-

cific qPCR assay. The log10 values of bacteria copy numbers and Pseudomonas:bacteria ratio

were used for statistical analysis. The relationship between standard concentrations and CT

values was linear for both qPCR assays across machine runs (R2>0.99) and amplification effi-

ciency was consistently above 93%.

GeoChip analysis of functional genes

The composition and abundance of functional genes were determined using the functional

gene microarray, GeoChip 5.0 [37]. This is the first generation of the GeoChip to contain a

suite of probes for the detection of secondary metabolism genes putatively associated with soil

disease suppression. These include: antibiotic biosynthesis genes commonly associated with

biocontrol Pseudomonads, phlD (2,4-diacetylphloroglucinol), phzF (phenazine), and prnD
(pyrolnitrin); antibiotic biosynthesis genes of non-Pseudomonas bacteria, such as bacA (bacily-

sin) and strR (streptomycin); and genes required for the biosynthesis of the volatile compound

hydrogen cyanide (hcnB). Alongside gene sets associated with lytic enzyme and siderophore

production, these constitute a subset of 2002 probes (from the 167,044 on the array) that pro-

vide coverage of genes with a putative role in the suppression of soil-borne plant pathogens

(S3 Table). The selected genes were characterized into one of three categories: (i) carbon
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degradation (chitinase and acetylglucosaminidase); (ii) nutrient competition (bacterial, fungal

and archaeal siderophore production); and (iii) secondary metabolism (antibiotic biosynthesis

genes).

Sample DNA (500 ng) was labelled by random priming with the fluorescent dye cyanine 3

and hybridized with the array as previously described ([37]; Institute for Environmental Geno-

mics, University of Oklahoma). Raw data was pre-processed using an established microarray

analysis pipeline (http://ieg.ou.edu/microarray/) as described by He et al. [38]. Poor-quality

spots (signal-noise ratio < 2.0) were removed from the analysis and the signal intensity of each

spot was normalized (divided by the total intensity of the microarray and multiplied by the

average signal intensity of the microarray), prior to log-transformation of the data.

The gene categories defined above were used collectively (All Genes) and individually to

assess the influence of soil properties on functional gene composition among soils (general

analysis approach described in [39]). To compare the abundance of individual genes among

soil samples, signal intensities were first standardized by the number of probes per gene (to

account for disproportionate numbers of probes) and expressed as per gram of soil. Based on

correlations among individual genes, 13 gene categories were defined for univariate analysis of

functional gene abundance. Chitinase and acetyl-glucosaminidase gene abundances were

highly correlated (>0.98), thus the carbon degradation gene category was retained in the data-

set. Similarly, bacterial, fungal and archaeal siderophore production gene abundances were

highly correlated (>0.94), thus the nutrient competition gene category was retained in the

dataset. Likewise, phzF (phenazine) and phzA (phenazine) were highly correlated (0.98), and

therefore phzF was retained in the dataset. The genes bacA (bacilysin), pabA (chlorampheni-

col), hcnB (cyanide), phlD (DAPG), lgrD (gramicidin), lmbA (lincomycin), prnD (pyrolnitrin),

strR (streptomycin), spaR (subtilin), and pcbC (β-lactam) gene abundances were not strongly

correlated and were therefore analyzed as individual genes. The array contained only one

probe for the pltC (pyoluteorin) and prnB (pyrolnitrin) genes; these were removed from the

analysis. GeoChip data (2002 probes) for the 50 soils sampled are available in S3 Table. Fur-

thermore, these data are archived in the NCBI GEO database, accession number GSE112489.

Statistical analysis

Biogeography of bacterial and Pseudomonas communities across New Zealand pastoral

soils. Relationships between geographic distance (km between sampling points) and soil

microbial community composition were tested across the 50 pasture sites spanning New Zea-

land (total distance ~ 1,300 km). The underlying hypothesis is that if local soil type and/or

environmental factors are associated with disease suppressive microbiota, then a link to geo-

graphical proximity would be evident in the dataset. However, if influences of management

practices (intensification) were dominant, these would override/obscure biogeographical

effects.

