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The forest timberline responds quickly and markedly to climate changes, rendering it a ready indicator.
Climate warming has caused an upshift of the timberline worldwide. However, the impact on belowground
ecosystem and biogeochemical cycles remain elusive. To understand soil microbial ecology of the
timberline, we analyzed microbial communities via 16s rRNA Illumina sequencing, a microarray-based tool
named GeoChip 4.0 and a random matrix theory-based association network approach. We selected 24
sampling sites at two vegetation belts forming the timberline of Shennongjia Mountain in Hubei Province of
China, a region with extraordinarily rich biodiversity. We found that temperature, among all of measured
environmental parameters, showed the most significant and extensive linkages with microbial biomass,
microbial diversity and composition at both taxonomic and functional gene levels, and microbial
association network. Therefore, temperature was the best predictor for microbial community variations in
the timberline. Furthermore, abundances of nitrogen cycle and phosphorus cycle genes were concomitant
with NH4

1-N, NO3
2-N and total phosphorus, offering tangible clues to the underlying mechanisms of soil

biogeochemical cycles. As the first glimpse at both taxonomic and functional compositions of soil microbial
community of the timberline, our findings have major implications for predicting consequences of future
timberline upshift.

T
he forest timberline, a distinctive boundary between the continuous closed forest canopy to the treeless
alpine zone1,2, has solicited substantial attention because it responds quickly and markedly to climate
change3. Formation of the forest timberline is typically associated with mean air temperature between 5.5

and 7.5uC during the growth season4, which is a major limiting factor for tree growth at high altitudes2. As it has
been recognized that global warming induces upshift of the timberline towards higher altitudes worldwide5, the
sensitivity of the timberline to temperature makes the timberline a ready indicator of climate change6.

Several studies of the forest timberline have explored the underlying mechanisms forming spatial distribution
patterns and ecological processes involved in biogeochemical cycles3,7. At the global scale, temperature is a
determinative factor controlling the timberline2,7. At the local scale, environmental parameters and anthro-
pogenic perturbation of the landscape affect formation of the timberline8. However, a majority of these studies
only analyze plant communities and their responses to climatic dynamics9–11. Only a few studies have analyzed
microbial activities in regard to microbial biomass, carbon efflux and decomposition rates12–14, neglecting micro-
bial community composition and structure. Due to vast complexity of soil microbial communities and in-
adequacy of scientific tools that accurately profile microbial community structure and function15, it remains
unclear whether and how the taxonomic composition and metabolic activity of microbial community are affected
by timberline upshift.

The rapid development of high-throughput 16s rRNA gene sequencing has enabled fine-tuning assessment of
microbial taxonomic composition16. Meanwhile, development of a functional gene microarray (GeoChip) has
enabled quantitative, accurate and rapid detection of a large number of microbial genes17, making it possible to
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link the metabolic potentials of microbial communities with ecosys-
tem processes18. Aiming to obtain insights in predicting changes in
microbial communities and microbe-mediated soil biogeochemical
cycles for timberline upshift, we adopted 16s rRNA gene Illumina
sequencing and GeoChip to analyze soil microbial communities of
the coniferous forest and the shrubland, which are two vegetation
belts forming the timberline in the Shennongjia national natural
reserve (SNNR) located in Northwest Hubei province, China.
SNNR is chosen because it is a sensitive region vulnerable to climate
changes19. It is one of the most biologically diverse areas in China and
a member of UNESCO’s World Network of Biosphere Reserves,
often known as ‘‘The Oriental Botanic Garden’’ and the natural bank
of biological species.

Specifically, we are interested in the following scientific questions:
(1) which environmental parameter best explained the formation of
microbial community? and (2) were there significant linkages
between microbial functional genes and soil nutrient storages, given
the important role of microbes in driving biogeochemical cycles?

Results
Vegetation and soil geochemical parameters. The distance among
the sampling plots within each vegetation zone ranged from 0.042–
0.322 kilometers. Given the typical high soil heterogeneity, it was
unsurprising to detect considerable variations in the vegetation
and soil geochemical parameters, which prompted us to test for
general differences between the shrubland and the coniferous
forest (Table 1). We found that the number of plant species and
plant diversity, calculated by Shannon index, were significantly (P
, 0.001) higher in the coniferous forest (2.64) than in the shrubland
(1.64). Fargesia murielae of the Poaceae family and Rhododendron
oreodoxa of the Ericstarae family was the dominant species in the
shrubland, while Abies fargesii of the Pinaceae family was the
dominant species in the coniferous forest.

