
Global Ecol Biogeogr. 2019;00:1–13.	 wileyonlinelibrary.com/journal/geb	 	 | 	1© 2019 John Wiley & Sons Ltd

 

Received:	23	July	2018  |  Revised:	21	February	2019  |  Accepted:	27	February	2019
DOI:	10.1111/geb.12917		

R E S E A R C H  P A P E R

The spatial scale dependence of diazotrophic and bacterial 
community assembly in paddy soil

Qun Gao1  |   Yunfeng Yang1 |   Jiajie Feng2 |   Renmao Tian2 |   Xue Guo1 |   
Daliang Ning2 |   Lauren Hale2,3 |   Mengmeng Wang1 |   Jingmin Cheng1 |   Linwei Wu2 |   
Mengxin Zhao1 |   Jianshu Zhao1 |   Liyou Wu2 |   Yujia Qin2 |   Qi Qi1 |   Yuting Liang4 |   
Bo Sun4 |   Haiyan Chu4 |   Jizhong Zhou1,2,5

1State	Key	Joint	Laboratory	of	Environment	
Simulation	and	Pollution	Control,	School	of	
Environment,	Tsinghua	University,	Beijing,	
China
2Department	of	Microbiology	and	Plant	
Biology,	Institute	for	Environmental	
Genomics,	University	of	Oklahoma,	Norman,	
Oklahoma
3Agricultural	Research	Service,	San	Joaquin	
Valley	Agricultural	Sciences	Center,	USDA,	
Parlier,	California
4State	Key	Laboratory	of	Soil	and	
Sustainable	Agriculture,	Institute	of	Soil	
Science,	Chinese	Academy	of	Sciences,	
Nanjing,	China
5Earth	and	Environmental	
Sciences,	Lawrence	Berkeley	National	
Laboratory,	Berkeley,	California

Correspondence
Jizhong	Zhou,	State	Key	Joint	Laboratory	
of	Environment	Simulation	and	Pollution	
Control,	School	of	Environment,	Tsinghua	
University,	Beijing	100084,	China.
Email:jzhou@ou.edu

Funding information
Strategic	Priority	Research	Program	of	the	
Chinese	Academy	of	Sciences,	Grant/Award	
Number:	XDB15010102;	State	Key	Joint	
Laboratory	of	Environment	Simulation	and	
Pollution	Control,	Grant/Award	Number:	
17L03ESPC;	National	Natural	Science	
Foundation	of	China,	Grant/Award	Number:	
41430856 and 41825016

Editor:	Janne	Soininen

Abstract
Aim: The	factors	driving	microbial	community	β‐diversity	(variation	in	composition)	
at	different	spatial	scales	yield	fundamental	insights	into	the	mechanisms	that	main‐
tain	ecosystem	biodiversity,	which	as	yet	are	uncertain.	Here,	we	explore	whether	
spatial	 scale‐dependent	 patterns	 of	 β‐diversity	 vary	 between	microbial	 functional	
groups	and	bacterial	taxa	(i.e.,	diazotrophic	and	bacterial	communities)	across	local	to	
regional	scales	(from	metres	to	hundreds	of	kilometres).
Location: Eastern	China.
Time period: October	and	November	2015.
Major taxa studied: Diazotrophic	and	bacterial	communities.
Methods: We	use	 two	 complementary	 statistical	 tools	 to	 unveil	 biotic	mechanisms	
(i.e.,	 species	 association)	 underlying	 variation	 in	β‐diversity	 of	 diazotrophic	 and	bac‐
terial	communities.	We	examined	distance–decay	slopes	of	both	communities	at	the	
local	(1–113	m),	meso‐	(3.4–39	km)	and	regional	(103–668	km)	scales.	We	used	an	en‐
vironmentally	constrained	checkerboard	score	and	topological	features	of	association	
networks	as	indices	of	species	association.	We	then	calculated	contributions	of	species	
association,	abiotic	factors	and	geographical	distance	to	explain	community	β‐diversity.	
The	scale‐dependent	distance–decay	relationships	were	also	examined	in	ubiquitous	
(high	occupancy	across	samples)	and	endemic	communities	of	diazotrophs	and	bacteria.
Results: Diazotrophs	 displayed	 steeper	 distance–decay	 slopes	 than	 bacteria,	 sug‐
gesting	that	the	β‐diversity	of	diazotrophic	communities	was	more	variable.	The	dis‐
tance–decay	slopes	were	dependent	on	spatial	scales	in	both	communities,	owing	to	
different	contributions	of	geographical	distance,	abiotic	factors	and	species	associa‐
tion	at	three	spatial	scales.	Intriguingly,	species	association	was	greater	and	contrib‐
uted	more	to	community	β‐diversity	than	other	forces	at	the	local	scale,	implying	that	
species	association	could	greatly	alter	community	structures.
Main conclusions: Drivers	 of	 diazotrophic	 and	 bacterial	 community	 β‐diversity	 de‐
pended	on	spatial	scales,	resulting	in	different	distance–decay	patterns.	Moreover,	this	
was	the	first	study	to	use	two	methods	to	demonstrate	that	species	association	played	
important,	but	as	yet	unrecognized,	roles	in	driving	spatial	scale‐dependent	β‐diversity.
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1  | INTRODUC TION