Pair-wise Euclidean distances between sampling points were calculated from the GPS coor-

dinates. Similarly, ecological ‘distances’ in microbial community assemblages among soils

were calculated using the Bray-Curtis method from biological TRFLP or DGGE OTU data

(standardised and square root-transformed; [40]). Simple distance-decay relationships were

tested among the geographic and biological distance matrices using non-parametric (Spear-

man’s; ρ) correlation with permutation (x 999) based generation of a null-distribution to

enable probability-based confidence (RELATE test; [41]).

Influence of land use and soil type on bacterial and Pseudomonas communities, and dis-

ease suppressive functional genes. Similarity in the composition of disease suppressive

genes between soils was calculated from the sub-set of GeoChip data using the Bray-Curtis

Microbial community structure and function in pasture soil
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method (as above). From the respective distance matrices (bacterial, Pseudomonas, and func-

tional genes), permutation-based multivariate analysis of variance (PERMANOVA; 999 per-

mutations; [42]) was used to partition variance in composition associated with land use by

comparing high (dairy) or low (other) farm system intensification/ landuse types, and soil type

(11 New Zealand soil orders; Fig 1). Potential influences of sample distribution across gels

(DGGE) on the structure of the Pseudomonas community were accounted for in the analysis;

these were not significant (PERMANOVA; P = 0.302). These analyses were performed in PER-

MANOVA/PRIMER7 using described methods (PRIMER-E Ltd., UK; [43, 44]).

Analyses of community size (microbial, qPCR, or functional gene, GeoChip abundance

data) were performed in Genstat for Windows (17th Edition). Residual maximum likelihood

(REML) analysis of linear mixed models tested for effects of land use and soil type (three New

Zealand soil orders; Fig 2). For these three soil orders (brown, recent, and pallic), sufficient

sampling replication exists to assess soil-type influences on abundance following a univariate

analysis approach.

Linking edaphic and environmental properties to the composition and abundance of

microbial communities and functional genes. To reduce the size of the edaphic and envi-

ronmental (abiotic) dataset, a correlation matrix was generated and all but one of a highly

Fig 1. Influence of soil type and land use on microbial community structure: metric MDS ordination plots of mean total bacterial (A and B) and

Pseudomonas (C and D) communities. The structures of the total bacterial and Pseudomonas communities were assessed based on the relative

abundance of terminal restriction fragments (TRFs) and denaturing gradient gel electrophoresis (DGGE) banding patterns, respectively. Mean

communities (individual points) for each land use and soil type were derived from 150 bootstrap averages. For land uses and soil types with sufficient

replication, 95% region estimates for the mean communities (clouds) represent the spread of the bootstrap averages. Points and/or 95% region estimates

in closer proximity represent groups that share increasing similarity in microbial community structure. Observations are statistically supported by

PERMANOVA testing of Bray-Curtis dissimilarity data (S4 Table). Underlying OTU data for T-RFLP and DGGE analysis is available in S5 and S6

Tables, respectively.

https://doi.org/10.1371/journal.pone.0196581.g001

Microbial community structure and function in pasture soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0196581 May 7, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0196581.g001
https://doi.org/10.1371/journal.pone.0196581


mutually correlated (>90%) set of variables were removed from the analysis. Skewed abiotic

variables were transformed to correct the distribution, and all abiotic variables were normal-

ized to obtain homogeneous variances [44]. The transformed and normalized dataset was

applied in both multi- and univariate analysis of the data.

BIOENV analysis (biota and/or environment matching; [45]) was used to find the highest

rank correlation (ρ) between the community assemblage data (Bray-Curtis Matrices) and the

associated soil and environmental variables (Euclidian Distance Matrix). The rank correlation

Fig 2. Influence of land use and soil type on (A) the abundance of the total bacterial community and (B) the relative abundance of the

Pseudomonas community (mean ± SEM). The size of the total bacterial and Pseudomonas communities were determined by quantitative PCR. The

effects of land use and soil type were formally tested by REML analysis (Genstat). Samples were characterized by land use as either high intensity ‘dairy’

systems or ‘other’, relatively lower intensity pasture systems, e.g. sheep and beef grazing systems.

https://doi.org/10.1371/journal.pone.0196581.g002
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(ρ) indicates the amount of variation in the assemblage data that can be explained by the

BIOENV-selected abiotic variables. BIOENV was optimized for four variables and P values

derived from non-parametric Mantel-type testing (99 permutations; BIO-ENV, PRIMER).

