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Abstract
Background: The Arc two-component system is a global regulator controlling many genes
involved in aerobic/anaerobic respiration and fermentative metabolism in Escherichia coli. Shewanella
oneidensis MR-1 contains a gene encoding a putative ArcA homolog with ~81% amino acid sequence
identity to the E. coli ArcA protein but not a full-length arcB gene.

Results: To understand the role of ArcA in S. oneidensis, an arcA deletion strain was constructed
and subjected to both physiological characterization and microarray analysis. Compared to the
wild-type MR-1, the mutant exhibited impaired aerobic growth and a defect in utilizing DMSO in
the absence of O2. Microarray analyses on cells grown aerobically and anaerobically on fumarate
revealed that expression of 1009 genes was significantly affected (p < 0.05) by the mutation. In
contrast to E. coli ArcA, the protein appears to be dispensable in regulation of the TCA cycle in S.
oneidensis. To further determine genes regulated by the Arc system, an ArcA recognition weight
matrix from DNA-binding data and bioinformatics analysis was generated and used to produce an
ArcA sequence affinity map. By combining both techniques, we identified an ArcA regulon of at
least 50 operons, of which only 6 were found to be directly controlled by ArcA in E. coli.

Conclusion: These results indicate that the Arc system in S. oneidensis differs from that in E. coli
substantially in terms of its physiological function and regulon while their binding motif are strikingly
similar.

Background
Shewanella oneidensis MR-1 is a facultative gram-negative
anaerobe with remarkable anaerobic respiration abilities
that allow the use of a diverse array of terminal electron
acceptors. These acceptors include fumarate, nitrate,
nitrite, thiosulfate, elemental sulfur, trimethylamine N-

oxide (TMAO), dimethyl sulfoxide (DMSO), Fe(III),
Mn(III) and (IV), Cr(VI), and U(VI) [1]. Because of this
exceptional metabolic flexibility and the potential use of
this organism for the bioremediation of metal/radionu-
clide contaminants in the environment, S. oneidensis MR-
1 has been extensively studied and its genome has been
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sequenced [2]. However, little is known on how this bac-
terium adopts different metabolic modes in response to
the availability of oxygen. In Escherichia coli, the global
regulator Fnr (fumarate nitrate regulator) plays a major
role in altering gene expression between aerobic and
anaerobic conditions. In contrast, S. oneidensis MR-1
appears to employ Crp (cyclic-AMP receptor protein)
rather than EtrA (electron transport regulator, S. oneidensis
analog to E. coli Fnr) and possibly other unidentified pro-
teins in regulating anaerobic respiration [3-5].

Arc (aerobic respiration control) is another system playing
a role in oxygen-sensing and regulating anaerobic respira-
tion in E. coli [6]. As a classical two-component system,
Arc consists of the transmembrane sensor kinase ArcB and
the DNA binding response regulator ArcA [7]. Under
anaerobic or microaerobic respiratory conditions, ArcB
undergoes autophosphorylation by sensing the redox
state of quinone pool [8,9]. The phosphorylated ArcB
then transfers a phosphate group to ArcA through a phos-
pho-relay mechanism, resulting in phosphorylated ArcA
(ArcA-P) [7,10,11]. ArcA-P functions as either an activator
or repressor in mediating downstream genes by binding
to DNA in the promoter regions of the target genes [11].
Gene expression profiling has revealed that more than a
thousand genes in the E. coli genome are regulated either
directly or indirectly by the ArcA protein [12,13].

S. oneidensis MR-1 ArcA shared more than 80% in amino
acid sequence identity to its homologs in a number of
bacterial species in Escherichia, Salmonella, Yersinia,
Erwinia, Photorhabdus, Vibrio, and Shigella [6,8,14-16]. In
addition, the Asp54 residue in the N-terminal receiver
domain and the helix-turn-helix (HTH) DNA-binding
motif in the carboxy-terminal domain are structurally
conserved. However, the genome lacks a definitive full-
length arcB gene. ArcA of S. oneidensis MR-1 has been
proven functional and involved in the oxygen response as
well as in respiration of DMSO and in the detachment of
cells from biofilms [14,17,18]. SO1327 (HptA) of S. onei-
densis, exhibiting a significant degree of similarity to the
Hpt domain of the E. coli ArcB, has been proposed to func-
tion to transfer phosphate groups to ArcA [14]. However,
whether HptA is able to phosphorylate ArcA either in vitro
or in vivo remains unanswered except that an hptA dele-
tion strain was only slightly deficient in utilizing DMSO
[14]. Furthermore, proteins equivalent to the sensor and/
or the additional phosphotransfer domains remain uni-
dentified.

The purpose of this genome-based study is to understand
how the S. oneidensis MR-1 Arc system affects expression
of genes under aerobic and anaerobic conditions. To this
end, an arcA knockout mutational strain was constructed
and subjected to physiological characterization and tran-

scriptomic analysis. Results revealed that the mutation in
arcA has a profound effect on the bacterial physiology and
transcriptome. Meanwhile, an ArcA recognition weight
matrix was generated using promoter regions of the core
members of the Arc system to estimate the operons
directly controlled by ArcA. Comparatively, this atypical
Arc system differs from the E. coli Arc system substantially
in terms of both functionality and regulon.

Results
Generation and verification of an arcA deletion strain
A mutagenesis system for constructing deletion mutants
in S. oneidensis MR-1 has previously been developed and
successfully utilized [19,20]. The arcA deletion mutant,
designated as JZ3988K (∆arcA), was constructed using the
plasmid pDS3.1 following our established procedure as
described in Methods. The deletion was confirmed by
PCR, DNA sequencing and phenotype complementation.
The complementation plasmid pBBR-ARCA was con-
structed and introduced into the arcA deletion strain as
described in Methods. Two consistent phenotypes were
identified: aerobic growth defect and anaerobic growth
defect on DMSO as presented in the next section and
reported previously, respectively [14]. The wild-type and
the mutant strains containing empty plasmid pBBR1MCS-
5 were included as controls. In all cases, physiological dif-
ferences were insignificant between the arcA mutation
strain containing plasmid pBBR-ARCA and the wild-type.
These results verified that the phenotype of the arcA
mutant is specific to the mutation in the arcA gene.

Physiological characterization of the ∆arcA strain
Under aerobic conditions, growth of the ∆arcA strain was
substantially slower than that of its parental strain MR-1
(Figure 1A). Although oxygen per se is not the direct signal
for activation of the Arc system, the system functions to
respond to redox conditions of growth [10]. Therefore,
the observed growth difference may result from variation
of culture oxygen levels in MR-1 and the mutant cultures.
To rule out this possibility, levels of dissolved oxygen
(DO) in both cultures were measured. As shown in Figure
1B, DO decreased quickly when cells grew up at the early
stage. When cells entered the mid-log phase, DO reached
the lowest point (0.06 mg/L) and remained at the level
until the late stationary phase. Through the entire process,
DO appeared to be irrespective of different strains but a
function of cell density. All these results suggest that the
Arc system of S. oneidensis has a role in the bacterial aero-
biosis. Complementation of the ∆arcA strain with the
pBBR-ARCA plasmid restored a growth rate similar to that
of the wild-type aerobically. Under anaerobic conditions,
differences in growth rate and maximum cell density
between the mutant and wild-type strains were statisti-
cally insignificant when one of the following electron
acceptors was used; fumarate (20 mM), nitrite (1 mM),
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thiosulfate (3 mM), TMAO (20 mM), MnO2 (5 mM), fer-
ric citrate (10 mM), and cobalt(III)-EDTA (200 µM) (data
not shown). In agreement with a previous report, the
mutant was severely defective in utilizing DMSO (20 mM)
[14].

To determine possible involvement of the Arc system in
cell viability during the stationary phase in S. oneidensis,
survival of the ∆arcA strain during this phase was exam-
ined in both still and shaking cultures as described in
Materials and Methods. While cells of the wild-type and
mutant strains died more quickly in the shaking cultures,
little difference in survival rates between the wild-type and
∆arcA strains was observed under either condition. These
results implicate that ArcA is dispensable in maintaining
the viability of S. oneidensis cells during stasis (Figure 1C).