Many soil geochemical parameters, including soil organic carbon,
labile organic carbon, dissolved organic carbon, total nitrogen, alkal-
ine hydrolysis nitrogen, NO3

2-N, total potassium and rapidly avail-
able phosphorus, were similar in both habitats. Soil temperature, a
major limiting factor for tree growth at the forest timberline20, was
significantly higher (P 5 0.001) in the shrubland than the coniferous
forest. This was consistent with the annual average air temperature,
which was higher in the shrubland (4.62uC) than in the coniferous
forest (4.00uC). For others, total phosphorus, total sulfur, NH4

1-N
and d15N were significantly (P , 0.010) higher in the shrubland,
while moisture, pH, d13C, Al, and Fe were significantly (P , 0.010)
higher in the coniferous forest. These results suggested that shrub-
land soil was relatively richer in nutrients than the coniferous forest.

Soil microbial community of the coniferous forest and the
shrubland. Microbial biomass, judged by soil microbial biomass
carbon and nitrogen, were ,40% higher at the significant level of
P , 0.002 in the shrubland than the coniferous forest (Table 1).
At the taxonomic level, a total of 795,134 paired-end sequences,
ranging from 14,928 to 50,849 reads per sample, were obtained
from 24 samples of these two sampling sites. Finally, random re-
sampling was performed with 20,000 sequences per sample, result-
ing in 55,440 OTUs at the 97% similarity level (Supplementary
Fig. S1). The microbial taxonomic diversity, calculated by the
Simpson index, was significantly (P 5 0.035) higher in the
shrubland (Table 1). At the functional gene level, 45,357 genes
were detected in the shrubland samples, whereas 39,984 genes
were detected in the coniferous forest samples, resulting in a
significantly (P 5 0.001) higher functional diversity in the
shrubland.

To further examine differences between these two sites, Principal
coordinates analysis was performed with the high-throughput
sequencing and GeoChip data, respectively. Samples of the conifer-

Table 1 | Summary of environmental parameters analyzed by two-tailed t-test

Shrubland Coniferous forest P value

Plant parameters
Plant species 12 (5) 47 (17) 0.001
Plant diversity 1.64 (0.01) 2.64 (0.33) 0.001
Microbial parameters
Taxonomic diversity 248.49 (146.37) 121.58 (130.59) 0.035
Functional diversity 126.19 (0.61) 124.18 (0.96) 0.001
Soil microbial biomass carbon (mg/kg) 1457.39 (315.10) 1081.40 (247.75) 0.002
Soil microbial biomass nitrogen (mg/kg) 169.20 (34.69) 120.34 (23.52) 0.001
Soil biogeochemical parameters
Moisture (%) 29.73 (2.73) 45.14 (4.23) 0.001
Soil temperature (uC) 12.14 (0.35) 10.90 (0.50) 0.001
Air annual average temperature (uC) 4.62 4.00 n/a
Soil organic carbon (mg/kg) 59981.92 (12469.14) 63634.61 (16736.75) 0.793
Labile organic carbon (mg/kg) 6093.65 (2622.35) 6441.53 (3422.21) 0.782
Dissolved organic carbon (mg/kg) 283.27 (223.28) 206.90 (93.19) 0.282
Total nitrogen (mg/kg) 4447.50 (1059.86) 4311.82 (852.72) 0.564
Alkaline hydrolysis nitrogen (mg/kg) 404.51 (96.69) 350.57 (79.80) 0.092
NH4

1-N (mg/kg) 19.29 (3.43) 15.26 (3.32) 0.006
NO3

2-N (mg/kg) 11.02 (5.28) 18.42 (14.44) 0.147
d13C (%) 225.98 (0.41) 225.44 (0.26) 0.001
d15N (%) 4.61 (0.82) 3.00 (0.76) 0.001
pH 4.43 (0.15) 5.07 (0.48) 0.001
Rapidly available phosphorus (mg/kg) 8.39 (0.58) 11.41 (2.58) 0.580
Total phosphorus (mg/kg) 1971.66 (1052.02) 604.50 (109.59) 0.001
Total sulfur (mg/kg) 656.67 (259.32) 337.57 (72.84) 0.001
Total potassium (mg/kg) 4281.21 (777.54) 4230.07 (1389.61) 0.739
Al (mg/kg) 22572.10 (3378.57) 32555.23 (3378.57) 0.001
Fe (mg/kg) 20766.62 (4067.16) 35420.78 (6583.12) 0.001
Altitude (m) 2748.50 (15.89) 2541.36 (55.38) 0.001

P,0.050 is shown in bold. n/a: not applicable. Values in parenthesis represent standard deviation.
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ous forest and the shrubland were well separated from each other in
both datasets (Fig. 1), which was also verified by three non-paramet-
ric multivariate statistical tests of dissimilarity (adonis, MRPP and
anosim, P , 0.010) (data not shown).