Step-wise regression analysis was used to select the five abiotic variables that collectively

explained the most variation in abundance data. ‘Total bacteria’, as determined by qPCR anal-

ysis in this study, was added to the abiotic variables for regression analysis of functional gene

abundances (GeoChip).

For all statistical analyses, P values were considered significant when�0.05 and marginally

significant when between 0.05 and 0.10.

Functional molecular ecological network (fMEN) analysis

To assess co-occurrence patterns, abundance data of individual functional genes (derived

from GeoChip hybridization intensity data) was used to generate separate correlation-based

networks for high (dairy) and low (other) intensity pasture systems (Fig 3). Nodes in the net-

work represent individual functional genes (labelled as such) and edges, or connections,

between nodes represent the strength of the correlation between nodes. Networks were derived

from Pearson correlation matrices and connection edges above the threshold of 0.9 are repre-

sented by bold lines, while connection edges between 0.8 and 0.9 are represented by fine lines.

The appropriate threshold was selected using the random matrix theory (RMT)-based network

approach [46] applied to the entire GeoChip dataset. Cytoscape 3.3.0 software was used to

visualize networks and network parameters average connectivity and density [46] were calcu-

lated to describe differences between network structures.

Results

Bacterial and Pseudomonas community structure and abundance

Soil bacterial community structure was assessed based on the relative abundance of terminal

restriction fragments (TRFs; total bacteria) and denaturing gradient gel electrophoresis

Fig 3. Network plots of disease suppressive functional gene abundance in (A) dairy (high intensity) and (B) other

(low intensity) pasture soil. Nodes represent each individual gene, rather than gene categories, with a putative role in

disease suppression. Edges (blue lines) correspond to associations between genes; bold lines reflect Pearson

correlations� 0.9, and fine lines correlations between 0.8 and 0.9. Sid_fun, Sid_arc and Sid_bac represent fungal,

archaeal and bacterial siderophore production genes, respectively. (C) Measures of average connectivity and density

were higher for other (low intensity) systems than for dairy (high intensity) systems.

https://doi.org/10.1371/journal.pone.0196581.g003
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(DGGE) banding patterns (Pseudomonas). Furthermore, the sizes of the bacterial and Pseudo-
monas communities were determined by qPCR analysis. Across the 50 soils, total bacterial 16S

rRNA gene abundance was 4.24 × 107 (± 3.78 × 105) per gram of soil, and the Pseudomonas
community represented less than 1% of this total bacterial community.

There was a distinct lack of association between geographic distance and either total bacte-

ria (P = 0.681) or Pseudomonas (P = 0.408) community structures. Furthermore, when the

analysis was constrained to a single soil type (e.g. within Brown soils) or within a land use sys-

tem (e.g. dairy), no biogeographical influences were present.

The results of PERMANOVA analyses that partitioned the influences of land use and soil

type on bacterial and Pseudomonas community composition showed that land use impacted

the structure of both the total bacterial (P = 0.035) and Pseudomonas communities (P = 0.084)

(S4 Table). However, microbial community composition had no relationship to soil type

(P>0.97). These influences were evident in the MDS ordination (Fig 1). Clear separation of

microbial community structures by land use was evident (Fig 1B and 1D), however there was

no partitioning of community similarities by soil type (Fig 1A and 1C). It is important to note

that a large proportion of the variation in community composition among samples could not

be explained by either land use or soil type (residual
p

CV; S4 Table).

