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Abstract

The goal of this research was to investigate the influence of the error rate of sequence determination on the differentiation of

cloned SSU rRNA gene sequences for assessment of community structure. SSU rRNA cloned sequences from groundwater

samples that represent different bacterial divisions were sequenced multiple times with the same sequencing primer. From

comparison of sequence alignments with unedited data, confidence intervals were obtained from both a ddouble binomialT
model of sequence comparison and by non-parametric methods. The results indicated that similarity values below 0.9946 are

likely derived from dissimilar sequences at a confidence level of 0.95, and not sequencing errors. The results confirmed that

screening by direct sequence determination could be reliably used to differentiate at the species level. However, given

sequencing errors comparable to those seen in this study, sequences with similarities above 0.9946 should be treated as the

same sequence if a 95% confidence is desired.
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1. Introduction

Our current understanding of the microbial world

suggests that in many environments the vast majority
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of species (N99.9%) are uncultivable with standard

microbiological techniques (Pace, 1997). Sequencing

of the small subunit ribosomal RNA (SSU rRNA)

genes has provided new insights into the extent of

microbial diversity (Woese and Fox, 1977; Woese et

al., 1990). Current diversity estimates range from

350 to 500,000 operational taxonomic units (OTUs)

per gram of soil (Øvreås, 2000; Dykhuizen, 1998),

and most likely 100 OTUs per milliliter of seawater

(Curtis et al., 2002). Sequence variation in the SSU

rRNA genes not only provides an estimate of the
5 (2006) 144–152



M.W. Fields et al. / Journal of Microbiological Methods 65 (2006) 144–152 145
variety of microorganisms in a given sample (differ-

entiation at the species level), but can also provide

information about the phylogenetic composition of

the sample.

Numerous published studies employ SSU rRNA

gene clonal libraries to estimate microbial diversity.

Two techniques commonly used in such studies are

restriction fragment length polymorphism analysis

and density gradient gel electrophoresis. In both tech-

niques, unique clones are identified and sequenced,

which can be laborious and time-consuming. How-

ever, clones can be randomly selected and screened by

direct sequence determination resulting in a signifi-

cant savings in time and effort. The resulting

sequences are then compared pairwise and a similarity

index is calculated. The convention of 97% to 98%

SSU rRNA gene sequence identity for the definition

of a species and 95% for the definition of a genus are

generally accepted (Ludwig et al., 1998; Stackebrandt

and Goebel, 1994).

Although the sequenced-based approaches have

become more common, the effect of sequencing errors

on diversity calculations has not been fully evaluated.

In this paper we describe the calculation of confidence

intervals for a pairwise similarity index using a double

binomial model. Similarity scores falling below the

lower confidence bound would indicate, with a con-

fidence of 1� z (where z is the probability of a Type I

error, e.g., 5%), that the two sequences are truly

distinct. Similarity scores falling within the confi-

dence interval are deemed to be statistically indistin-

guishable from scores obtained on identical

sequences.

To illustrate the method, confidence intervals were

calculated for a set of SSU rDNA sequence data to

evaluate the possible problem of sequencing error

related to the construction of environmental libraries.

The SSU rDNA cloned sequences from different bac-

terial divisions were sequenced with multiple reactions

and the same sequencing primer. By comparing

sequence alignments of unedited data, confidence

intervals were calculated to estimate the accuracy of

sequence determination from the environmental

clones. For comparison, non-parametric confidence

intervals were also calculated. The results indicate

that screening by direct sequence determination

could be reliably used to differentiate at the species

level.
2. Derivation of confidence interval

The data consist of sequences nominally of fixed

length (N). Gaps in the sequence reduce the effective

length to m =N � # gaps. For example, given a

sequence length of 101 and a gap of 1,

m =101�1=100. If k is the total number of nucleic

acid base matches obtained by aligning paired

sequences, then the similarity coefficient is S =k /m,

where k ={0, 1, . . ., m}. In this example, if there is

one mismatch then S =0.99.