Global transcriptomic analysis of the ∆arcA strain
Microarray analysis was employed to dissect the transcrip-
tomic differences elicited by the mutation in arcA during
aerobiosis and anaerobiosis. For aerobiosis, the wild-type
and mutant cells at exponential phase were used because
the phenotypic difference was most significant during this
period. Although little difference in physiology was
observed between the wild-type and ∆arcA strains during
anaerobiosis with fumarate as the sole electron acceptor,

the exponential stage cells were collected for this study to
serve two purposes. First, this may facilitate our under-
standing of ArcA's role during anaerobiosis. Second, this
enables us to compare transcriptomes of E. coli arcA
mutant to S. oneidensis arcA mutant because microarray
analyses on E. coli arcA muant have been conducted under
the similar conditions [12,13]. The quality of microarray
data was assessed with two approaches used as a standard
in our laboratory. First, the high quality of the expression
data was validated with a statistical analysis as previously
described [21]. Second, 8 ORFs were selected for real-time
quantitative reverse transcription-PCR (qRT-PCR) analy-
sis with the same RNA samples used in the array hybridi-
zations based on the level and reproducibility of changes
observed in the microarray experiments. A high level of
concordance (R2 = 0.96) was observed between microar-
ray and real-time qRT-PCR data despite quantitative dif-
ferences in the level of change, suggesting that the
microarray results are an accurate reflection of the gene
expression profile (Figure 1S in additional file 1).

In total, 1009 genes passed ANOVA statistical analysis (p
< 0.05) with Benjamini and Hochberg False Discovery
Rate multiple testing correction in at least one of two
hybridizations between JZ3988K and MR-1, representing
approximately 21.7% of the 4,648 ORFs spotted on the
array (Table S1 in additional file 2). Interestingly, only 12
genes responded oppositely under aerobic and anaerobic
conditions while the majority of 1009 genes responded to
the arcA mutation are irrespective to the availability of
oxygen. The functional class distribution of these 1009
genes is shown in Fig. 2. Genes displaying significant dif-
ferences in expression due to an arcA mutation under
either aerobic or anaerobic conditions were observed in
almost every category. The wide distribution of putative
functional roles attributed to the differentially expressed
genes indicates that ArcA has a global effect on gene
expression in S. oneidensis. While up to 54% of the genes
showed increased expression in the absence of ArcA under
aerobic conditions, the percentage of this type of genes
under anaerobic conditions increased to 60%. The most
noticeable differences in gene numbers between tested
conditions were observed in the categories of protein syn-
thesis (M) and nucleotide synthesis (N). Under aerobic
conditions, nearly all of genes in these two categories
showed reduced expression in the absence of ArcA but
very few genes in these categories were affected under
anaerobic conditions.

While 1009 genes significantly affected in terms of their
level of expression by the arcA mutation provide a large
amount of information, it is less practical to discuss all of
them in detail. Thus we generated a high-confidence list of
317 genes with at least a 2-fold change in expression and
an ANOVA P value of < 0.01 (Table S2 in additional file

Characteristics of S. oneidensis MR-1 and mutant strains under various conditionsFigure 1
Characteristics of S. oneidensis MR-1 and mutant 
strains under various conditions. MR-1 (blue Diamond), 
JZ3988K (purple Square). (A) Growth under aerobic condi-
tions, Complementation of JZ3988K with pBBR-ARCA (light 
green triangle) was also shown. (B) Dissolved oxygen con-
centration in MR-1 and JZ3988K cultures was plotted against 
OD600 values. (C) Survival rates during the stationary phase 
under aerobic conditions in shaken (blue diamond and purple 
Square) and still cultures (yellow diamond and green square) 
were shown.
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3). To identify co-regulated patterns of gene expression,
we classified these 317 differentially expressed genes into
7 hierarchical clusters based on their log ratio of expres-
sion (Fig. 3).

Expression Pattern I: Induced in the ∆arcA strain during either 
aerobiosis or anaerobiosis
Transcription of the 118 genes in this cluster was up-regu-
lated in the ∆arcA strain under either aerobic or anaerobic
conditions (Table S2 in additional file 3). 61 of these
genes encode hypothetical proteins or proteins whose
functions are presently unknown.

Genes encoding proteins in cellular processes include
so0866 (putative minor curlin subunit CsgB), acc
(aculeacin A acylase), pilU (twitching motility protein
PilU), so3685 (putative curli production assembly/trans-
port component CsgG), so3686 (putative curli production
assembly/transport component CsgF), so3687 (putative
curli production assembly/transport component CsgE),
so4149 (putative RTX toxin), and aggA (agglutination pro-
tein). All but pilU or so4149 were reportedly involved in
biofilm formation. This is not surprising because the

Hierarchical clustering of selected genesFigure 3
Hierarchical clustering of selected genes. All these 
genes are listed in Table S2 (in additional file 3). Expression 
differences (∆arcA/MR-1) were represented by colors: red, 
induced, yellow, insignificant, and green, repressed. Each pat-
tern is identified by different colors on the dendrogram and 
by numbers that correspond to the gene expression pat-
terns. +O2, aerobic conditions; -O2, anaerobic conditions.

Differentially expressed genes grouped by functional classifi-cation according to the TIGR S. oneidensis genome databaseFigure 2
Differentially expressed genes grouped by functional 
classification according to the TIGR S. oneidensis 
genome database. A, Amino acid biosynthesis; B, Biosyn-
thesis of cofactors, prosthetic groups, and carriers; C, Cell 
envelope; D. Cellular processes; E, Central intermediary 
metabolism; F, Disrupted reading frame; G, DNA metabo-
lism; H, Energy metabolism; I, Fatty acid and phospholipid 
metabolism; J, Hypothetical proteins; K, Mobile and extra-
chromosomal element functions; L, Protein fate; M, Protein 
synthesis; N, Purines, pyrimidines, nucleosides, and nucle-
otides; O, Regulatory functions; P, Signal transduction; Q, 
Transcription; R, Transport and binding proteins; S, Unclassi-
fied; T, Unknown function. Bars in black are the genes that 
showed decreased expression in the presence of ArcA; bars 
in gray are the genes that showed increased expression in 
the presence of ArcA.
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involvement of the ArcA regulon in the development of
biofilms has been firmly established in both E. coli and S.
oneidensis [17,22].

Several genes for energy metabolism were also in this clus-
ter. Operon hoxK-hyaB-hydC encodes three subunits of the
quinone-reactive Ni/Fe hydrogenase which catalyzes the
reversible oxidation of molecular hydrogen and plays a
central role in microbial energy metabolism [23]. The
operon has been proven to be directly under the control
of ArcA [14]. Correspondingly, four genes of the operon
hypFBCDEA, which encode proteins required for Ni/Fe
hydrogenase (encoded by operon hoxK-hyaB-hydC) matu-
ration, were found in this cluster [24].

ArcA appears to repress expression of a number of genes
encoding regulatory proteins. These included so0864
(transcriptional regulator, LuxR family), so0916 (tran-
scriptional regulator, MarR family), rseA (sigma-E factor
negative regulatory protein), so1661 (transcriptional regu-
lator, LysR family), so1699 (transcriptional regulator),
pspF (psp operon transcriptional activator), so3516 (tran-
scriptional regulator, LacI family), so4542 (transcriptional
regulator, LacI family), and rpoS (alternative sigma factor
σS). Among these genes, only three have been well defined
in E. coli. RseA is an anti-sigma factor that inhibits sigma
E which transcribes genes that encode protein folding fac-
tors in response to extracytoplasmic stress stimuli [25].
The PspF protein belongs to the enhancer-binding protein
family of sigma54-dependent activators and participates
in controlling several genes involved in phage-shock, such
as pspABC operon [26,27]. In E. coli, the stationary phase
alternative sigma factor σs, controls the expression of the
genes involved in cell survival in response to cessation of
growth (stationary phase) and provides cross-protection
to various stresses [28]. Involvement of ArcA in E. coli sta-
tionary phase via catabolic control has also been estab-
lished [29].