The linkage between the microbial community and environment-
al parameters. Pearson correlation analyses were carried out to
identify environmental parameters linking to soil microbial bio-
mass. Soil temperature was positively correlated with soil microbial
biomass carbon (smbc) (r 5 0.54, P 5 0.006) and soil microbial
biomass nitrogen (smbn) (r 5 0.75, P 5 0.001) (Fig. 2A), implying
that temperature might be a key factor in determining soil microbial
biomass. Soil NH4

1-N content was also positively correlated (P 5

0.002) with smbc and smbn (Supplementary Fig. S2A). But most
other environmental parameters, including soil pH and plant
diversity, were not significantly (P , 0.050) correlated.

We proceeded further to identify key environmental parameters
linking to microbial diversity. At the taxonomic level, soil temper-
ature, but not NH4

1-N, was positively correlated (r 5 0.53, P 5

0.008) with microbial diversity (Fig. 2B). At the functional gene level,
both soil temperature (Fig. 2B) and NH4

1-N (Supplementary Fig.
S2A) were positively correlated (P , 0.050) with microbial func-
tional diversity. Meanwhile, microbial taxonomic and functional
diversity were positively correlated (P , 0.050) with soil microbial
biomass nitrogen (Supplementary Fig. S2B), showing a linkage
between microbial biomass and diversity.

Canonical correspondence analysis (CCA) was performed to
identify major environmental parameters linking to soil microbial
community at the taxonomic or functional gene level. A total of 12
environmental parameters (pH, moisture, soil temperature, NH4

1-
N, total sulfur, total phosphorus, Al, Fe, altitude, plant diversity, d13C
and d15N) were selected as independent environmental parameters
based on variance inflation factor analysis, resulting in significant (P
, 0.050) CCA models (Fig. 3). Soil temperature, moisture, pH and
altitude were the most important parameters shaping the microbial
community since they aligned well with the first axis, which repre-
sented the major variations among microbial communities.

To single out the contribution of temperature to microbial com-
munity variations, partial Mantel test was performed to correlate the
microbial community with temperature, soil parameters and plant
community. For taxonomic composition of microbial community,
temperature was the most important control factor with the highest
R-value (Table 2). For functional gene composition of microbial

community, temperature was the only factor that was significantly
correlated.

Bacterial taxa groups. All of the detected OTUs were classified as 26
bacterial phyla. Among them, Proteobacteria, Acidobacteria, Actino-
bacteria and Verrucomicrobia were the most abundant phyla.
Acidobacteria, Actinobacteria, Chloroflexi and Planctomycetes were
significantly higher in the shrubland, while Proteobacteria was
significantly higher in the coniferous forest (Supplementary Fig.
S3). Proteobacteria, as the most abundant phylum, was composed
of a-Proteobacteria, b-Proteobacteria, d-Proteobacteria and c-
Proteobacteria. Among all of the detected Proteobacteria, b-Proteo-
bacteria and a-Proteobacteria were the most abundant, which was as
high as 72.62% of all Proteobacteria. b-Proteobacteria of the
coniferous forest was significantly (P 5 0.001) and 192% higher
than that of the shrubland, while a-Proteobacteria was significantly
(P 5 0.001) and 23% lower in the coniferous forest.

Selected gene categories of the shrubland and the coniferous
forest. The response ratio analysis showed that genes associated
with functional categories of organic remediation and soil benefit
were significantly more abundant in the coniferous forest at the
95% confidence level (Supplementary Fig. S4). Genes associated
with carbon cycle, sulfur cycle, bacterial phage, energy process and
soil borne pathogen were significantly less abundant, whereas genes
associated with nitrogen and phosphorus cycle remained similar.
Detailed information of selected gene categories is described below.

Nitrogen (N) cycle. The total abundance of amoA genes associated
with nitrification was higher in the coniferous forest (Fig. 4). Most of
these amoA genes were derived from the archaea phylum of
Crenarchaeota, known to be highly abundant in temperate acidic
forest soil21. By contrast, total abundances of nasA and nrfA genes
associated with N reduction and nirS/nirK genes associated with
denitrification were significantly lower, suggesting a shift of micro-
bial functional potential from ammonium biosynthesis towards
nitrate biosynthesis. Consistently, the NO3

2-N content was 67.2%
higher in the coniferous forest, albeit insignificantly, and the NH4

1-
N content was significantly and 20.9% lower (Table 1).

We explored possible linkages between the NO3
2-N or NH4

1-N
content and N cycle genes associated with NO3

2-N or NH4
1-N

metabolism. The results showed that total abundances of nitrifica-
tion genes (amoA and hao) were negatively correlated (r 5 20.46, P
5 0.023) with NH4

1-N, and total abundances of denitrification genes

Figure 1 | Principal coordinates analysis (PCoA) of microbial community based on (A) high-throughput sequencing data and (B) GeoChip data. The

values for Axes 1, 2 and 3 are percentages of variation attributed to the corresponding axis.
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(nirS and nirK) were also negatively correlated (r 5 20.54, P 5
0.008) with NO3

2-N (Supplementary Fig. S5), demonstrating that
gene abundances associated with N cycle, representing microbial
functional potentials, were closely linked to soil N contents.