The	long‐standing	paradigm	in	microbial	biogeography,	 ‘everything	
is	everywhere,	but	the	environment	selects’,	alludes	to	the	remark‐
able	 potential	 for	 dispersal	 of	 microorganisms	 (Fuhrman,	 2009).	
Most	microorganisms	are	not	 cosmopolitans,	 thus	discernible	bio‐
geographical	 patterns	 and	 the	 distance–decay	 rule	 (i.e.,	 microbial	
community	similarity	decreases	as	geographical	distance	increases)	
are	commonly	discovered	in	all	branches	of	microbial	 life	(Green	&	
Bohannan,	2006;	Zhang	et	al.,	2016).	It	is	likely	that	there	is	a	steady	
distance–decay	slope	across	different	spatial	 scales	when	measur‐
ing microbial β‐diversity	 (i.e.,	variation	 in	community	composition),	
because	community	similarity	is	a	probability	rule	for	spatial	distri‐
bution	of	taxa	abundance	(Harte,	Kinzig,	&	Green,	1999).	However,	
it	 has	 been	 argued	 that	microbial	 β‐diversity	 varies	 over	 distance	
owing	to	the	fact	that	microorganisms	are	fundamentally	different	
in	their	longevity,	niche	preferences	and	dispersal	abilities	(Green	&	
Bohannan,	2006;	Meyer	et	al.,	2018).	This	argument	was	supported	
by	 recent	 studies	 showing	 that	 the	 distance–decay	 slopes	 of	 am‐
monia‐oxidizing	bacteria	and	sulfate‐reducing	bacteria	in	salt	marsh	
sediments	 varied	 by	 spatial	 scales	 (Angermeyer,	 Crosby,	&	Huber,	
2015;	Martiny,	Eisen,	Penn,	Allison,	&	Horner‐Devine,	2011).	In	con‐
trast,	distance–decay	curves	should	be	flat	where	dispersal	is	high.	
This	 prediction	 has	 been	 verified	 in	 the	marine	 environment,	 be‐
cause	ocean	currents	facilitate	microbial	dispersal	(Hewson,	Steele,	
Capone,	&	Fuhrman,	2006).	As	a	consequence,	it	still	remains	elusive	
whether	there	exists	spatial	scale	dependence	of	microbial	β‐diver‐
sity.	Moreover,	 the	underlying	drivers	 that	shape	spatial	scaling	of	
microbial	community	assembly	are	largely	unexplored.