Expression Pattern II: Induced during aerobiosis but unaffected 
during anaerobiosis in the ∆arcA strain
Among the 317 genes, 29 showed increased expression
under aerobic conditions but unchanged expression
under anaerobic conditions in the mutant (Table S2 in
additional file 3). It is reasonable to assume that these
genes have a role during aerobiosis only.

Of the genes encoding proteins in this cluster, acnA (aco-
nitate dydratase), aceB (malate synthetase A), and aceA
(isocitrate lyase) were particularly worth noting. The acnA
gene was the only one in TCA repressed by ArcA (Fig. 4).
In contrast, ArcA represses transcription of the genes
involved in entire TCA cycle except for acnB in E. coli [30].
Like AceB and AceA, AcnA is also a component in the gly-
oxylate pathway. The pathway short-circuits the TCA cycle

and therefore rendering most of the TCA components
unnecessary.

Expression Pattern III: Induced during aerobiosis but repressed during 
anaerobiosis in the ∆arcA strain
Among the 317 genes, 6 showed increased expression
under aerobic conditions but reduced expression under
anaerobic conditions in the mutant compared to the wild-
type (Table S2 in additional file 3). Most of these genes
encode proteins with unknown function.

Expression Pattern IV: Unaffected during aerobiosis but induced 
during anaerobiosis in the ∆arcA strain
A total of 54 genes were clustered into this pattern (Table
S2 in additional file 3). Among these 54 genes, 22 encode
proteins in energy metabolism. The most notable observa-
tion was that all members except nuoK of the nuoA-N
operon, encoding NADH dehydrogenase I, were mildly
induced in the mutant only under anaerobic conditions.
Studies in E. coli revealed that expression of the nuoA-N
operon is repressed by ArcA-P under anaerobic conditions
[31]. NADH dehydrogenase I primarily functions to cou-
ple the transfer of electrons from NADH to ubiquinone
with the translocation of protons across the membrane in
E. coli and Klebsiella pneumoniae [32].

Expression changes of genes in TCA cycle and glyoxylate pathway under aerobic conditionsFigure 4
Expression changes of genes in TCA cycle and glyox-
ylate pathway under aerobic conditions. Changes were 
recorded as the ratio of expression in ∆arcA to that in MR-1, 
"--" represents unaffected by the mutation, "↑" represents 
up-regulated in the arcA- strain.
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The remaining 14 genes included astD (succinylglutamic
semialdehyde dehydrogenase), deoC (deoxyribose-phos-
phate aldolase), torD (TorA specific chaperone), torA
(TMAO reductase), torC (tetraheme cytochrome c),
so1659 (tetraheme cytochrome c), ccoP (cytochrome c oxi-
dase, cbb3-type, subunit III), ccoQ (cytochrome c oxidase,
cbb3-type, CcoQ subunit), ccoO (cytochrome c oxidase,
cbb3-type, subunit II), ccoN (cytochrome c oxidase, cbb3-
type, subunit I), pflB (formate acetyltransferase), pflA
(pyruvate formate-lyase 1 activating enzyme), ackA (ace-
tate kinase), and pta (phosphate acetyltransferase). Except
for so1659 and astD whose product is involved in arginine
degradation, all other genes were co-regulated with the
majority of their operon members [33]. The torCAD genes
encode an inducible TMAO respiratory system as
observed in E. coli [34,35]. In addition to deoC, operon
deoC-B-A contains other two genes deoA (thymidine phos-
phorylase) and deoB (phosphopentomutase) which have
been classified into the functional category of purines,
pyrimidines, nucleosides, and nucleotides by TIGR. The
products of this operon are involved in (deoxy)ribose
phosphate degradation in E. coli [36]. Cytochrome c oxi-
dase (CcoN-O-Q-P), whose counterpart is not found in E.
coli genome, has been well studied as a vital complex in
oxidative phosphorylation [37]. Further exploration is
needed to clarify why the operon is affected under anaer-
obic conditions. PflB is an enzyme catalysing the reversi-
ble reaction of pyruvate and coenzyme A into acetyl-CoA
and formate after being activated by PflA under anaerobic
conditions [38] while the versatile AckA-Pta have been
reported to function in threonine degradation, acetate uti-
lization, pyruvate oxidation, and mixed acid fermentation
pathways under both aerobic and anaerobic conditions.
AckA has been well studied as a member of ArcA regulon
in E. coli [39].

Genes that belong to the category of transport and bind-
ing proteins also are enriched in this cluster. These
included so1033 (putative iron-compound ABC trans-
porter, ATP-binding protein), so1034 (iron-compound
ABC transporter, permease protein), so1882 (AcrB/AcrD/
AcrF family protein), modA (molybdenum ABC trans-
porter, periplasmic molybdenum-binding protein), modC
(molybdenum ABC transporter, ATP-binding protein),
so4281 (putative potassium uptake protein KtrA), and ktrB
(potassium uptake protein KtrB). Iron is an essential
minor element for most organisms, playing vital roles in
many important biological processes [40]. Although iron
metabolism in E. coli is well studied, the iron-compound
ABC transporter proteins in E. coli are still poorly defined.
The possible E. coli genes corresponding to so1033 and
so1034 are fhuA and fecC, respectively, which belong to
two operons. It is not surprising that modA and modC fall
into this category because the transition metal molybde-
num is required for the enzymatic activities of most bacte-

rial molybdoenzymes during anaerobiosis, including
sulfite oxidase, nitrate reductase, DMSO reductase, and
formate dehydrogenase [41]. KtrA and KtrB, two members
of a new type of bacterial K+-uptake system, are peripheral
and integral membrane proteins cooperating in K+ trans-
location [42]. The system appears to be widespread and
functions in the adaptation of cells to hyperosmotic con-
ditions [43,44].

Expression Pattern V: Unaffected during aerobiosis but repressed 
during anaerobiosis in the ∆arcA strain
A total of 33 genes shared this expression pattern (Table
S2 in additional file 3). Five genes (cymA, omcA, omcB,
napB, so3980) encoding cytochrome c proteins, along with
dmaA-1 and dmsB-1 encoding DMSO reductase, belong to
this cluster. CymA, one of the most versatile cytochrome c
proteins, supplies electrons to at least five different termi-
nal reductases for utilizing fumarate, DMSO, nitrate,
nitrite, and Fe(III) [45,46]. OmcA and OmcB have been
reported to be involved in anaerobiosis, especially in
Mn(IV) reduction [47]. Genes dmaA-1 and dmsB-1 are
from operon so1427-30 which is directly controlled by
ArcA-P and the rest two genes encode a cytochrome c pro-
tein (SO1427) included in the cluster V and an outer
membrane protein (SO1428) in this cluster [14]. While
DmaA-1 and DmsB-1 are functional subunits of DMSO
reductase, SO1427 and SO1428 remain uncharacterized.
Two genes (so1431-2) in this cluster encoding hypotheti-
cal proteins, locating immediately after the so1427-30
operon, have been listed as members of the so1427-30
operon [14]. However, an individual operon for these two
genes has been predicted by two independent studies
[48,49].

One of the most unexpected findings in this study was
that three members (napD, napA, and napB) of the nap
operon for nitrate reduction and so3980 (nrfA) for nitrite
reduction were strongly repressed in the ∆arcA strain. In S.
oneidensis, it has been demonstrated that the nap operon is
essential for reduction of nitrate to nitrite in S. oneidensis
[50]. Meanwhile, so3980 (nrfA) is essential for reduction
of nitrite to ammonium (unpublished results). To verify
this observation, expression of napA was measured by
real-time qRT-PCR. The qRT-PCR results correlated well
with those obtained from the microarrays as shown in Fig.
1S.