Ammonium oxidization was controlled by a narrow group of
ammonium-oxidizing archaea and bacteria22. Thus, we examined
ammonium oxidizer OTUs from the sequencing data. Total abund-
ance of the ammonium oxidizer was positively correlated to NO3

2-N
(r 5 0.49, P 5 0.019) and negatively correlated to NH4

1-N (r 5
20.41, P 5 0.049) (Fig. 5A), supporting the important role of ammo-
nium oxidizer in regulating soil N cycle. To verify it, we examined
bacterial amoA gene, which is the key functional gene of ammonium
oxidizers. Similar to the observations from OTU data, total abund-
ance of bacterial amoA gene was also positively correlated to NO3

2-
N (r 5 0.40, P 5 0.057) and negatively correlated to NH4

1-N (r 5
20.44, P 5 0.033) (Fig. 5B). Furthermore, total abundance of ammo-
nium oxidizer was positively correlated with bacterial amoA gene
abundance (r 5 0.38, P 5 0.064) (Fig. 5C).

Carbon (C) cycle. A large number of functional genes associated with
fixation and degradation were detected. CODH (CO dehydrogenase)
was significantly (P 5 0.050) more abundant in the coniferous forest
but rubisco (ribulose-1, 5-bisphosphate carboxylase/oxygenase) was
less abundant, suggesting that the CODH route was a preferred C
fixation route in the coniferous forest. Most of the abundant CODH
genes were derived from bacteria except a few (Sulfolobus acidocal-
darius, Methanosarcina mazei and uncultured Crenarchaeote). The
most abundant CODH genes were derived from Bradyrhizobium sp.,
Silicibacter sp., Aminobacter sp., Burkholderia sp., Ralstonia eutro-
pha Solibacter usitatus, Mycobacterium smegmatis, Nocardioides sp.
and uncultured bacteria, which were known to have a wide
distribution23.

The total abundance of genes associated with C degradation was
significantly lower in the coniferous forest samples (P 5 0.050).
Total abundances of ara associated with hemicellulose degradation,

acetylglucosaminidase associated with chitin degradation and glx
associated with lignin degradation were higher in the coniferous
forest, while the other genes were similar or lower (Supplementary
Fig. S6A). The most abundant glx genes in the coniferous forest were
derived from Phanerochaete chrysosporium, which has been well
documented for its important role in lignin degradation24. Despite
these intrinsic differences of C fixation and degradation pathways,
the net effect of C storage may be similar, as reflected in the obser-
vation that the levels of soil organic carbon and dissolved organic
carbon were similar between the coniferous forest and the shrubland
(Table 1).

Phosphorus (P) cycle. GeoChip 4.0 contained probes to target three P
cycle genes, ppk (polyphosphate kinase) for polyphosphate biosyn-
thesis, phytase for phytate degradation and ppx (exopolyphospha-
tase) for inorganic polyphosphate degradation. The total abundance
of ppx genes was significantly higher in the coniferous forest, while
that of ppk genes was significantly lower (P , 0.050) (Supplementary
Fig. S6B). No significant difference was found for phytase genes.
Thus, microbial functional potentials are inclined towards polypho-
sphate degradation, which was consistent with the higher level of
rapidly available phosphorus and the lower level of total phosphorus
in the coniferous forest (Table 1).

Organic remediation. Abundant organic remediation genes in the
coniferous forest included genes associated with biodegradation of
aromatics, chlorinated solvents, herbicides related compound, pes-
ticides related compounds or other hydrocarbons. Among these,
aromatic remediation genes were the most abundant. Consistently,
more abundant aromatic components could be detected in conifer-
rich sites25, which might induce the aromatics remediation genes in
the coniferous forest.

Correlation Networks of OTUs and functional genes. To explore
possible ecological interactions of microbial communities, we used a

Figure 2 | Correlations between (A) microbial biomass (indicated by soil microbial biomass carbon and soil microbial biomass nitrogen) and soil
temperature, and (B) microbial a-diversity (taxonomic and functional diversity) and soil temperature. White and black dots represent samples from the

shrubland and the coniferous forest, respectively.
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random matrix theory-based algorithm26 to reconstruct correlation
networks from OTUs or selected GeoChip data. All of the resulting
networks showed general features of ecological networks, such as
scale free, small world and modular (Supplementary Table S1). At
both taxonomic and functional gene levels, the coniferous forest
networks had higher average connectivity and transitivity,
indicative of tighter interactions/coupling within microbial
communities. By contrast, the modularity, indicative of the
resistance of systems to disturbance27, was lower in coniferous
forest networks than that of shrubland. More positive interactions,
which implicated cooperation28, were detected in the coniferous
forest networks (98.19% in the OTU network and 92.44% in the

GeoChip network) than those in the shrubland networks (93.24%
in the OTU network and 74.79% in the GeoChip network).