As determined by REML analyses, land use had a significant effect on the size of the bacterial

community, with higher numbers of bacteria in soils under dairy pasture compared with those

under ‘other’ (lower intensity) pasture systems (Fig 2A). In contrast, the influence of land use

intensity on Pseudomonas relative abundance was not significant (Fig 2B). Soil type had no

effect on either the abundance of bacteria or relative abundance of Pseudomonas spp. (Fig 2).

Linking edaphic and environmental properties to bacterial and

Pseudomonas communities

The extent to which the variation in microbial community composition could be explained by

soil and environmental properties was determined by BIOENV analysis (Table 1). No correla-

tion between the total bacterial community structure and abiotic variables was evident when

the analysis was optimized for four variables. However, assessment of individual correlations

revealed that variation in pH (5.0–6.8) explained close to 20% of the variation in the structure

of the bacterial community (ρ = 0.195; P = 0.06).

Table 1. Edaphic and environmental properties influencing microbial community structure.

BIOENV Analysis Bacteria Pseudomonas
Spearman rank correlation (ρa) 26% 37.1%

Pb 0.542 0.059

Edaphic & environmental variables ρc Pb

Sodium 22% 0.03

C:P Ratio 15% 0.028

pH 10% 0.083

Rainfall 9% 0.122

aBIOENV analysis was used to find the highest rank correlation between the bacteria (TRFLP) or Pseudomonas (DGGE) community assemblage data and the associated

soil and environmental variables. Spearman rank correlations (ρ) indicate percentage variation accounted for by the selected variables. ρa was optimized for four edaphic

and environmental variables.
bP values were derived from permutation testing (× 999).
cFor Pseudomonas the correlation was significant and these variables are listed in order of decreasing individual correlations (ρb; RELATE-test).

https://doi.org/10.1371/journal.pone.0196581.t001
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In contrast, 37% of the variation in Pseudomonas community profiles between samples was

associated with variation in four soil and environmental properties (Table 1). Soil sodium con-

tent was associated with the greatest proportion of this variation (22%). The quality of soil

organic matter, rather than the quantity (i.e. carbon availability sensu C:P ratio), also had a sig-

nificant correlation (15%). Individual correlations of Pseudomonas community assemblage

data with C:N ratio (ρ = 0.131, P = 0.081) and DOC aromatic content (ρ = 0.121, P = 0.084)

supported this finding. The influence of pH on Pseudomonas spp. composition (10%) was sub-

stantially reduced in comparison to the total bacterial community (19.5%).

Although total bacterial abundance and Pseudomonas relative abundance were correlated

(P = 0.019), the variance accounted for by the regression was only 9.2% (data not shown). To

identify which abiotic variables influenced microbial community abundances, step-wise

regression analysis was performed (Table 2). With the exception of potassium (selected as the

third parameter in both models), the explanatory variables differed between the total bacterial

and Pseudomonas communities. Soil temperature and DOC aromatic content were the first

parameters selected to explain total bacterial and Pseudomonas relative abundance, respec-

tively (Table 2). Soil sodium content was the only variable to be negatively correlated with bac-

terial abundance. DOC aromatic content was positively associated with Pseudomonas relative

abundance (P = 0.003; Table 2). Individual linear regressions attributed 15.6% and 13.5% of

the variation in Pseudomonas relative abundance to DOC aromatic content and volume

weight, respectively.

Composition and abundance of disease suppressive functional genes

Multivariate analyses of three GeoChip gene categories (carbon degradation, nutrient compe-

tition, and secondary metabolism) showed no evidence of biogeographical separation (all P
values>0.114) or influence of soil type (P>0.27; Table 3) on functional gene composition.

Variation in land use, however, was found to be associated with each of the defined gene-cate-

gories (P<0.063), and there was support for a soil type × land use effect (P<0.097; Table 3).

The influence of land use was not associated with the environmental or physicochemical soil

properties measured in the study. For each of the gene categories, the correlation between

functional gene composition and the soil and environmental variables was weak (BIOENV

results; Table 3).

Table 2. Edaphic and environmental properties influencing microbial community abundance.