The fadA and fadB genes, consisting of an operon and
encoding subunits of the fatty acid oxidation complex,
belong to this cluster too. In E. coli, two fatty acid oxida-
tion pathways (aerobic and anaerobic) have been charac-
terized [51]. The FadAB complex functions in the aerobic
fatty acid oxidation pathway only. However, it is arguable
because the fadBA operon has been shown previously to
be anaerobically repressed by the ArcA protein [12]. Our
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findings further indicated that ArcA has an effect on the
fadBA operon under anaerobic conditions.

Expression Pattern VI: repressed during aerobiosis but unaffected 
during anaerobiosis in the ∆arcA strain
A total of 46 genes were clustered into this pattern. Most
of the genes encoding ribosomal proteins and ATP syn-
thase were found in this cluster (Table S2 in additional file
3). 20 out of 52 ribosomal structural genes (within rpl,
rpm, and rps operons), along with genes (fusA-1 (transla-
tion elongation factor G), secY (SecY subunit of preprotein
translocase), rimM (16S rRNA processing protein), tsf
(translation elongation factor Ts), frr (ribosome recycling
factor), pyrH (uridylate kinase), and radC (DNA repair
protein RadC)) encoding ribosome related proteins
within these three operons. 5 (atpA, atpB, atpE, atpF, and
atpH) out of 9 members (atpA-I) of ATP synthase F1 and
F0 were down-regulated during aerobiosis in the mutant
strain. Proteins from both these subgroups belong to this
macromolecule synthesis class. The ATP synthase of E. coli
functions to synthesize ATP either by electron transport-
link phosphorylation under aerobic conditions or by gen-
eration of an electrochemical proton gradient under
anaerobic conditions and its regulation is largely under
the control of the cell growth rate [52]. It is likely that the
repression of these operons may result from the slower
growth of mutant strain.

The remaining 13 genes included petAB (iron-sulfur &
cytochrome b subunits of ubiquinol-cytochrome c reduct-
ase), lrp (leucine-responsive regulatory protein), hugA
(heme transport protein), purA (adenylosuccinate syn-
thetase) so1770-1 (glycerate kinase & GntP family per-
mease), so3300-1 (cytochrome c proteins), and four
encoding hypothetical proteins or protein with unknown
functions. Cytochrome bc1 complex encoded by petA and
petB contributes to the formation of membrane potential
and proton gradient, which are coupled to ATP synthesis
[37]. It is not surprising that expression of these two genes
was consistent with expression of operon atpA-H. Lrp is a
major regulatory protein involved in the expression of
more than 30 operons largely in response to leucine in E.
coli [53]. None of these operons have been reported to be
regulated by ArcA. HugA, a predicted ATP transporter of
protoheme, has been reported to be functionally related
to the TonB energy transducing system [54]. Another
member of the hugA operon, so3667, encoding a hypo-
thetical protein, was also in this cluster.

Expression Pattern VII: Repressed during aerobiosis or anaerobiosis 
in the ∆arcA strain
This cluster contains 31 genes, 16 of which encode hypo-
thetical proteins (Table S2 in additional file 3).

Genes in this cluster encoding transport and binding pro-
teins include so0919 (putative serine transporter), so1821
(putative outer membrane porin), emrD (multidrug resist-
ance protein D), so2427 (putative TonB-dependent recep-
tor), so2865 (putative L-lysine exporter), so3099 (putative
long-chain fatty acid transport protein), so3706 (NupC
family protein), and so4014 (AcrB/AcrD/AcrF family pro-
tein). Genes encoding proteins in metabolic pathways
include speF (inducible ornithine decarboxylase), so1427
(decaheme cytochrome c), and so3705 (putative 5-meth-
ylthioadenosine nucleosidase/S-adenosylhomocysteine
nucleosidase). SpeF is the ornithine decarboxylase which
helps cells against low environmental pH [55]. As the first
gene of the operon so1427-30 which contains genes
encoding DMSO reductase, so1427 differed in expression
pattern from other members of the operon as discussed in
pattern V. Also, genes so1418 (ApbE family protein),
so3969 (OmpA family protein) and so4681 (glycosyl
transferase, group 1 family protein) encode proteins in
the functional category of cell envelope.

Screening for target operons of ArcA(-P) by EMSA
The analyses presented thus far clearly showed that S. onei-
densis ArcA differs substantially from its E. coli counterpart
in its physiological role and regulates a large number of
genes. Although the majority of these genes may be
affected indirectly, those possessing an ArcA-binding site
in their upstream region are likely to be controlled directly
by ArcA. In E. coli, the consensus ArcA-P binding sequence
has been concluded computationally on the basis of DNA
footprinting data [12]. Given the high degree of conserva-
tion in sequence and structure between ArcA proteins of E.
coli and of S. oneidensis, it is reasonable to assume that
ArcA of S. oneidensis binds to a sequence similar to the E.
coli consensus 15-bp stretch. To verify this assumption
and to facilitate the determination of the consensus
ArcA(-P) binding sequence in S. oneidensis, a electro-
phoretic motility shift assay (EMSA) was used to examine
the ArcA(-P) binding activity of upstream sequences of
selected operons with purified ArcA proteins.

Expression of the S. oneidensis ArcA protein was initiated
by insertion of the arcA gene into the Gateway entry vector
pDONR221 using a lambda recombinase cloning strategy
[56]. The entry vector containing the arcA gene was then
converted to a protein expression system by recombina-
tion with the Gateway destination vector pDEST17 which
resulted in the attachment of an N-terminal His-tag for
protein purification. The His-tagged ArcA protein was
expressed in E. coli and purified from inclusion bodies
(Fig. 5A).

In total, PCR products containing upstream intergenic
regions of 30 individual operons were generated and
examined for their ArcA(-P) binding activities (Table 1).
Page 7 of 17
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Among them, gltA-sdhCAB, sucAB, icd, fdrCAB, acnB, and
frdC encoding enzymes involved in the TCA cycle were
chosen to validate the observation from the microarray
analysis that S. oneidensis ArcA appears to be dispensable
in the process [7,57-59]. The rest of the operons selected
met both or either of two criteria: a significant expression
difference elicited by the arcA mutation and a 15-bp
sequence in the upstream region similar to the E. coli con-
sensus ArcA-P binding motif. In a preliminary experiment,
the ArcA(-P) binding activity of the so1661 promoter
region was tested with the purified unphosphorylated
His-tagged S. oneidensis ArcA protein as well as the protein
phosphorylated with carbamoyl phosphate in EMSA. Sig-
nificant binding to the DNA probe occurred at a protein
concentration of less than 0.25 µM for ArcA-P (Figure 5B),
which is comparable to that from E. coli ArcA-P [7]. In
contrast, the non-phoshorylated ArcA did not bind even
when the protein concentration was increased to 4 µM
(Figure 5B). The binding of ArcA-P to the target promoter

was not reduced by addition of the nonspecific competi-
tor poly(dI·dC) DNA, but was outcompeted by adding
excess unlabeled probe (Figure 5B). These results demon-
strate that phosphorylated ArcA binds the so1661 pro-
moter in a sequence specific manner.