Only one hub of OTU networks was detected in the shrubland and
the coniferous forest, which was derived from the phylum of
Acidobacteria and Verrucomicrobia, respectively (Supplementary
Fig. S7A). For GeoChip networks, 25 out of 34 hub nodes of the
shrubland network were C cycle genes whereas 12 out of 20 hub
nodes of the coniferous forest network were N cycle genes
(Supplementary Fig. S7B), which was consistent with the finding that
relative abundances of C and N cycle genes were higher and lower in
the shrubland samples, respectively (Supplementary Fig. S4).

To explore possible correlation between environmental factors
and microbial community, we included environmental factors in
our correlation network based on random matrix theory. We found
that temperature was a hub node, that is, temperature was one of the
nodes with the highest connectivity with other nodes (Fig. 6). Some
of the directly connected nodes to temperature were among the top
10 nodes with the highest connectivity, suggesting that temperature
and its directly connected nodes play an important role in maintain-
ing the network structure and topology.

Discussion
Investigating soil microbial communities is important for under-
standing microbe-mediated biogeochemical cycle and ecosystem
functioning29. A main goal of this study is to identify the envir-

Figure 3 | Canonical correspondence analysis (CCA) of (A) high-
throughput sequencing data and (B) GeoChip data with environmental
parameters. TS, total sulfur; TP, total phosphorus.

Table 2 | The relationships of microbial community structure to environmental parameters revealed by partial Mantel tests

In association with: controlling for:
microbial communities

Temperature a Soil b Plant c

Soil Plant Temperature Plant Temperature Soil

rM(P) rM(P) rM(P) rM(P) rM(P) rM(P)

OTUs 0.54 (0.001) 0.60 (0.001) 0.41 (0.001) 0.46 (0.001) 0.22 (0.056) 0.14 (0.094)
Functional genes 0.13 (0.031) 0.16 (0.014) 0.11 (0.215) 0.14 (0.160) 0.05 (0.375) 0.03 (0.417)
aTemperature included soil temperature and air annual temperature.
bSoil parameters included soil organic carbon, labile organic carbon, dissolved organic carbon, total nitrogen, alkaline hydrolysis nitrogen, NH4

1-N, NO3
2-N, d13C, d15N, soil pH, Rapidly available

phosphorus, total phosphorus, total sulfur, total potassium, Al, Fe.
cPlant parameters was the plant community structure, composed of the significant value of each specie in every sampling site.

Figure 4 | The fold change of N cycle genes between the shrubland and
the coniferous forest. The percentage of each gene indicated the relative

fold changes, with red and green colors indicating the higher and lower

signal intensity of each detected gene in the coniferous forest, respectively.

This percentage was calculated by the sum of the signal intensity of each

detected gene divided by the total sum of signal intensity of all detected N

cycle genes, and weighted by the fold change of each gene for the coniferous

forest over the shrubland. ***P , 0.010; **P , 0.050.
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onmental factor(s) that best explain microbial community variation.
It has been proposed that above-ground plant communities drive
below-ground microbial diversity30. Previous studies have indicated
that plants affect microbial communities via rhizodeposits and exu-
dates and provide organic C and N to the soil microbial commun-
ity31,32. The different vegetation types could select for distinct soil
microorganisms due to formation of a variety of microhabitats that
support a diverse collection of species33,34. Thus, we examined
whether soil microbial functional diversity was affected by plant
diversity. However, significantly higher microbial taxonomic and
functional diversity were detected in the shrubland than the conifer-
ous forest (Table 1). Considering higher plant diversity, species num-
ber and biomass in the coniferous forest, this finding suggested that
plant diversity might not be the determinant of microbial diversity,
which was consistent with several previous studies showing that soil
microbial community was uncorrelated with plant diversity35–37. The
inconsistency between plant diversity and microbes could be
ascribed to different ecophysiological traits of plant species, which
would exert strong effects on soil biological properties38,39. Thus, the
plant community composition is more likely to affect soil microbial
community composition than plant diversity35,40,41. In addition, this
could also be explained by a chance effect that a keystone species
present in the plant community results in greater effects on soil
processing than the contribution of the total plant diversity42.
Notably, the dominant species were different between the shrubland
and the coniferous forest. The plant litter of Abies fargesii in the
coniferous forest with relatively higher C/N ratios provides poor

nutrients for microbial growth43, and this may have a tendency to
reduce microbial diversity and activity. On the contrary, Fargesia
murielae, one of the dominate plants in the shrubland, would buffer
temperature extremes and modify the local microenvironments and
soil quality44, which might be helpful for microbial survival.