The same value of the similarity coefficient could be

generated for multiple values of k andm if the sequence

lengths were different. For example, a sequence length

of 200 with two mismatches also results in a similarity

of 0.99. Since N is finite, the probability density func-

tion for S is discrete and can be written as:

Pr S ¼ k=mf g ¼
X

k;mð ÞaIs

Pr K ¼ k and M ¼ mf g

¼
X

k;mð ÞaIs

Pr K ¼ kjM ¼ mf gPr M ¼ mf g ð1Þ

where each Pr{S =k /m} is the sum of the probabilities

for every pair of k and m yielding a given value of S.

The method we use to calculate as the ddouble
binomialT probability of a match depends on both the

probability that the base is counted and the prob-

ability that the bases are identical. For each position

in an aligned sequence there is a probability pd that

the base pair is counted (a gap does not exist at that

position), and probability pa that the bases are iden-

tical (assuming a deletion is not present). Insertions

are not explicitly considered but will be treated as a

deletion. We also assume the alignments are optimal

in that insertions or deletions are never paired with a

true base. The number of correct counts (k) resulting

from each event probability ( pa, pd) follows a bino-

mial distribution.

For values of S, pa, and pd close to unity, we

assume there is only one combination of k and m

that generates a given value of S. This assumption

results in only one term in Eq. (1) which can then be

expanded into a ddouble binomialT:

Pr S ¼ k=mf g

¼
�
m

k

�
pka 1� pað Þm�k

�
N

m

�
pmd 1� pdð ÞN�m: ð2Þ
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We now introduce random variables x and y, where

xa{0, 1} depending on whether a given comparison

is a match, and ya{0, 1} denotes absence or presence

of a gap. These random variables are independent of

each other as each xi and yi for the ith comparison in a

sequence are independent. Let k =Ai(xiyi) and

m =Ai( yi). The summed random variables k and m

each follow a binomial distribution with expected

values E(x)=pa and E( y)=pd.

To determine the confidence interval, we must

select values of pa and pd that maximize the goodness

of fit of Eq. (2) to empirical data. The solution chosen

is the method of moments, which requires values for

the mean (As) and variance (rs
2) of S. The following

result (Brunk, 1975) will prove to be useful in the

calculation of rs
2:

E

�
xn

yn

�
¼ E

�
E xnjyð Þ

yn

�
: ð3Þ

The mean is relatively easy to obtain:

lS ¼ E Sð Þ ¼ E

�
k

m

�
¼ E

�
E kjmð Þ

m

�

¼ E

�
Eð
Pm

i¼1 xiÞ
m

�
¼ E

�
mE xð Þ
m

�
¼ pa: ð4Þ

Next we derive one of the components needed to

obtain the expectation of S2. The derivation takes

advantage of E(xi
2)=E(xi) because x can only assume

a value of 0 or 1.

E½k2jm� ¼ E

�� Xm
i¼1

xiyi

�2����yi ¼ 1

�

þ E

�� XN
i¼mþ1

xiyi

�2����yi ¼ 0

�

¼ E

�� Xm
i¼1

xi

�2�
¼ Var

� Xm
i¼1

xi

�

þ
�
E

� Xm
i¼1

xi

��2
¼
Xm
i¼1

Var xið Þ

þ
� Xm

i¼1
E xið Þ

�2
¼
Xm
i¼1

E x2i
� �
�
Xm
i¼1

E xið Þ½ �2

þ
� Xm

i¼1
E xið Þ

�2
¼
Xm
i¼1

E xið Þ �
Xm
i¼1

E xið Þ½ �2
þ
� Xm

i¼1
E xið Þ

�2
¼ mpa � mp2a þ m2p2a

¼ mpa 1� pa þ mpað Þ: ð5Þ

Now the second expectation can be obtained:

E S2
� �

¼ E

�
k2

m2

�
¼ E

�
E k2jmð Þ

m2

�

¼ E

�
mpa 1� pa þ mpað Þ

m2

�

¼ pa 1� pað ÞE
�

1

m

�
þ p2a: ð6Þ

The variance of S is:

r2
S ¼ Var Sð Þ ¼ E S2

� �
� E Sð Þ½ �2

¼ pa 1� pað ÞE
�

1

m

�
: ð7Þ

The random variable m is not independent; it is a joint

function of pd and N, where E(m)=Npd. We are

aware of no closed form solution to E(1 /m), and

employ the following approximation which is justified

in Appendix A:

E

�
1

m

�
i

1

Npd
: ð8Þ

We note that the approximation in Eq. (8) is equiva-

lent to 1 /E(m). Substituting Eq. (8) into Eq. (7) we

have:

r2
Si

pa 1� pað Þ
Npd

: ð9Þ

After substituting Eq. (4) into Eq. (9), and solving for

pd, we get:

pdi
ls 1� lsð Þ

Nr2
S

: ð10Þ

Eqs. (4) and (10), respectively, provide estimates of

the needed parameters pa and pd, in terms of the mean

and variance of S.