Microorganisms	possess	a	large	number	of	functional	traits	and	
thus	play	an	essential	role	in	mediating	the	Earth's	biogeochemical	
processes.	Understanding	the	spatial	pattern	of	microbial	functional	
β‐diversity	is	crucial	for	predicting	and	elucidating	ecosystem	func‐
tions.	 Meanwhile,	 incomplete	 sampling	 of	 microbial	 communities	
is	particularly	pronounced	 for	endemic	 taxa,	which	are	defined	as	
microorganisms	that	have	low	occupancies	across	different	samples	
(Meyer	et	al.,	2018).	Given	that	endemic	taxa	are	restricted	in	ranges	
(Woodcock,	Curtis,	Head,	Lunn,	&	Sloan,	2006),	they	could	be	vital	in	
determining	the	scale‐dependent	biogeographical	patterns.	In	con‐
trast,	ubiquitous	taxa	might	exhibit	similar	community	composition	
across	 different	 spatial	 scales	 (Saunders,	 Albertsen,	 Vollertsen,	 &	
Nielsen,	2016).	However,	the	spatial	scale	dependence	of	microbial	
β‐diversity	 has	 seldom	been	 assessed	 for	 endemic	 and	ubiquitous	
taxa.

Investigation	of	environmental	heterogeneity	has	allowed	micro‐
bial	ecologists	to	describe	how	abiotic	factors	affect	microbial	com‐
munity	assembly	across	a	wide	range	of	natural	habitats	(Barberán	

&	Casamayor,	2011).	In	contrast,	there	have	been	far	fewer	studies	
to	explore	biotic	interactions	between	microbial	taxa,	which	are	be‐
lieved	to	have	a	substantial	influence	on	the	functions	or	niche	oc‐
cupancy	of	microbial	communities	 (Chaffron,	Rehrauer,	Pernthaler,	
&	Mering,	2010;	Freilich	et	al.,	2010).	It	was	found	that	interspecies	
connection	affected	habitat	affinities	or	shared	physiologies	of	mi‐
crobial	community	members	(Barberán,	Bates,	Casamayor,	&	Fierer,	
2011).	Niche	specialization	of	microorganinisms	was	also	highly	rel‐
evant	to	their	ecological	 relationships	 (Faust	&	Raes,	2012).	Those	
studies	have	provided	important	implications	that	biotic	interaction	
is	important	in	structuring	microbial	communities.

Species	 association	 is	 regularly	 used	 in	 ecology	 and	 biogeog‐
raphy	as	a	proxy	for	biotic	 interaction	 in	the	community	 (Cazelles,	
Araújo,	Mouquet,	&	Gravel,	2016;	Li,	Poisot,	Waller,	&	Baiser,	2018).	
One	 way	 to	 infer	 species	 association	 is	 based	 on	 species	 co‐oc‐
currence.	 Since	Diamond	 (1975)	 pioneered	 the	 analysis	 of	 species	
co‐occurrence	 in	 geographical	 space,	 null	models	 have	 been	 used	
to	infer	the	role	of	associations/interactions	between	pairs	of	spe‐
cies	 in	 their	distributions	 (Diamond,	1975;	Peterson,	2011;	Poisot,	
Canard,	Mouillot,	Mouquet,	 &	 Gravel,	 2012).	 Another	way	 to	 ap‐
proach	similar	questions	 is	 through	network‐based	analysis,	which	
offers	 insights	 into	 topological	 properties	of	 community	members	
(Ma	et	al.,	2016;	Newman,	2003)	and	is	regarded	as	a	valuable	tool	to	
identify	species	associations	within	a	community	(Berry	&	Widder,	
2014;	Ma	et	al.,	2016;	Proulx,	Promislow,	&	Phillips,	2005;	Shi	et	al.,	
2016).	To	date,	species	co‐occurrence	patterns	and	topological	fea‐
tures	in	microbial	networks	are	largely	unknown	at	different	spatial	
scales,	resulting	in	highly	unexplained	variation	in	microbial	β‐diver‐
sity	 in	previous	studies	 (Fierer,	2017;	Shi	et	al.,	2018;	Zhou,	Kang,	
Schadt,	&	Garten,	2008).