Bacteria abundance Pseudomonas relative abundance

Significance of regression (P) <0.001 0.007

R2 51.8% 30.3%

Regression model termsa Pb Slopec Pb Slopec

1st Soil temperature <0.001 0.085 DOC Aromatic Content 0.003 0.082

2nd Sodium 0.002 -0.142 Volume weightd 0.129 0.199

3rd Potassium <0.001 0.064 Potassium 0.119 0.136

4th Iron 0.045 0.061 Rainfall 0.16 0.132

5th Sulphate sulphur 0.067 0.050 Total Calcium 0.155 0.100

aStep-wise regression analysis selected the five variables that collectively explained the most variation in the community abundance (qPCR). Terms of the regression

model are listed in the order they were added to the model.
bP values were derived from accumulated analysis of variance.
cSlopes of individual regressions describe the relationship between abundance and variables in the regression model.
dVolume weight is an indicator of soil bulk density.

https://doi.org/10.1371/journal.pone.0196581.t002
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The abundances of 13 individual functional genes/gene categories (see materials and meth-

ods) were assessed by univariate analysis. There was no effect of land use or soil type on func-

tional gene abundance (REML; data not shown). To determine shared drivers of disease

suppressive gene abundance, step-wise regression models were generated for each of the

genes/gene categories (S7 Table). The five biotic and abiotic soil properties most commonly

included in individual regression models were fitted as a reduced linear model (Table 4).

Regressions with this reduced model were significant (P<0.05) for all but one of the suppres-

sive genes/gene categories, and explained between 17% and 61% of the variation in gene abun-

dances (Table 4).

The size of the total bacterial community, total carbon (representative of total carbon,

organic matter content, total nitrogen and total sulphur), DOC aromatic content, and extract-

able aluminum were associated with abundances of disease suppressive genes, with each of

Table 3. Influence of soil type, land use and abiotic properties on the composition of disease suppressive genes.

All Genes Carbon Degradation Nutrient Competition Secondary Metabolism

PERMANOVAa p
CVc Pd p

CV P
p

CV P
p

CV P

Soil Type 1.56 0.315 1.78 0.274 0.29 0.43 0.78 0.395

Land Use 4.25 0.049 4.48 0.056 3.57 0.063 3.52 0.051

Soil Type x Land Use 3.56 0.097 3.75 0.113 3.59 0.084 2.67 0.137

Residual 7.91 8.23 7.51 6.7

BIOENVb

Spearman Rank Correlation (ρ) 0.202 0.203 0.206 0.194

Pb 0.72 0.76 0.76 0.83

aPERMANOVA tested for effects of soil type and land use (‘dairy’ or ‘other’) on functional gene composition.
bBIOENV analysis was used to identify soil and environmental variables accounting for the variation (ρ) in functional gene composition.
cpCV is the square-root of the component of variation (Anderson et al. 2008),[43], which provides a measure of the size of effect for each component in the analysis.
dP values for both analyses were derived from permutation testing (x999; PERMANOVA and BIOENV, PRIMER).

https://doi.org/10.1371/journal.pone.0196581.t003

Table 4. The variation in disease suppressive gene abundance accounted for by a reduced linear model.

Disease suppressive genes

CDb bacA pabA hcnB phlD lgrD spaR pcbC lmbA phzF prnD strR NCc

P Value < .001 0.309 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 0.028 0.004 <0.001

% Variance accounted for by model (R2) 49.8 2.6 43.5 52.1 29.6 52 42.1 49.2 61 54.2 17 26.2 53.3

Reduced Fitted Modela:

Total bacteria 0.030 0.014 0.017 0.042 0.016 0.013 0.002 0.032 0.050 0.042 0.068 0.030 0.036

Total carbond 0.010 0.000 0.009 0.015 0.014 0.010 0.005 0.012 0.015 0.012 0.000 0.013 0.012

Extractable aluminium -0.013 -0.003 -0.005 -0.018 -0.008 -0.011 -0.007 -0.013 -0.021 -0.016 -0.023 -0.011 -0.015