To compute the confidence interval, a cumulative

distribution function (cdf) for S is needed. This func-

tion is actually a discrete integration of Eq. (1),

namely Pr{SVk / m}. For large m, k nearly as large

as m, and pa and pd close to unity, a computationally
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tractable approximation to the cdf can be employed.

The only requirement is an approximation of the cdf

for values of S close to one. We select positive

integers n bN and d. These parameters fix the lower

bound of a selected subset of possible values for S and

are related to the precision of the approximation.

First, we locate values of S that are of interest by

constructing the (N�n)�dmatrix C:

C ¼

n� d
n

: : : n� 2

n

n� 1

n

n

n
n� dþ 1

nþ 1
: : : n� 1

nþ 1

n

nþ 1

nþ 1

nþ 1
n� dþ 2

nþ 2
: : : n

nþ 2

nþ 1

nþ 2

nþ 2

nþ 2
v v v v v

N � d
N

: : : N � 2

N

N � 1

N

N

N

2
66666666664

3
77777777775

ð11Þ

Note that the rightmost column of C contains only

ones. The range of C is given by the interval [(n�d) /
n, 1]. Larger d and smaller values of n generate a

larger C matrix and a better approximation of the

cdf. Second, we sort C in ascending order such that

c1Vc2V . . .Vcp. We proceed by backward construc-

tion to build a double binomial model of the cdf. For

any ci:

Pr SVci�1f g ¼ Pr SVcif g � Pr S ¼ c
i

f g: ð12Þ

Initial cdf values are obtained by proceeding from

right to left in the sequence:

Pr SVcp
	 


¼ 1 ð13Þ

Pr SVcp�1
	 


¼ 1� Pr S ¼ cp
	 


: ð14Þ

The remaining cumulative probabilities are obtained

by recursive application of Eq. (12) to initial results,

and can be plotted as a step function. The backward

construction procedure is an approximation because it

terminates at c1, and we assume that Pr{S b (n�d) /n}
is close to zero. If Pr{SVci}=1� z, then [ci, 1] is the

zth confidence interval for the obtained value of S.

As a comparison to the above approach we used

the nonparametric quantile method for estimating con-

fidence intervals from the data. We define the quantile

qz (e.g, the 95% quantile) as r / ( y +1) for the rth order

statistic of an ordered data series bs1,. . .,sr,. . .syN of
length y. The done-tailedT interval (when S is close to

1) for level of confidence (1� z) is [ qz, 1]. The

nonparametric estimators have the advantages of

requiring few assumptions and ease of computation.

The main disadvantages are: (1) the quantile-based

estimates are very sensitive to noise and outliers and

(2) they cannot extrapolate beyond the range of the

sample data. Both issues are aggravated with smaller

sample sizes.
3. Example

The DNA sequences used in this study were

derived from groundwater samples collected from

two wells at the Natural and Accelerated Bioremedia-

tion Research (NABIR) Program Field Research Cen-

ter in Oak Ridge, Tennessee.

3.1. Materials and methods

Groundwater samples (1–2 l) were collected and

transported to the laboratory in amber glass bottles.

Bacteria were harvested by centrifugation (10,000
�g, 4 8C for 30 min), and the pellets were stored at

�80 8C until used for DNA extraction. The cell pellet

was resuspended in a lysis buffer, and the cells were

disrupted using a previously described grinding

method (Zhou et al., 1996). DNA was extracted as

previously described (Zhou et al., 1996, 1997), and

the precipitated DNAwas purified by gel electrophor-

esis plus mini-column preparation (Wizard DNA

Clean-Up System, Promega, Madison, Wisconsin,

USA) (Zhou et al., 1996).