In	 the	 present	 study,	 we	 collected	 188	 paddy	 soil	 samples	
from	18	 long‐term	rice	 fields	 located	 in	Hubei,	Anhui,	 Jiangsu	and	
Zhejiang	provinces	of	Eastern	China.	We	compared	the	slopes	of	dis‐
tance–decay	curves	of	bacterial	communities	and	diazotrophic	com‐
munities	responsible	for	biological	nitrogen	(N)	fixation.	Considering	
that	 N	 limitation	 is	 widespread	 in	 the	 natural	 environment	 (Elser	
et	 al.,	 2007),	 diazotrophic	 communities	 are	 crucial	 for	 soil	 N	 bio‐
availability,	 especially	 in	 paddy	 soil	 owing	 to	N	 loss	when	 the	 soil	
is	 flooded.	However,	 the	 biogeographical	 patterns	 of	 diazotrophic	
communities	have	not	yet	been	examined	in	paddy	soil	ecosystems.	
To	tackle	this	problem,	we	engaged	a	nested	design	of	soil	sampling	
to	achieve	a	balanced	distribution	of	pairwise	distance	across	differ‐
ent	spatial	scales	[i.e.,	local	scale	(1–113	m),	meso‐scale	(3.4–39	km)	
and	regional	scale	(103–668	km);	Supporting	Information	Appendix	
S1,	Figure	S1].	We	then	examined	diazotrophic	communities	by	se‐
quencing	N‐fixing	nifH	gene	amplicons	and	examined	bacterial	com‐
munities	by	sequencing	16S	rRNA	gene	amplicons.
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Given	that	different	driving	forces	may	vary	by	spatial	scales,	our	
first	hypothesis	 is	that	distance–decay	slopes	of	both	diazotrophic	
and	bacterial	communities	are	spatial	scale	dependent.	Our	second	
hypothesis	 is	 that	 distance–decay	 slopes	 of	 the	 functional	 gene	
(nifH)	are	steeper	than	those	of	16S	rRNA	genes,	because	16S	rRNA	
genes	 are	more	phylogenetically	 conserved	 than	nifH	 (Goberna	et	
al.,	2014).	Given	that	ubiquitous	taxa	are	the	‘steadfast’	community	
members	across	a	large	number	of	samples	and	are	less	impacted	by	
dispersal	limitation	(Martiny	et	al.,	2006),	we	test	a	third	hypothesis	
that	ubiquitous	microbes	have	shallower	distance–decay	slopes	than	
endemic	microbes.

2  | METHODS

2.1 | Site description

We	selected	18	paddy	fields	in	four	provinces	(Hubei,	Anhui,	Jiangsu	
and	 Zhejiang)	 of	 Eastern	 China,	 which	 are	 among	 the	 major	 rice	
production	regions	of	China.	All	paddy	fields	are	in	the	subtropical	
monsoon	climate	type.	All	fields	were	>	0.02	km2,	and	we	collected	
soil	samples	in	the	centre	of	each	paddy	field.	Soil	samples	were	col‐
lected	 from	 late	October	 to	early	November	 in	2015,	 immediately	
after	rice	harvesting.	We	collected	11	soil	samples	(biological	repli‐
cates)	in	each	field.	Specifically,	six	soil	samples	were	collected	along	
a	75‐m‐long	transect,	and	another	five	samples	were	collected	along	
a	vertical	75‐m‐long	transect	(Supporting	Information	Appendix	S1,	
Figure	S1).	Distances	between	two	adjacent	samples	along	both	tran‐
sects	were	1,	5,	10,	20	and	40	m	(Supporting	Information	Appendix	
S1,	Figure	S1).	For	each	sample,	three	soil	cores	were	taken	and	fully	
mixed	to	generate	a	composite	sample.	Visible	roots	and	rocks	were	
discarded	before	samples	were	packed	into	polyethylene	bags	and	
stored	in	a	portable	4	°C	refrigerator.	After	immediate	transportion	
to	the	laboratory,	each	composite	sample	was	divided	into	two	parts:	
one	was	stored	at	4	°C	for	analyses	of	soil	physicochemical	factors,	
and	the	other	one	was	stored	at	−80	°C	for	DNA	extraction.