Among the tested PCR sequences in EMSA with phospho-
rylated ArcA, 20 showed ArcA(-P) binding activity (Figure
5C, only 8 were shown). Interestingly, all of these 20
sequences contained a 15 bp stretch sharing a high level
similarity with E. coli ArcA-P binding consensus motif.
Only one (so3659) such a sequence was not found to be
capable of binding. In contrast, the retardation of the
sequences without putative binding motif was not
observed, including those (so0314, so2389, so2460) exhib-
iting an extremely strong expression difference between
the mutant and the wild-type (data not shown). The pro-
moter sequences of operons encoding enzymes in the TCA
cycle, as expected, did not appear to interact with ArcA(-P)

ArcA(-P) Binding to selected promoters by EMSAFigure 5
ArcA(-P) Binding to selected promoters by EMSA. (A). Overproduced and purified recombinant S. oneidensis His6-ArcA 
from E. coli BL21 cells. (B). Interaction of so1661 promoter DNA with S. oneidensis His6-ArcA. The probe was prepared by PCR 
with SO1661-EMSA-F (33P end-labeled) and SO1661-EMSA-R primers (Table S4 in additional file 5). The EMS assay was per-
formed with 2 nM 33P end-labeled probes and various amounts of ArcA (left panel) or ArcA-P proteins (right panel). The pro-
tein concentrations for lanes 1–9 are 0, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 4.0, 4.0 µM, respectively. Non-specific competitor DNA, 
(2 µg poly dI·dC), was added (lane 8) and specific competitor (10 µM unlabeled SO1661 probe) was added (lane 9). (C). The 
binding assay was performed in the presence of 0, 1, or 2 µM ArcA-P and 2–5 nM radiolabeled promoter DNA 0.2 µg/µl 
poly(dI·dC) was used in all these binding reactions to block non-specific interactions. Promoter region of so0011 (gyrB) was 
included as negative control. The phosphorylation of the ArcA protein was done with carbamoyl phosphate.

A B

C
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at all (data not shown). This result, along with our micro-
array data, ruled out the possible involvement of the Arc
in TCA of S. oneidensis. Overall, the EMSA assays suggest
that the binding motif is the most important factor deter-
mining the binding activity of promoters.

Determination of genes directly under the control of 
ArcA(-P) in S. oneidensis
Two recent studies suggest that more than a hundred
operons are directly controlled by ArcA in E. coli [12,13].
While our physiological and microarray analyses demon-
strated that ArcA of S. oneidensis may differ substantially
from the canonical Arc system in terms of both functions
and regulatees, the consensus ArcA-P binding sequences
from these two microorganism are alike. In other words,
the binding site is more deterministic than expression
changes observed in microarray analysis. To screen for
operons whose upstream region contains a binding site,
an ArcA-binding weight matrix was constructed with 20

PCR sequences bound by ArcA-P revealed in the EMSA
(Table 1). Highly conserved stretches of 15 base pairs were
found in the upstream regions of all input genes using
AlignACE and a weight matrix was generated from these
sequences. A sequence logo was deduced to show the fre-
quencies scaled relative to the information content of at
each position. (Figure 6) [60,61]. Compared to the one in
E. coli, subtle changes at most bases were noticeable
although a high level of similarity remained. Especially,
nucleotides at both ends of the binding motif are much
less conserved in S. oneidensis while the 12th nucleotide
(G) appears to be important for binding.

The S. oneidensis genome was then scanned on either
strand and scores of all successive 15-bp stretches were
given using the log transformation method of Berg and
von Hippel [62]. The average of total scores was assigned
a Z score of 0 and sites with a Z score of 2.3 or greater and
within 700 bp of an ORF origin were regarded as the

Table 1: Operons tested for their ArcA(-P) binding activity by EMSA

Operon Fold changea

+O2 -O2 Positionb Putative motifc Featured

so0266-9 (ccmF-1) 1.07 0.94 -71 GTGAACAGAATGTTA B & E
so0314 (speF) -3.03 -2.79 E
so0396 (frdC) -0.07 -0.27 TCA
so0397-9 (fdrC) 0.39 0.25 TCA
so0432 (acnB) -0.54 -0.21 TCA
so0756 (aroG) -0.84 -2.18 -164 TTTAAAAATATGTTA B & E
so0806 3.22 3.64 -45 GAAAATTTTTTGTTA B & E
so0866 7.00 8.08 -136 GTAATTTAAATGTTA B & E
so1307 (aqpZ) 1.42 0.87 -197 GTTAACAAAGCGATA B & E
so1427-30 -1.78 -4.38 -246 GTTAATAAAATGTTT B & E
so1623 (ptsG) 2.00 3.26 -472 GTTACTTTATTGTTA B & E
so1661 2.47 3.11 -219 GTTAAATAATTGTTA B & E
so1806 (pspF) 2.63 2.42 -90 GTTAATAAAATGTTT B & E
so1821 -2.25 -3.18 -230 GTTAATTTGATGTTA B & E
so1926 (gltA) -0.58 -0.32 TCA
so1930-3 (sucA) 0.18 0.66 TCA
so1944 1.12 1.80 -65 GTTAAGTAATTGTAA B & E
so2099-5 (hoxK) 4.08 2.40 -147 GTTAATTAAATGTCA B & E
so2389 (emrD) -4.44 -3.18 E
so2460 5.73 6.83 E
so2629 (icd) -0.07 -0.49 TCA
so2706 (astB) 0.96 1.95 -209 GTTGAAAAAATGTAA B & E
so2727 -0.97 -1.47 -220 GTTATTCAAATGTAA B & E
so3099 -5.64 -4.64 -281 GTTAATTAAATTATA B & E
so3106 (aprE) 5.44 5.94 -127 GTAAATTAATTGTTA B & E
so3507 -0.56 0.70 -90 GTTAACTCAATGTTA B
so3565 (cpdB) -1.89 2.10 -257 GTTAATTAATTGTTG B & E
so3659 2.83 3.53 -205 GTAAAATCGATGTTAe B & E
so3855 (sfcA) 0.36 0.49 -177 GTTAATTGATTGTAA B
so4245 (argA) 0.19 0.41 -178 GTTAAAAAAATGTGA B

aLog2 value. For multiple-gene Operons, only expression of the first gene was listed
bReferring to the translation start site
cPutative binding motifs were given with E. coli consensus sequence as the reference
dOperon features. B: binding motif; E: Expression difference statistically significant; TCA: Operon functions in TCA
eArcA(-P) binding activity was not observed in EMSA and sequence was not used for constructing the weight matrix (Figure 6)
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potential ArcA-P binding sequences in S. oneidensis. The
cutoff value was chosen based on an assessment that 372
genes are potential members of the ArcA regulon and the
approximately 100–150 operons that may be under the
transcriptional control of ArcA in E. coli [12]. In total, 209
operons containing 313 protein-encoding genes were pre-
dicted to contain potential ArcA-binding sites in their
upstream regions (Table S3 in additional file 4).

By combining both microarray and weight matrix profil-
ings (Table S1 and S3 in additional file 2 and 4, respec-
tively), we identified at least 50 operons which could be
under the direct control of ArcA in S. oneidensis (Table 2).
In addition, operons next to a putative ArcA-binding site
with a Z score 3.0 or above are automatically included as
the candidates to be directly controlled by ArcA based on
the criteria adopted in similar studies [12]. The majority
of these operons encode proteins whose functions have
not been determined yet, implicating a significant func-
tion shift. These newly identified operons (i.e. so1427-30,
so1661, so1821) may represent lineage-specific ArcA regu-
lon members.

Discussion
The canonical Arc signal transduction system in γ-proteo-
bacterial species typified by E. coli is recognized as a sec-
ond global regulator that, like Fnr, mediates gene
expression in response to respiratory condition changes
[7,8,13]. In S. oneidensis, EtrA, an analog of E. coli Fnr,
appears to play a negligible role in this regulatory process,

leaving the Arc system the best currently recognized can-
didate for the role [3,4]. In addition to high similarities in
protein sequence and structure, the S. oneidensis arcA gene
has been shown to be able to complement an E. coli arcA
deletion mutant [14]. These findings strongly suggest a
functional similarity between ArcA proteins in S. oneiden-
sis and in other organisms and that the Asp54 residue is the
phosphorylation site if required. A homolog to the arcB
gene in S. oneidensis MR-1 has yet to be identified in the
genome. Further comparative analyses of multiple
Alteromonadaceae genomes indicate that this type of Arc
system is in fact common among the Alteromonadaceae.
Unfortunately, the 'atyptical' Arc systems have been
largely overlooked possibly because of the sequence and
structure conservation of ArcAs.