Temperature has been shown to be the major factor in timberline
formation9. Here we showed that soil temperature, among all of
measured environmental parameters, showed the most significant
and extensive linkages with microbial biomass, microbial diversity
and composition at both taxonomic and functional gene levels.
Correlation networking analysis also showed that temperature was
an influential environmental parameter. Therefore, temperature was
the best predictor for microbial community variations at the timber-
line. Our study showed that the temperature was significantly lower
in coniferous forest, which was consistent with previous studies
showing that the timberline forest typically had a colder temperature
than its adjacent vegetation at higher altitudes2,45,46, since the closed
forest canopy protects the soil from sunrays and results in a lower
temperature. Temperature can affect metabolic rates via the kinetics
of the biological process, famously coined as ‘‘the Red Queen runs
faster when she is hot’’, and consequently contributes to organism
differentiation and diversification47,48. However, it is also possible
that temperature indirectly affects microbial community by control-
ling soil nutrient availability, which further affects soil microbial
community49. A comparison among the shrubland, grassland, farm-
land and reforested land in an adjacent region to our study sites
showed that the shrubland had the highest soil quality value50.

Figure 5 | Correlations between (A) NH4
1-N, NO3

2-N and total abundance of ammonium oxidizer, (B) NH4
1-N, NO3

2-N and total abundance of
bacterial amoA gene, and (C) abundance of ammonium oxidizer and bacterial amoA gene. White and black dots represent samples from the shrubland

and the coniferous forest, respectively.

www.nature.com/scientificreports
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Similar studies on alpine ecosystems showed that treeless soil at
higher altitudes had more labile C, greater microbial activity than
soil of closed forest canopy51,52. Consistently, higher soil nutrient
contents of dissolved organic carbon, available nitrogen, total phos-
phorus and total sulfur in the shrubland provided a suitable envir-
onment for microbial communities, as indicated by higher microbial
biomass and diversity. CCA showed that microbial community com-
positions were correlated with d15N, total phosphorus, total sulfur; Al
and Fe (Fig. 3), in addition to correlations between microbial bio-
mass, functional diversity and NH4

1-N (Supplementary Fig. S2).
Among them, N appeared to be a key factor affecting microbial
community composition, diversity and productivity in many N-lim-
ited terrestrial ecosystems53. The correlation between microbial bio-
mass and NH4

1-N was consistent with precious study showing that
N limitation was an influential factor in affecting microbial com-
munity54. Meanwhile, our study showed that low microbial divers-
ities were detected in sampling sites with high C/N ratios, which was
consistent with the finding that microbial community structure and
activity were negatively coupled to the soil C/N ratio43. This indicated
that an upward expansion of forest resulting from global warming
would lead to changes in soil organic quality and the activities of the
underground communities.

A parallel 16s rRNA and shotgun sequencing study on tallgrass
prairies showed a strong positive correlation between taxonomic and
functional gene diversity55, suggesting a low degree of functional
redundancy. By contrast, we did not detect strong correlation
between overall taxonomic and functional gene diversity, which
might be attributed to the differences in techniques or ecosystems.
However, there was a positive correlation between bacterial amoA
gene abundance and ammonium oxidizers (Fig. 5C), a functionally
narrow group utilizing the conversion of ammonia into nitrite as the

sole energy source22. It can thus be predicted that reduction in
ammonium oxidizer species is associated with decreases in the func-
tional potential of bacterial ammonium oxidization contained within
these soil communities.

Correlation networking analyses show important details of com-
munity assembly rules reflecting ecological processes such as coop-
eration, competition, habitat filtering and historical effects, and can
represent mathematical interaction/coupling among different popu-
lations and/or functional genes that regulate system functions56. The
shorter path length and higher average connectivity and transitivity
of coniferous forest networks suggested that microbial interaction/
coupling was high. The high interaction might be ascribed to certain
deterministic processes such as habitat filtering, reducing the spread
of trait values and reflecting shared ecological tolerances57, which was
consistent with the observations of more positive interactions in the
coniferous forest networks. Modularity helps control disturbances by
compartmentalizing social-ecological systems58, the higher modular-
ity of the shrubland network indicated that the microbial system
would be more resistant to changes, both at the taxonomic and
functional level, which might be ascribed to higher microbial divers-
ity of shrubland (Supplementary Table S1).