2.2 | Measurements of soil physicochemical factors

In	 situ	 soil	 temperature	 (in	 degrees	 Celsius)	 was	 measured	 three	
times	by	thermometer	to	obtain	an	average	value.	In	situ	soil	water	
content	(as	a	percentage)	was	measured	three	times	by	hygrometer	
to	obtain	an	average	value.	Soil	pH	was	determined	by	a	pH	meter	
(E20‐FiveEasy	pH;	Mettler	Toledo,	Greifensee,	Switzerland)	 in	 soil	
water	suspension	(1:5,	fresh	soil/de‐ionized	water)	after	shaking	for	
30	min.	Ten	grams	of	sieved	soil	was	weighed	to	a	250	mL	plastic	
bottle	with	 100	mL	 of	 2	M	KCl	 solution.	 The	 solution	 in	 the	 bot‐
tle	was	then	shaken	at	250	rpm	and	kept	at	room	temperature	for	
1	h,	after	which	part	of	 the	soil	solution	was	filtered	 into	a	15	mL	
centrifuge	tube	for	ammonium,	nitrate	and	dissolved	total	N	meas‐
urements.	The	other	part	of	the	soil	solution	was	filtered	again	with	
0.45 μm	filter	membranes	for	measurement	of	dissolved	organic	car‐
bon	by	a	Skalar	autoanalyser	using	an	ultraviolet	digestion	technique	
and	colorimetric	detection.	Ammonium	and	nitrate	concentrations	
were	 also	 measured	 colorimetrically	 using	 a	 spectrophotometer.	

Dissolved	total	N	and	dissolved	organic	carbon	in	the	soil	samples	
were	 measured	 using	 a	 Multi	 N/C	 2100	 analyser	 (Analytik	 Jena,	
Thuringia,	Germany).	The	concentrations	of	ammonium,	nitrate,	dis‐
solved	total	N	and	dissolved	organic	carbon	were	all	expressed	in	the	
same	units	 (milligrams	per	 kilogram).	 The	validity	of	 the	 analytical	
data	generated	by	the	laboratory	was	monitored	by	participation	in	
a	regular	interlaboratory	proficiency	scheme.

2.3 | Soil DNA extraction

Soil	DNA	was	extracted	using	a	PowerMax	Soil	DNA	 Isolation	Kit	
(MO	BIO	Laboratories,	Inc.,	Carlsbad,	CA,	USA)	after	freeze‐grind‐
ing	mechanical	lysis	as	previously	described	(Zhou,	Bruns,	&	Tiedje,	
1996).	 The	DNA	 concentration	was	 quantified	 by	 PicoGreen	with	
a	 FLUOstar	 OPTIMA	 fluorescence	 plate	 reader	 (BMG	 LabTech,	
Ortenberg,	Germany).	The	DNA	quality	was	assessed	based	on	spec‐
trometry	absorbance	at	wavelengths	of	230,	26	and	280	nm	by	a	
NanoDrop	ND‐1000	Spectrophotometer	(Thermo	Fisher	Scientific,	
Waltham,	MA,	USA).

2.4 | Sequencing of nifH and 16S rRNA genes, 
amplifications and raw data processing