In this study, we have attempted to understand the major
physiological changes mediated by ArcA and define its
regulon with a comparison with ArcA of the canonical Arc
system in E. coli. The two systems differ significantly from
each other in several key aspects. Firstly, physiologically,
one of major questions about the Arc system is whether it
regulates any aspect of aerobic respiration. Unexpectedly,
S. oneidensis ArcA is directly involved in aerobic metabo-
lism. In E. coli, it is believed that the Arc system regulates
gene expression in response to anaerobic conditions
under which ArcB phosphorylates ArcA [8]. Correspond-
ingly, the maximum growth rate of an E. coli arcA mutant
was not significantly different from that of the wild-type
when grown on a variety of media if oxygen deprivation is
excluded [22,30,63-65]. Similarly, the absence of ArcA did
not show any effect on cell morphology and growth char-
acteristics of Salmonella enterica serovar Enteritidis under
aerobic conditions [15]. All these results indicate that
ArcA has a very limited role, if any, in aerobic respiration
in these bacteria. Secondly, ArcA of S. oneidensis appears to
be irrelevant to survival during stationary phase. The E.
coli ArcA is heavily involved in starvation-induced modu-
lations of gene expression and therefore plays a key role in
the bacterial stasis survival [29,66,67]. Thirdly, E. coli ArcA
proteins directly control the TCA cycle while the S. onei-
densis ArcA controls DMSO reduction directly [14]. All
these differences suggest that the S. oneidensis ArcA func-
tionally deviates from the canonical one considerably.

In spite of significant difference in their physiological
roles, the activation mechanism by phosphorylation and
the target sequences of ArcA proteins of E. coli and S. onei-
densis share a high level of similarity. In this study, the
EMSA results reinstated that a binding motif in the pro-
moter region rather than expression differences of target
genes appears to be more crucial for binding. Neverthe-
less, a combination of binding motif and expression dif-
ference promotes more accurate prediction. With the
combination, up to 50 S. oneidensis operons are identified

Sequence logo for the ArcA-P recognition matrix in S. onei-densisFigure 6
Sequence logo for the ArcA-P recognition matrix in 
S. oneidensis. The sequences used were listed in Table 1. 
The sequence conservation, measured in bits, is shown as the 
height of a stack of letters at each base position. Sequence 
logo for the ArcA-P recognition matrix in E. coli was also 
shown as comparison. The E. coli sequences used were from 
the previous report by Liu and De Wulf [12].

S. oneidensis

E. coli
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Table 2: Operons that are most likely under the direct transcriptional control of ArcA

Operona Ratio (log2)b

+O2 -O2 FCc Sited Se Zf Binding sequence Function of Operon

so0021-0 (fadBA) 0.67 -1.81 I 400 + 2.45 GTTAATAATAAATAT Fatty oxidation complex
so0266-9 (ccmF-1) 1.07 0.94 H 71 + 2.63 GTGAACAGAATGTTA Cytochrome c-type biogenesis protein CcmF
so0343 (acnA) 2.35 0.08 H 53 + 2.31 CTTAACTCAATGTGC Aconitate hydratase 1
so0383-2 (hsdSM) -0.64 -0.59 J 276 + 3.04 GTTAATAAAATGTTT Type I restriction-modification system
so0756 (aroG) -0.84 -2.18 A 164 + 2.74 TTTAAAAATATGTTA Phospho-2-dehydro-3-deoxyheptonate aldolase, phe-sensitive
so0806 3.22 3.64 E 45 - 2.49 GAAAATTTTTTGTTA Alkaline phosphatase, putative
so0866 7.00 8.08 L 136 + 2.94 GTAATTTAAATGTTA Serine protease, subtilase family
so0916 2.19 1.10 O 150 + 2.35 GTTAATAAAATATTG Transcriptional regulator, marr family
so1004-3 -1.31 -2.39 J 199 - 2.65 GTTATTGAAATGTAA Hypothetical protein
so1035-9 (cobTSUQO) 0.36 1.50 B 83 + 2.56 GTTAATTTAATGCTT Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase
so1307 (aqpZ) 1.42 0.87 R 197 - 3.01 GTTAACAAAGCGATA Aquaporin Z
so1309 -0.09 1.20 J 161 + 3.17 GTTACTTAAATGTTA Conserved hypothetical protein
so1427-30 -1.77 -4.37 C 246 - 3.13 GTTAATAAAATGTTT Decaheme cytochrome c
so1483 (aceBA) 3.90 0.15 H 291 + 2.34 TTTCACTAGATGTTA Malate synthase A
so1623 (ptsG) 2.00 3.26 P 506 - 2.76 GTTACTTTATTGTTA PTS system, glucose-specific IIBC component
so1659 0.83 1.54 H 260 - 2.49 ATTAATTTAATGATA Decaheme cytochrome c
so1661 2.47 3.11 O 219 + 3.12 GTTAAATAATTGTTA Transcriptional regulator, lysr family
so1673 0.64 3.69 C 288 + 2.66 GTAAATGAAATGTAA Outer membrane protein ompw, putative
so1806 (pspF) 2.63 2.42 O 90 - 3.13 GTTAATAAAATGTTT Psp operon transcriptional activator
so1807-9 (pspABC) -1.49 -0.85 L 102 + 3.13 GTTAATAAAATGTTT Phage shock protein A
so1812 (mdeA) 3.10 3.46 H 84 + 2.45 GTTATTTAAAAGATA Methionine gamma-lyase
so1821 -2.29 -3.22 R 230 + 3.05 GTTAATTTGATGTTA Outer membrane porin, putative
so1822 3.35 4.99 R 133 + 2.41 GTTGATTAAAGGTTT Tonb-dependent receptor, putative
so1944 1.12 1.80 J 65 - 2.96 GTTAAGTAATTGTAA Hypothetical protein
so1961 (maa) 2.96 -1.57 D 114 + 2.63 GTTAGCTAAATGGTA Maltose O-acetyltransferase
so2099-7 4.09 2.40 H 147 + 3.29 GTTAATTAAATGTCA Quinone-reactive Ni/Fe hydrogenase, small subunit precursor
so2100 1.18 0.63 J 216 - 3.29 GTTAATTAAATGTCA Thioredoxin family protein
so2199 1.48 3.72 J 101 - 2.76 GTGAATAAAATGTTT Hypothetical protein
so2305 (lrp) -1.40 -0.02 O 507 + 2.91 TTTAATTAAATCTTC Leucine-responsive regulatory protein
so2402 (rpsA) -1.03 -0.20 M 21 - 2.56 GTTACTTTAATGTAA Ribosomal protein S1
so2483 -2.10 -3.82 A 143 - 2.34 TTTAACTAAGTGTTA Aspartate aminotransferase, putative
so2706 (astB) 0.96 1.95 H 209 + 2.87 GTTGAAAAAATGTAA Succinylarginine dihydrolase
so2727 -0.97 -1.47 H 220 - 2.79 GTTATTCAAATGTAA Cytochrome c3
so2858-7 1.04 -2.18 J 153 + 3.07 GTAAATTCAATGTTA Conserved hypothetical protein
so2907 -2.41 0.53 T 179 - 3.13 GTTAATAAAATGTTT Tonb-dependent receptor domain protein
so3099 -5.82 -4.70 R 281 - 2.96 GTTAATTAAATTATA Long-chain fatty acid transport protein, putative
so3106 (aprE) 5.45 5.94 L 127 - 3.12 GTAAATTAATTGTTA Cold-active serine alkaline protease
so3278-9 2.39 2.87 J 41 - 2.59 GTTAATTTTATGTAA Conserved hypothetical protein
so3395-4 2.15 4.06 J 14 + 2.41 GTGAGTTAAAGGTTA Hypothetical protein
so3480 1.90 2.92 J 310 + 2.84 TTTAATTAAAATTTA Conserved hypothetical protein
so3489 2.42 2.56 T 41 + 2.92 ATCAATTAAATGTTA GGDEF domain protein
so3507 -0.57 0.70 J 90 - 3.02 GTTAACTCAATGTTA Conserved hypothetical protein
so3508 -2.79 0.05 J 46 + 3.02 GTTAACTCAATGTTA Hypothetical protein
so3564 (dcp-2) 0.02 0.67 O 441 + 3.04 GTTAATTAATTGTTG Peptidyl-dipeptidase Dcp
so3565 (cpdB) -1.87 2.10 H 257 - 3.04 GTTAATTAATTGTTG 2,3-cyclic-nucleotide 2-phosphodiesterase
so3855 (sfcA) 0.36 0.49 H 177 + 2.93 GTTAATTGATTGTAA Malate oxidoreductase
so3863-5 (modABC) 0.53 2.49 R 206 + 2.75 CTTGAGTAAATGTTA Molybdenum ABC transporter, periplasmic molybdenum-binding protein
so4245 (argA) 0.19 0.41 A 178 - 2.65 GTTAAAAAAATGTGA Amino-acid acetyltransferase
so4273 -0.85 0.39 L 9 + 3.08 GGTAATTAATTGTTA Hypothetical protein
so4457 1.69 2.66 T 63 - 2.76 GTTGCCTAAATGTTA GGDEF domain protein
so4480 (aldA) 0.87 -0.47 H 562 + 2.73 GTTAAATAAAGGTAA Aldehyde dehydrogenase
so4570 -0.33 -3.76 J 147 - 3.13 GTTAATAAAATGTTT Conserved domain protein
so4591 (cymA) -0.40 -1.65 H 112 - 2.64 ATTAATTAAAACTTA Tetraheme cytochrome c
so4592 2.45 1.40 J 312 + 2.64 ATTAATTAAAACTTA Hypothetical protein