Profiling microbial communities in the habitats bordering the
timberline is crucial for predicting the dynamics of microbial com-
munity changes and ecosystem functioning, since the trend of tim-
berline upshift resulting from climate warming is likely to continue.
Our results showed that temperature was the best predictor for
microbial community formation and there were clear linkages
between microbial functional potentials and soil biogeochemistry
cycles of the timberline. Based on these results, we predict that tim-
berline upshift resulting from global warming would cause distinct
changes in microbial communities and soil C and N pools. However,

Figure 6 | Network interactions between environmental parameters and microbial taxonomic community. The red node represents temperature. The

green ones represent the nodes directly connected to temperature, bigger diameter of which indicates higher connectivity. The purple ones were indirectly

connected OTUs.
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the general trend of timberline shift is modified by local, regional and
temporal variations59. It would be interesting to expand the observa-
tions in this study to other timberlines or conduct time-series experi-
ments in order to test the generality of the observations.

Methods
Site and sampling. The study site is located at Shennongjia National Nature Reserve
(SNNR, 110u14’–110u18’ E, 31u26’–31u28’ N) of Shennongjia Mountain, Northwest
Hubei province, Central China. This area is heavily influenced by subtropical
monsoon, characterized by wet (monthly precipitation . 250 mm) and hot weather
in summer (monthly mean temperature . 25uC) but dry (monthly precipitation ,

10 mm) and cold (monthly mean temperature , 24uC) weather in winter19. The
annual mean air temperature and precipitation of this area are 7.2uC and 1500 mm,
respectively. The vegetation belts forming the timberline were the shrubland and the
coniferous forest. As many other landscape lines, the timberline is a well-defined
boundary from a distance but a gradual transition with patchy patterns upon close
inspection. To manifest differences between the shrubland and the coniferous forest,
we chose typical shrubland between the altitudes of 2720 and 2776 m and the
coniferous forest between the altitudes of 2456 and 2632 m to collect soil samples.

Soil samples of the shrubland and the coniferous forest were collected in August,
2011. At each site, twelve plots (20 m 3 20 m) comprising typical vegetation and soil
attributes were selected for sampling. At each plot, ten to fifteen soil cores at a depth of
0–10 cm were taken, mixed thoroughly and sieved with 2 mm mesh to remove roots
and stones. Soil samples were kept on ice when transporting to laboratory, divided
into two subsamples and stored at either 4uC for soil biogeochemical measurements
or 280uC for DNA extraction.

Soil and vegetation parameter measurements. The species, number and canopy of
each tree or shrub, the diameter of breast height and height of trees were surveyed at
each plot. The air annual average temperature (from 1950 to 2000) was calculated
with long-term records of daily air temperature by WorldClim (Version 1.4)60. Soil
temperature at each plot was measured by a Hobo Temperature instrument at the
depths of 0–15 cm, respectively. The other soil geochemical parameters (soil
moisture, soil pH, soil organic carbon, total nitrogen, available phosphorous, available
potassium, water, dissolved organic carbon, labile organic carbon contents, d13C, d15N
and soil enzyme activities of cellulose, glucanase, polyphenol oxidase, sucrase and
amylase) were measured as previously described61. A rapid chloroform-fumigation
extraction method was used to measure soil microbial biomass carbon and nitrogen
as previously described62. Shannon-Weaver index (H9) was used to evaluate the plant
diversity.

DNA extraction, purification, quantification. Soil DNA was extracted by freeze-
grinding mechanical lysis as previously described63. Freshly extracted DNA was
purified twice using 0.5% low melting point agarose gel followed by phenol-
chloroform-butanol extraction. DNA quality and quantity were assessed by the ratios
of 260 nm/280 nm and 260 nm/230 nm, and final DNA contents were quantified
with a PicoGreen method using a FLUO star Optima (BMG Labtech, Jena, Germany).