DOC aromatic content -0.012 -0.007 -0.006 -0.011 -0.008 -0.008 -0.004 -0.012 -0.017 -0.014 -0.025 -0.015 -0.014

Soil moisture 0.009 0.003 0.004 0.010 0.005 0.010 0.004 0.011 0.021 0.013 0.003 0.013 0.012

aThe reduced linear model was derived from the five biotic and abiotic variables that most commonly occurred in step-wise regression models generated for the

abundance of 13 individual genes or gene categories. The reduced model was fitted by generalized linear model regression analysis. Numbers associated with each

variable and functional gene/gene category are the slopes of individual regressions and describe the relationship between a particular variable and the abundance of that

gene.
bCarbon degradation (CD).
cNutrient competition (NC).
dTotal carbon is representative of total carbon, organic matter content, total nitrogen and total sulphur (see materials and methods)

https://doi.org/10.1371/journal.pone.0196581.t004
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these variables included in eight or more of the 13 original regression models (S7 Table). In all

models, functional gene abundance increased with increasing bacterial abundance, total car-

bon and soil moisture, and decreased with increasing DOC aromatic content and extractable

aluminum (Table 4).

Based on functional gene abundance data, network analysis was used to assess associations

among disease suppressive genes from both dairy and other pasture systems (Fig 3). In the low

farming-intensity network, the abundance of three out of 17 functional genes had relatively

weak correlation (�0.9) with the other genes (Other; Fig 3B). Whereas, five of the 17 func-

tional genes did not correlate (�0.9) with the abundance of any other genes in the high inten-

sity network (Dairy; Fig 3A). Furthermore, differences in network structure between land uses

were observed; the network parameters connectivity and density were higher in the low inten-

sity (other) network than the high intensity (dairy) network (Fig 3C).

Discussion

Land use and soil chemical properties are key drivers of total bacteria and

Pseudomonas communities

Land use intensification was identified as a key factor associated with variation in the structure

of both total bacterial and Pseudomonas communities, and also the abundance of bacteria. Soil

properties that differed between land uses in these soils were primarily associated with fertil-

izer inputs (phosphorus, nitrogen and sulphur; [20]), and carbon recalcitrance (DOC aromatic

carbon; this study). Although these properties were associated with alteration of Pseudomonas
community composition and variation in bacterial abundance, they were not linked to varia-

tion in bacterial community structure.

In agreement with multiple observations across local, regional and continental scales [47–

49], variation in soil pH was the primary variable associated with bacterial community compo-

sition. Soil pH did not differ between land uses, and explained 20% of the variation in bacterial

community structure. As such, a large proportion of the remaining variation was unaccounted

for and likely attributable to factors not directly measured in our study, for example stocking

rate or the botanical composition of the pastures.

Pseudomonas bacteria were used as an indicator group for putative disease suppressive

potential in these pasture soils [5, 6]. The structure of the Pseudomonas communities in soils

varied with soil organic matter quality (C:P ratio; nutrient stoichiometry), a finding directly

supported by previous studies conducted under long-term, controlled, field-based manipula-

tion of P inputs [31]. In the current study, the C content in the soils was similar between land-

uses [20]; as such, variation in C:P ratio was most likely driven by higher mineral fertilizer

inputs in the high-input (dairy) systems. Similarly, the abundance of Pseudomonas bacteria

was correlated with the aromaticity of the dissolved organic carbon (DOC) content of the soil,

a finding supported by studies in which Pseudomonas communities were shown to be sensitive

to the soil DOC fraction under grass-clover leys [50]. These findings may have important

implications for the potential to manage populations of these bacteria through alteration of

soil organic matter quality. This may be achieved, for example, by managing the timing and

magnitude of fertilizer inputs, or through inputs of farm-yard manure or plant residue man-

agement [31, 51].

There was no influence of biogeographic (spatial) distance on the structure of the bacterial

community in these New Zealand pastoral soils. This finding is important as it indicates that

factors that vary on the scales studied, particularly environmental conditions or regional soil

types, are unlikely to be important, first-order drivers of the general soil microbial communi-

ties in managed pastoral ecosystems. These findings are in broad agreement with other studies
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of soil bacterial biogeography across landscapes spanning a similar range in latitude to our

study (~1300 km) [52].