The PCR reactions (20 Al) contained 2 Al of

10�PCR reaction buffer (500 mM KCl, 100 mM

Tris–HCl pH 9.0, 1% Triton X-100), 1.5 Al of 25

mM MgCl2, 0.2 Al of 400 ng Al�1 bovine serum

albumin (Boehringer Mannheim), 0.2 Al of 25 mM

4�dNTPs (USB Chemicals), 10 pmol of each primer,

2.5 U of Taq polymerase, and 1 Al of purified DNA

(5–10 ng). To minimize PCR-induced artifacts, the

optimal number of cycles was determined and five

PCR reactions were combined prior to cloning as

described previously (Qiu et al., 2001). The combined

PCR products were separated by electrophoresis in a

low-melting point agarose gel (0.8%), the appropriate

band excised, and the DNA extracted with a Promega
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Wizard Prep Kit (Madison, Wisconsin, USA) accord-

ing to the manufacturer’s instructions. Recovered

DNAwas resuspended in 6 Al ddH2O, 2 Al was ligated
with the pCR2.1 vector from a TA-cloning kit, and

competent Escherichia coli cells were transformed

according to provided protocol (Invitrogen, San

Diego, California, USA). The SSU rRNA genes

were amplified with the FD1 and 1540R primers,

and the PCR products were purified with the

ArrayItk PCR Purification Kit (TeleChem Interna-

tional, Inc.) or treated with ExoSAP-ITk (US Bio-

chemical Corporation) according to manufacturer

instructions.

DNA sequences were determined with a BigDyek
Terminator kit (Applied Biosystems) with a 3700

DNA analyzer (Perkin-Elmer) according to the man-

ufacturer’s instructions with the SSU rDNA-specific

primer 529R, and compared with sequences from

GenBank. Each clone was sequenced five times

with the same primer (529R, E. coli designation).

The sequences were aligned with ClustalW (Thomp-

son et al., 1994). Phylogenetic analyses of the partial

SSU 16S rRNA gene sequences were conducted using

MEGA version 2.1 (Kumar et al., 2001). Neighbor-

joining phylogenies were constructed from dissimila-

tory distances and pairwise deletion of gaps and miss-

ing data. Maximum parsimony phylogenies did not

differ significantly (data not shown).

3.2. Results

Partial sequences were determined and compared

to sequences in GenBank and the Ribosomal Database

Project for presumptive identification. Identification

was based on comparing the V2–V6 region of the

SSU rRNA gene sequence (approximately first 400 to

500 nucleotides). Nine clones from the following

eubacterial divisions or subdivisions were selected

for sequence comparison: a-Proteobacteria, h-Pro-
teobacteria, g-Proteobacteria, low G+C Gram-posi-

tive, high G+C Gram-positive, Bacteroidetes,

Nitrospira, and Verrucomicrobia (Fig. 1). The high

G+C clone (300A-B08) was most closely related to

an Actinomycete MC 13, and the low G+C clone

(300G-F05) was distantly related to an uncultivated

environmental clone. The Nitrospira-like sequence

(005B-A07) was distantly related to Nitrospira mar-

ina, and the a-Proteobacterial sequence (300E2-A11)
was most similar to Agrobacterium tumefaciens. The

Bacteroidetes (formerly the Cytophaga–Flexibacter–

Bacteroides) were represented by a Flexibacter-like

sequence (300BHJ-G10). The h-Proteobacteria were

represented by two sequences most closely related to

Rhodoferax fermentans (300A-D02) and Comamonas

acidovorans (300E2-E02), and the g-Proteobacteria

clone (300A-F01) was most similar to Methylobacter

T20. The clone 300BHJ-H06 was distantly related to

Verrucomicrobia spinosum.

The resulting sequences varied between approxi-

mately 400 and 450 nucleotides with a mean length of

425. The raw sequence data were aligned, and pair-

wise similarities were calculated for each clone as

described above (10 similarities per clone). The result-

ing 90 similarity measures were pooled and treated as

identically distributed observations from sequences

400 nucleotides in length (N =400). A larger N did

not produce reasonable fits of the double binomial

model to the observations, presumably due to unequal

sequence lengths and increased number of gaps. The

mean similarities were greater than 0.997 for each

clone.