a In bold, common in ArcA regulons of E. coli and S. oneidensis.
b Ratio of expression: arcA-/MR-1.
c Functional category, referring to Figure 2.
d location of the binding sequence is in bp upstream of the start codon.
e strand.
f z score.
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while at least 82 operons are reportedly under direct con-
trol of ArcA in E. coli [12]. Given that up to 2183 genes are
predicted to be in common in E. coli (~48.8%) and S. onei-
densis (~51.4%) genomes [68], the number of overlapping
operons (6) is surprisingly small (Figure 7). The majority
of members in the E. coli ArcA regulon involved in metab-
olism are not identified in the S. oneidensis ArcA regulon,
implicating that a significant difference in ArcA regulons
of these two organisms has evolved. It is worth noting that
none of the operons encoding TCA enzymes were located
next to these high-confident ArcA-binding sites, consist-
ent with our observation that these TCA operons were not
affected by the arcA mutation. In E. coli, on the contrary,
the promoter region of most TCA genes contains an ArcA-
binding site with z score above 3.0 [12]. It is possible that
ArcA-independent expression of S. oneidensis TCA genes
may be largely due to the loss of ArcA-binding sites in
their promoter regions.

Similarly, S. oneidensis ArcA may acquire controls over
new genes once an ArcA-binding site emerged in their pro-
moter regions through evolution. Genes (so1427-30) for
DMSO reductase and related proteins serve as a good
example. DMSO reduction pathway shares most of com-
ponents for anaerobic respiration on all other electron
acceptors except TMAO [46]. In E. coli, the Arc system
functions as a global regulator of respiratory gene expres-
sion under microaerobic and anaerobic growth condi-
tions [8-10]. As a result, utilization of many compounds
anaerobically is found to be affected simultaneously. In
contrast, the arcA mutant is defective in DMSO respiration
only, making it hard to accept that S. oneidensis ArcA func-
tions in a similar way. Given that a predicted ArcA-bind-
ing site is found within so1427 promoter region, we
propose that this operon become a new number of ArcA
regulon only because the binding site shows up, presum-
ably by chance.

Conclusion
This study provides the first comprehensive profile to elu-
cidate the functions of the atypical Arc system in S. onei-
densis, compared to the canonical one in E. coli. Our
findings demonstrated that two Arc systems are signifi-
cantly different from each other with respect to the physi-
ological functions and the regulons although the
sequences and binding motif are highly similar. S. onei-
densis ArcA does not appear to be involved in regulation
of TCA cycle while ArcA in E. coli repress the genes
involved in the TCA cycle under anaerobic condition.
More than 50 operons were confidently identified as
members of the Shewanella ArcA regulon, but a much
larger number of members are expected. However, only a
very limited number of the regulon members are shared
by the E. coli ArcA regulon. The significant differences in
both physiology of arcA mutants and regulon of ArcA pro-
teins of these two microorganisms may simply be due to
the differences in lifestyle, metabolism, and gene content
between them. Further molecular characterization of the
lineage-specific ArcA regulon members identified in this
study is needed to dissect the functional diversity and ulti-
mately the evolution of the Arc system in γ-proteobacteria.

Methods
Bacterial strains, plasmids, and culture conditions
A list of all bacterial strains and plasmids used in this
study is given in Table 3. E. coli and S. oneidensis strains
under aerobic conditions were grown in Luria-Bertani
(LB, Difco, Detroit, MI) medium at 37°C and room tem-
perature for genetic manipulation, respectively. When
needed, the growth medium was supplemented with anti-
biotics at the following concentrations: ampicillin at 50
µg/ml and gentamycin at 15 µg/ml. The suicide vector
pDS3.1 has been described elsewhere [20].

Disruption of arcA and complementation of the resulting 
arcA mutant
An arcA deletion strain was constructed. Primers used for
generating PCR products for mutagenesis are listed in
Table S4 (Table S4 in additional file 5). In brief, two frag-
ments flanking arcA were amplified by PCR with primers
SO3988-5-F and SO3988-5-R, primers SO3988-3-F and
SO3988-3-R, respectively, and purified using the
QIAquick PCR purification kit (Qiagen, Chatsworth, CA).
Fusion PCR products generated using the amplified frag-
ments as templates with primers SO3988-5-F and
SO3988-3-R as described elsewhere [69]. The resulting
fusion fragment was ligated into the XcmI site of plasmid
pDS3.1 and the resulting mutagenesis vectors (pDS-
ARCAK) were transformed into the plasmid donor strain,
E. coli WM3064 [70]. Plasmids pDS-ARCAK in WM3064,
grown on LB supplemented with 0.3 mM diaminopimelic
acid (DAP), were further transferred to MR-1 by conjuga-
tion [20]. Integration of the mutagenesis construct into

Common genes in S. oneidensis and E. coli genomes and in ArcA regulons of these two bacteriaFigure 7
Common genes in S. oneidensis and E. coli genomes 
and in ArcA regulons of these two bacteria. Common 
genes in S. oneidensis and E. coli genomes are obtained from 
[68] using default similarity cutoffs (maximum E-value, 1e-5; 
minimum percent identity, 30).
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the chromosome was selected by gentamycin resistance
and confirmed by PCR amplification. Verified transconju-
gants were grown in LB broth in the absence of NaCl and
plated on LB supplemented with 10% of sucrose. Gen-
tamycin-sensitive and sucrose-resistant colonies were
screened by PCR for the deletion of arcA. The deletion
mutation was then verified by sequencing of the mutated
region, and the deletion strain was designated as JZ3988K
(∆arcA).

For complementation, a 1.4-kb DNA fragment containing
arcA and its native promoter was generated by PCR ampli-
fication with MR-1 genomic DNA as the template using
primers SO3988-COM-F and SO3988-COM-R as listed in
Table S4 (Table S4 in additional file 5). This fragment was
digested with SacI (underlined) and ligated to SacI-
digested pBBR1MCS-5 to form pBBR-ARCA [71], which
was electroporated into WM3064. Introduction of pBBR-
ARCA into JZ3988K was done by mating with WM3064
hosting pBBR-ARCA, and gentamycin-resistant colonies
were selected. The presence of pBBR-ARCA in JZ3988K
was confirmed by plasmid purification and restriction
enzyme digestion.