Illumina sequencing and data processing. 16s rDNA genes was amplified using a
common primer pair targeting v4 region (Forward primer, 515F, 59-
GTGCCAGCMGCCGCGGTAA-39; reverse primer, 806R, 59-
GGACTACHVGGGTWTCTAAT-39) combined with adapter sequences and
barcode sequences64,65. PCR amplification was performed in a 25 ml reaction,
containing 2.5 ml 10 3 AccuPrime PCR buffer II (Invitrogen, Grand Island, NY), 1 ml
of each primer (10 mM), 5 ml template DNA (2 ng/ml) and 0.1 ml AccuPrime High
Fidelity Taq Polymerase. The reaction mixtures were subjected to a denaturation at
94uC for 1 min, followed by 30 cycles of 94uC for 20 s, 53uC for 25 s and 68uC for
45 s, and a final extension at 68uC for 10 min. Reactions were performed in triplicates
for each sample to minimize potential biases from amplification66. The triplicate
products from the first step PCR were pooled together and purified through
QIAquick Gel Extraction Kit (Qiagen, Valencia, CA), eluted in 50 ml water, and
aliquoted into three PCR tubes. A second round PCR was then performed in a 25 ml
reaction [2.5 ml 10 3 AccuPrime PCR buffer II, 1 ml of each primer (10 mM), 0.1 ml
AccuPrime High Fidelity Taq Polymerase, and 15 ml aliquot of the first-round
purified PCR product] with triplicates for each sample, using phasing primers with
Illumina adapters, target primers, spacers and barcodes on reverse primers. Twenty
cycles of the amplifications were performed following the same program for the first
round PCR. PCR products from triplicate reactions were pooled together and
quantified with PicoGreen. Sample denaturation was carried out by mixing 10 ml of
combined PCR products and 10 ml 0.2 N fresh NaOH. The chilled Illumina HT1
buffer was added to the denatured DNA to make a 20 pM library, which was further
diluted to 15 pM by adding HT1 buffer and mixed with a PhiX DNA library. Finally,
the 600 ml mixture was loaded into the MiSeq reagent cartridge and run on Miseq
(Illumina, San Diego, CA) for 2 3 250 bp paired-end sequencing.

Raw sequences were separated to samples using barcodes and with permission of
up to one mismatch. Quality trimming was done using Btrim67. Forward and reverse
reads were merged into full length sequences by FLASH68. Sequences were removed if
they were too short or contained ambiguous bases. Random re-sampling was per-
formed with 20,000 sequences per sample. The operational taxonomic units (OTUs)
were classified using UCLUST at the 97% similarity level, and singletons were

removed. The taxonomic assignment was conducted by RDP classifier69 with minimal
50% confidence estimates.

GeoChip hybridization and data processing. Purified DNA was labeled with Cy3
dye, dried, rehydrated and hybridized with GeoChip 4.0 as previously described18.
After purification, GeoChip microarrays were scanned with a 100% laser power and
100% photomultiplier tube with a NimbleGen MS 200 Microarray Scanner (Roche,
Basel, Switzerland), and poor-quality spots with a signal-to-noise ratio of less than 2.0
were discarded prior to statistical analyses.

Signal intensities were quantified and processed using the analysis pipeline as
previously described70. Then processed GeoChip data were analyzed using the fol-
lowing steps: (i) removing genes detected in no more than 5 out of 12 samples from
the same vegetation type; (ii) normalizing the signal intensity of each spot by dividing
the signal intensity by the total intensity of the microarray followed by multiplying by
a constant; and (iii) transforming data to the natural logarithmic form.

The Simpson’s reciprocal index (1/D) was used to evaluate microbial taxonomic
and functional diversity. Principal coordinates analysis (PCoA) was used to deter-
mine changes of overall microbial community structure, both the high-throughput
sequencing data and GeoChip data. Bray-Curtis distances were used to calculate the
dissimilarity matrices from the high-throughput sequencing data and GeoChip data.
Canonical correspondence analysis was used to explore linkages between microbial
community structure and environmental parameters. The variance inflation factor
(VIF) was used for step-wise removal of redundant parameters in CCA modeling17.
Partial Mantel test was performed to correlate the microbial community (for high-
throughput sequencing data, OTUs detected in more than 10 out of 24 samples was
used) with the temperature, soil parameters and plant community. All of the analyses
were performed by functions in the Vegan package (v.1.15–1) in R (v.3.0.1).

Network construction via the RMT-based method. Using the random matrix theory
(RMT)-based method to automatically define a threshold, Pearson correlation
networks were constructed from OTUs or GeoChip data as previously described.
OTUs or selected functional genes (carbon and nitrogen cycle genes) detected in less
than nine out of twelve replicates from the coniferous forest and the shrubland were
removed to ensure reliable correlations. To explore the ecological interactions
between environmental parameters and microbial community, OTUs and
environmental parameters detected in less than eighteen out of twenty-four samples
were removed to ensure reliable correlations. To characterize the modularity
property, each network was separated into modules by the fast greedy modularity
optimization. Various indices, including the average degree, average clustering
coefficient, average path distance, geodesic efficiency, harmonic geodesic distance,
density and transitivity, and connectedness, were used to describe overall topological
properties of different networks. The topological roles of different nodes were divided
into the following four subcategories by within-module connectivity (Zi) and among-
module connectivity (Pi): (i) peripheral nodes are defined as nodes with Zi # 2.5 and
Pi # 0.62; (ii) connectors are defined as nodes with Zi # 2.5 and Pi . 0.62; (iii)
module hubs are defined as nodes with Zi . 2.5 and Pi # 0.62; and (iv) network hubs
are defined as nodes with Zi . 2.5 and Pi . 0.62.
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