The mean and variance of the pooled similarity

measures were 0.998476 and 4.1243�10�6, respec-

tively. Using Eq. (4), the estimate of pa was 0.998476,

and application of Eq. (10) resulted in 0.9222 as the

estimate of pd. A 121�8 C-matrix was constructed

for which m ranged from 280–400, and d =8. The
estimated cdf of S calculated by the proposed method

is shown in Fig. 2. The model estimates were in good

agreement with the empirical cdf. Both plots display

three major step changes in the interval from 0.99 to

1.0, and the model-predicted step changes were

shifted slightly to the left compared to the data.

The model results suggested that similarity values

below 0.9946 were likely derived from dissimilar

sequences at a confidence level of 0.95. Both the

model and the quantile method generated similar

0.90 and 0.99 confidence intervals. Thus, when com-

paring sequences derived from operations such as

cloning and sequencing, values of similarity on the

order of 0.995 could be derived from the sequencing

of identical clones 1 of 10 times. Similarities on the

order of 0.992 can be derived from sequencing of

identical clones 1 out of 100 times.

In the range close to 100% similarity, changes in

the mean and variance of replicate sequencing had a
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Fig. 1. Tree showing the phylogenetic placement of the nine clones (shown in bold) chosen for the sequence comparison example. The tree is

based on the neighbor-joining method and a pairwise deletion. The percentage of 500 bootstrap values that supported in branch is shown, and

bootstrap values below 50% are not shown. The accession numbers for the reference sequences are: Rhodoferax fermentans (D16212),

Comamonas acidovorans (AB021417), Methylobacter T20 (AF131868), Bdellovibrio bacteriovorus (AY094129), Flectobacillus sp. MWH38
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(X68464), and uncultured low G+C clone (AJ287680).
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small effect on the lower confidence interval. We

repeated the calculation of the lower confidence inter-

vals ( p b0.05 and p b0.01) using twelve combina-

tions of mean similarity (0.9975–0.9990) and

variance (2�10�6 to 8.33�10�6). For p b0.05 the

resulting lower confidence interval ranged from

0.9925 to 0.9965 and for p b0.01 the range was
0.9896 to 0.9948. Due to the stepwise nature of the

double binomial function it was not possible to reli-

ably interpolate between values for the mean and the

variance. Thus, the confidence limit can only be cal-

culated with a high degree of precision by actually

performing the calculation rather than by interpolation

from a table.
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The empirical similarity values were arranged from

lowest to highest, and a quantile estimate, qz, for a

confidence level 0.90 was estimated from the highest

value to the value representing 10% of ( y +1). The

data set included a series of 90 empirical observations.

The value at 10% of 90+1=91, which is approxi-

mately the ninth order statistic in the series, was

0.9953. Consequently, we were confident at the 0.90

level that a new observation would not be below

0.9953.

For the 0.90 and 0.99 level confidence intervals,

the double binomial model estimates were very simi-

lar to the quantile estimates (Table 1). Differences

were less than 0.1%. However, there was a large

dstepT in the 0.90 to 0.95 range for the double bino-

mial model that seems to identify a critical breakpoint

for similarity. A similarity index of 0.9946–0.9947

was associated with a much higher confidence level

than similarities that were only slightly larger. It was

possible to use the double binominal model to con-
Table 1

Lower bounds of confidence intervals for sequence similarity index

based on the quantile and double binomial methods

1� z Quantile Double binomial Difference

0.90 0.9953 0.9947 0.06

0.95 0.9933 0.9946 �0.13
0.99 0.9924 0.9919 0.05
struct confidence intervals beyond the 0.99 level,

whereas sample size limited the ability of quantiles

to estimate confidence beyond this level.
4. Discussion

The goal of many large-scale sequencing projects

is one error in 104 nucleotides, but a systematic

evaluation of sequencing error in most genome pro-

jects has not been reported. Hill et al. (2000) estimated

a sequencing error rate based on the mobile genetic

element IS10. The results suggested that an accuracy

of less than 1 sequencing error in 104 base-pairs was

currently achieved, and that IS10 was neither unu-

sually difficult nor easy to sequence. The error fre-

quency in 40 single-pass sequence reads of expressed

sequence tags that contained IS10 was approximately

3.1%, and the average sequencing error was between

0.4 and 1.3% when the SSU rRNA gene sequences

from different bacterial lineages were used in our

study. Large-scale sequencing projects usually incor-

porate overlapping sequence reads to help improve

accuracy, and thus would help explain a lower error

rate (1 per 104) compared to single reads of non-

overlapping sequence (screening of a SSU rRNA

gene library). The serial analysis of gene expression

(SAGE) method for the estimation of transcript abun-
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dance is dependent upon sequence determination, and