Physiological characterization of the mutation strain 
under various conditions
M1 defined medium containing 0.02% (w/v) of vitamin-
free Casamino Acids and 15 mM lactate was used in all
physiological experiments [72]. Growth of the deletion
strain under aerobic or anaerobic conditions was deter-
mined by recording growth curves in triplicate with a Bio-
screen C microbiology reader (Labsystems Oy, Helsinki,
Finland) with MR-1 as the control. For aerobic growth,
exponential phase cultures were diluted to approximately
~1 × 105 cells/ml in fresh medium, and 400 µl was trans-

ferred to the honeycomb plate wells of the Bioscreen C
reader. The cultures were shaken at medium intensity con-
tinuously, and the turbidity was measured every 30 min at
600 nm and DO (dissolved oxygen) was recorded every
hour with an Accumet XL40 meter (Fisher Scientific). For
anaerobic growth, exponential phase cultures grown aero-
bically were centrifuged, purged in nitrogen and sus-
pended in fresh medium to approximately ~1 × 105 cells/
ml in an anaerobic glove box. Electron acceptors tested in
this study included fumarate (20 mM), nitrate (2 mM),
nitrite (1 mM), thiosulfate (3 mM), TMAO (20 mM), and
DMSO (20 mM). For electron acceptors containing metals
including MnO2 (5 mM), ferric citrate (10 mM), and
cobalt(III)-EDTA (200 µM), growth was monitored by the
color change of the cultures and cell counting under a
microscope (Nikon Optiphot, Nikon, Japan).

Survival of MR-1 and the ∆arcA strain during the station-
ary phase was examined. Cultures were grown from a sin-
gle colony under aerobic conditions with vigorous
shaking. After the onset of stationary phase, the cultures
were divided into two parts. One was kept in the incuba-
tor with vigorous shaking and the other was kept still. The
cultures were serially diluted into LB and plated onto LB
plates every 12 h. Plates from dilutions that gave 100 to
250 colony form units (CFU) per plate were used to min-
imize statistical variation due to small sample sizes.
Experiments were done in triplicate.

Microarray analysis
For each strain under aerobic conditions, 100 ml of M1
medium in a 500 ml shake flask was inoculated with fresh
overnight culture to OD600 of 0.01 and then was divided
into four aliquots (biological replicates) and shaken on a
rotary platform (250 rpm) until mid-log phase (OD ≈ 0.4

Table 3: Strains and plasmids used in this study

Strain or plasmid Description Reference or source

Strain or plasmid Description Reference or source
BL21 F- ompT hsdSB(rB

-mB
-) gal dcm (DE3) Invitrogen

WM3064 Donor strain for conjugation; ∆dapA 68

S. oneidensis strains
MR-1 Wild-type Lab stock
JZ3988K arcA deletion mutant derived from MR-1; ∆arcA This study
JZ3988K-CEM JZ3988K with pBBR1MCS-5 This study
JZ3988K-COM JZ3988K with pBBR-ARCA This study

Plasmids
pDS3.1 Apr, Gmr, derivative from suicide vector pCVD442 20
pDS-ARCAK pDS3.1 containing the PCR fragment for deleting arcA This study
pBBR1MCS-5 Gmr vector used for complementation, 69
pBBR-ARCA pBBR1MCS-5 containing arcA and upstream promoter region from MR-1 This study
pDONR221 Entry vector of the Gateway system Invitrogen
pDEST17 Destination vector of the Gateway system (His-tag) Invitrogen
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at 600 nm). For anaerobic cultures, 500 ml of M1 supple-
mented with 10 mM fumarate as the electron acceptor was
inoculated to an OD600 of 0.01 and then divided into four
aliquots (biological replicates) and kept in an anaerobic
chamber until mid-log phase (OD ≈ 0.15 at 600 nm). All
cultures were centrifuged at 8000 rpm in a Sorvall RC5C
plus for 3 min at the room temperature and the pellet was
frozen immediately in liquid nitrogen and stored at -
80°C.

DNA microarrays were constructed using PCR-amplified
fragments of each annotated open reading frame from S.
oneidensis MR-1, as previously described [21]. Total RNA
extraction, cDNA labeling, hybridization, and slide scan-
ning were conducted according to the standard procedure
used in our lab [21,73,74]. LOWESS was used to normal-
ize the data set which subsequently was subjected to sta-
tistical analysis by analysis of variance (ANOVA) with
Benjamini and Hochberg False Discovery Rate as multiple
testing correction. Genes with at an ANOVA P value of <
0.05 were considered significantly differentially expressed
and were listed in supplemental materials. For discussion
in text, a list of genes with at least a 2-fold change in
expression and an ANOVA P value of < 0.01 were used. All
raw data (MIAME) have been deposited to NCBI GEO
(GSE7973).

Real-time quantitative RT-PCR (qRT-PCR)
qRT-PCR was performed with primers listed in Table S4
(Table S4 in additional file 5) as described previously
[21,74]. A 100-bp fragment of the acnA gene, which was
amplified by PCR with genomic DNA as the template, was
used to construct the standard curve. The expression of
each gene was determined from three replicates on a sin-
gle real-time qRT-PCR experiment. The expression ratio
was recorded as the fold difference in quantity of real-time
qRT-PCR product from samples grown at the treatment vs.
control.

Expression and purification of S. oneidensis ArcA protein
Plasmids pDONR221 and pDEST17 and E. coli BL21
(DE3) Star cells were obtained from Invitrogen. To create
pDEST17-ArcA, the ArcA encoding ORF was first cloned
into pDONR221 by using ArcA-up/down primers (Table
S4 in additional file 5), and then transferred into
pDEST17 for protein expression by Gateway recombina-
tion reactions. All of these plasmid constructs were veri-
fied by DNA sequencing. The expression of ArcA in E. coli
BL21(DE3) Star cells was induced with 0.5 mM IPTG from
mid-log phase (OD600 = 0.5–0.6) at 30°C. The cells were
grown to saturation and then collected by centrifugation,
resuspended in lysis buffer (50 mM Tris/HCl, pH 7.5, 200
mM NaCl, 1 mM MgCl2, 10 mM β-mercaptoethanol, 1
mM PMSF, 5 µg/mL DNaseI), and broken by passage
twice through a French press (10,000 psi). The resulting

inclusion body pellets were solubilized with 20 mM Tris/
HCl (pH 8.0), 5 M urea and 100 mM NaCl, and the ArcA
protein was further purified by using Talon resin columns
(BD Biosciences®) under denaturing conditions according
to manufacturer instructions. To renature the protein, the
eluted fractions containing ArcA protein were collected,
diluted into 0.8 M urea, 20 mM Tris/HCl (pH 8.0), 1 mM
EDTA by sequential dilutions, and then dialyzed against
20 mM Tris/HCl (pH 7.5). Finally the ArcA protein was
concentrated to ~0.6 mg/ml.

Phosphorylation of ArcA and electrophoretic motility shift 
assay (EMSA)
Phosphorylation of purified ArcA protein was performed
in buffer containing 100 mM Tris/HCl (pH 7.0), 10 mM
MgCl2, 125 mM KCl, 50 mM dilithium carbamoyl phos-
phate for 60 minutes at room temperature as described
[7]. The probes used for EMSA were prepared by PCR with
33P end-labeled primers (Table S4 in additional file 5).
The binding reaction was performed with ~25–50 fmol
(~2–5 nM) labeled probes and various amount of protein
in 12 µl binding buffer containing 100 mM Tris/HCl (pH
7.4), 20 mM KCl, 10 mM MgCl2, 2 mM DTT, 0.2 µg/µl
poly(dI·dC), and 10% glycerol at 15°C for 60 minutes
and resolved on pre-run 4.8% polyacrylamide native gels
[7]. The band shifts were visualized by autoradiography.

ArcA weight matrix development and identification of 
putative ArcA-binding sites
AlignACE was used to screen for a common ArcA-binding
motif within promoter regions of ArcA-controlled oper-
ons predicted either by DNA footprinting or microarray
analysis [58]. The identified ArcA-binding motifs of 15 bp
were transformed to a weight matrix using the method of
Berg and von Hippel [62]. The whole genome was then
scaned for putative ArcA-binding motifs with the weight
matrix.
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