The finding that total bacterial and Pseudomonas community size and composition did not

vary with soil type is in contrast to previous studies where significant influences of soil type on

microbial communities have been found in both bulk [53] and rhizosphere soil [54]. This may

reflect that while soils in this study were selected to represent a range of New Zealand soil

orders, they were all collected from under pastoral agriculture where soil properties had been

managed to optimize plant production. It is, therefore, not surprising that the inputs into these

systems, as reflected in soil chemistry, were of greater importance than soil pedogenesis in

structuring soil communities.

Collectively, these findings demonstrate that there are some common factors influencing

variation in both total bacterial and Pseudomonas communities (land use and specific soil

properties, such as pH), on this basis, H1 was rejected. However, factors associated with varia-

tion in Pseudomonas communities alone, notably soil organic matter quality, can be consid-

ered ‘specific’ to this taxa.

Land use intensification impacts on disease suppressive functional gene

composition and microbial community networks

Land use intensification was identified as a key factor influencing the composition of all puta-

tive disease suppressive functional gene categories. The impact of agricultural management on

functional gene composition was not driven through changes in the soil properties measured

in this study but as our study is the first to focus specifically on putative disease suppressive

functional genes using GeoChip, comparable studies that target a range of disease suppressive

genes are required to verify such findings across a broader range of land uses.

Ecological networks based on functional gene abundance data provide a means of visualiz-

ing interactions among members of the microbial community carrying these functional genes,

and how these interactions differ between farming systems [55]. The abundance of individual

genes did not differ significantly between land uses (H2 was rejected) but network analysis

revealed associations (co-variance) among these genes were affected by land use. Further, it is

interesting to note that the genes which fall outside of the�0.9 correlation threshold in both

networks are also those for which the explanatory model of soil properties was either insignifi-

cant or explained a relatively low proportion of the variation in abundance (Table 3).

The greater connectivity and density of the ‘other’ farming system network, in comparison

to that of the dairy farming systems, indicate that the structure of the network and interactions

among functional groups are more complex under lower intensity pasture. Increased complex-

ity of network structures may reflect stronger coupling or association of processes within the

soil community, potentially contributing to greater stability of function [56]. Network analysis

is an emergent procedure and provides a ‘conceptual framework’ that requires further experi-

mental validation [56]. However, the sensitivity of functional molecular ecological network

structure to variation in land use observed here was also revealed in response to varied land

cover (forest succession; [56]) and environmental change (elevated CO2; [55]). Collectively,

our results suggest that, in addition to impacting upon microbial community structure (Fig 1)

and functional composition (Table 3), land use also affected the associations among these

communities.

Shared drivers of disease suppressive functional gene abundance

The reduced linear model of biotic and abiotic soil properties explained up to 61% of the varia-

tion in the abundance of 12 of the 13 putative disease suppressive functional genes/gene
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categories studied (Table 3). As suppressive modes of action are not mutually exclusive, multi-

ple antagonists with a range of these functions may act together to suppress disease [57]. As

such, the explanatory model was comprised of five variables shared among models generated

for individual genes/gene categories with putative roles in carbon degradation (hyperparasit-

ism), nutrient competition (siderophore production), and antibiosis (secondary metabolite

biosynthesis). Although the distribution or occurrence of these functional genes under pastoral

agriculture has been vastly understudied [2], the abundance of microbes associated with these

functions has been shown to positively correlate with disease suppression in arable and natural

grassland soils [13, 17–19, 58, 59].The biotic and edaphic properties positively correlated with

abundance of these functional genes (Table 3) present opportunities by which the disease sup-

pressive potential of soils may be managed and enhanced in pastoral systems. It will be impor-

tant to validate associations between functional gene abundance and soil disease

suppressiveness in pastoral ecosystems.