the impact of possible error rate was recently evalu-

ated. Colinge and Feger (2001) developed techniques

to compute and model sequencing error in relation to

SAGE, and Stollberg et al. (2000) developed a basic

maximum likelihood estimation based on certain

mathematical biases.

Our results suggested that only a small portion of

the apparent diversity observed in cloning and sequen-

cing of environmental communities was derived from

sequencing error, and the model estimates that few of

the similarity values were affected by sequencing

errors. More significant difficulties likely arose from

problems in the DNA extraction and the biases intro-

duced by PCR amplification such as chimeric

sequences and heteroduplexes (Zhou et al., 2002;

Qiu et al., 2001). It should also be noted that the

sequences analyzed in this study were partial

sequences, and partial sequences are commonly used

for relative comparisons within and between samples.

The sequence determination of clonal SSU rRNA

genes should not be used as the sole criteria for

identification (Fox et al., 1992). However, partial

sequences of informative regions can be used to effi-

ciently screen libraries and thereby reduce the number

of full-length sequences needed to represent the recov-

ered diversity from a microbial community. Further

studies are needed to determine how well diversity in

particular segments of SSU rRNA gene sequences can

predict overall sequence relationships, but variable

and conserved regions will perform differently for

increasing levels of likeness.

In addition, our results indicated that there was

great discrimination between strains and little chance

of error at similarities greater than 99% (Fig. 2 and

Table 1). At similarities of 99%, the probability of

sequencing errors resulting in the misclassification of

two clones from the same strain (assigning them as

different OTUs) was extremely small. The results

indicated that the values of 97% to 98% similarity

that have been explicitly or implicitly used in previous

studies could be achieved with confidence when

clones are randomly selected and screened via

sequence determination. The implication of our data

was that sequences with similarity values significantly

greater than 99% cannot conclusively be placed into

phylogenetic groups based on random sequence

screening, but OTU classifications of 97% to 98%
can certainly be obtained with confidence. There is

not currently a cohesive definition for a bacterial

species, and much more work and debate are needed

before comprehensive and systematic approaches are

adopted for the analysis of microbial communities.

However, our results indicated that a random sequen-

cing approach of the V2–V6 region of SSU rRNA

gene sequences could differentiate between environ-

mental clones at the 97% to 98% similarity level

without a significant effect from sequencing error.
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Appendix A

The estimation of E(1 /m), where m follows a

binomial distribution, depends on two approxima-

tions. The binomial theorem Eq. (A1) is used in the

following rationale:

XN
m¼0

�
N

m

�
xmyN�m ¼ xþ yð ÞN : ðA1Þ

First expand the expectation and rearrange terms:
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�
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�
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�
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m! N � mð Þ!

�
pmd 1� pdð ÞN�m: ðA2Þ

We introduce the first approximation in the case

where only large values of m close to N have



M.W. Fields et al. / Journal of Microbiological Methods 65 (2006) 144–152152
associated probabilities much greater than zero.

Rearranging:
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mþ 1ð Þ! N þ 1ð Þ � mþ 1ð Þ½ �! p

mþ1
d

� 1� pdð Þ Nþ1ð Þ� mþ1ð Þ½ �: ðA3Þ

Let NV=N +1 and mV=m +1:

E

�
1

m

�
i

�
1

Npd

� XN V�1

mV¼1

�
N V!

mV! N V� mVð Þ!

�
pmVd

� 1� pdð ÞN V�mV: ðA4Þ

Apply Eq. (A1) while accounting for the first and

last terms of the sum:

E

�
1

m

�
i

1

Npd
1� 1� pdð ÞN V � pN V

d

h i
i

1

Npd
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h i
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For large N,

E
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m

�
i
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: ðA6Þ
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