The abundances of all putative disease-suppressive functional genes/gene categories were

positively correlated with the size of the bacterial community (total bacteria), total carbon, and

soil moisture. It is possible that the inclusion of bacterial abundance in this model reflects the

large proportion of the selected probes that were designed based on sequences of bacterial ori-

gin (S3 Table); probe design remains a limitation of functional gene microarrays [38]. How-

ever, the model was significant (and the relationship with total bacteria the same) for gene

categories that also contained fungal and archaeal probe sequences (i.e. carbon degradation

and nutrient competition). Therefore, it is likely that the inclusion of bacterial abundance in

the model is also indicative of an influence of variation in the wider microbial community, for

example, microbial biomass or fungal:bacterial ratios.

Our results suggest that practices that enhance the size of the bacterial community may also

enhance the size of the disease suppressive community in pastoral soils. The additional incor-

poration of abiotic properties total carbon (representative of organic matter, total N and total

S; see materials and methods) and soil moisture in the explanatory model is likely reflective of

the dependence of general variables, such as microbial abundance, on nutrient availability and

organic matter content [60]. Enhancing microbial abundance and activity through the addi-

tion of organic matter to soil is often associated with increased suppressiveness toward soil-

borne plant pathogens [61]. Notably, this mechanism is typically referred to as general sup-

pression [61], the enhancement of which has been identified as a potential opportunity to

manage diverse soil-borne diseases in pasture systems [2].

The abundances of all putative disease suppressive genes/gene categories were negatively

correlated with DOC aromatic content, a measure of carbon recalcitrance. This suggests that,

in addition to organic matter quantity (total carbon), the abundance of these functional genes

is sensitive to soil organic matter (SOM) quality and could be enhanced under copiotrophic

conditions where labile carbon and nutrient availability is increased. The similarity in variables

associated with functional gene abundance and Pseudomonas community composition, nota-

bly SOM quality, provides support for our hypothesis that there would be common drivers of

these components of the soil microbial community (H3). Our study provides novel evidence

for the association of SOM quality with a wide array of functional genes with putative disease

suppressive function. This may provide mechanistic insights into the reduction of disease

severity associated with suppressive organic amendments that support copiotrophic

communities.

Despite inherent limitations (lack of microbial species identity and failure to distinguish

between active and inactive microbial cells; [15]), the GeoChip array provides insight into the

presence of and diversity within known biological functions, and therefore, a way of linking

microbial diversity to ecosystem processes and functions [38]. However, as changes at the gene
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or genus levels may not translate to changes in ecosystem processes [62], it will be important

to rigorously test the relationship between the abiotic drivers identified here and disease sup-

pressive function.

Conclusions

This study has demonstrated the substantial effects of land use intensification and soil proper-

ties on both the structure and function of microbial communities putatively associated with

soil suppressiveness. Independent of the total bacterial community, soil properties were identi-

fied as unique drivers of the Pseudomonas community, a potential taxonomic indicator of dis-

ease suppressive potential. Furthermore, our results suggest that the manipulation of abiotic

soil properties related to the size and activity of the microbial community may simultaneously

enhance the abundance of a wide array of disease suppressive functions in soil. Importantly,

soil organic matter quality was shown to influence both the taxonomic (Pseudomonas) and

functional disease suppressive components of soil. Collectively, our results provide opportuni-

ties by which these soil components may be managed on-farm.

The following hypotheses were derived from this study: (1) Pseudomonas species composi-

tion and function are sensitive to pastoral management-induced changes in SOM quantity and

quality, e.g. via plant residue management; and (2) management-induced changes in Pseudo-
monas community structure and function will provide microbial predictors of soil suppres-

siveness. Detailed experiments that combine microbiome characterization and plant-pathogen

bioassays are now required to test these hypotheses, thereby determining whether Pseudomo-
nas communities and functional gene abundances provide accurate microbial predictors of

disease suppressive potential in these soils. Such experiments would determine whether spe-

cific soil microbial community manipulation, stemming from dedicated management prac-

tices, translate to changes in disease suppressive potential and ultimately pastoral production.
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