Extracted	DNA	for	PCR	amplification	was	diluted	to	5	ng/μL.	Primers	
of	 PolF/PolR	 (5′‐TGCGAYCCSAARGCBGACTC‐3′/5′‐ATSGCCATCA 
TYTCRCCGGA‐3′)	 were	 used	 for	 amplifying	 nifH	 genes	 (Poly,	
Monrozier,	 &	 Bally,	 2001),	 and	 primers	 of	 515F/806R	 (5′‐GT 
GCCAGCMGCCGCGGTAA‐3′/5′‐GGACTACHVGGGTWTCTAAT‐3′)	
were	used	 for	amplifying	16S	rRNA	genes	 (Caporaso	et	al.,	2012).	
Two‐step	PCR	experiments	were	used	to	prepare	amplicon	libraries	
of	both	nifH	genes	and	16S	rRNA	genes	as	described	previously	(Wu	
et	al.,	2016).	Specifically,	10	cycles	were	used	in	the	first	step	and	20	
cycles	in	the	second	step	for	16S	rRNA	genes;	12	cycles	were	used	
in	the	first	step	and	23	cycles	in	the	second	step	for	nifH	genes.	To	
increase	the	base	diversity	in	the	library,	phasing	primers	were	used	
in	 the	 second	 step.	 The	 PCR	 products	were	 separated	 on	 a	 1.5%	
agarose	gel	at	90	V	for	45	min.	The	bands	were	then	purified	with	
a	 QIAquick	 Gel	 Extraction	 Kit	 (QIAGEN	 Inc.,	 Valencia,	 CA,	 USA).	
Libraries	 were	 sequenced	 on	 a	 desktop	 MiSeq	 system	 (Illumina,	
San	Diego,	CA,	USA;	2	×	250	bp	paired	ends),	following	the	manu‐
facturer's	 protocols,	 at	 the	 Institute	 for	 Environmental	 Genomics	
(University	of	Oklahoma,	Norman,	OK,	USA).

Sequencing	reads	of	poor	quality	were	removed	by	Btrim	(Kong,	
2011).	Chimeras	were	removed	by	Uchime	(Edgar,	Haas,	Clemente,	
Quince,	&	Knight,	2011).	For	nifH,	 frame	shifts	were	screened	and	
corrected	by	Framebot	software	(Wang	et	al.,	2013).	Remaining	nifH 
sequences	 were	 then	 clustered	 into	 operational	 taxonomic	 units	
(OTUs)	 with	 complete	 linkage	 clustering	 (Loewenstein,	 Portugaly,	
Fromer,	 &	 Linial,	 2008)	 on	 a	 Galaxy	 platform	 (Afgan	 et	 al.,	 2016)	
pipeline	at	95%	amino	acid	identity	(Penton	et	al.,	2016).	Taxonomic	
assignment	 was	 conducted	 by	 tBLASTx	 against	 the	 Zehr	 laborto‐
ry's	nifH	gene	database	(June	2017	version;	https	://wwwze	hr.pmc.
ucsc.edu/nifH_Datab	ase_Publi	c/),	 with	 parameters	 maximum	 tar‐
get	of	10	and	E‐value	cut‐off	of	1	×	10−10.	The	hits	with	amino	acid	

https://wwwzehr.pmc.ucsc.edu/nifH_Database_Public/
https://wwwzehr.pmc.ucsc.edu/nifH_Database_Public/
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identity	 <	 95%	 and	 alignment	 coverage	 <	 80%	were	 filtered	 out.	
Only	hits	with	known	taxonomic	assignment	deeper	than	Class	level	
were	 retained,	 and	 lineages	 of	 hits	with	 the	 highest	BLAST	 score	
were	used	as	the	taxonomic	assignments	of	queries.

The	16S	rRNA	gene	sequences	were	clustered	 into	OTUs	with	
UPARSE	 (Edgar,	 2013)	 on	 the	 Galaxy	 platform	 at	 97%	 nucleotide	
identity.	 Taxonomic	 assignment	 was	 conducted	 through	 the	 RDP	
classifier	with	a	confidence	cut‐off	of	0.5	(Wang,	Garrity,	Tiedje,	&	
Cole,	2007).	All	sequences	were	randomly	resampled	to	the	depth	of	
23,000	sequences	per	sample	for	the	16S	rRNA	gene	and	10,000	se‐
quences	per	sample	for	the	nifH	gene.	Phylogenetic	trees	were	con‐
structed	 and	 analysed	 using	 PyNAST	 alignment	 (v.1.0.0),	 FastTree	
(v.1.0.0)	and	MEGA	(v.5.10,	BETA2).

2.5 | Species association analysis

Our	first	method	to	examine	species	association	was	based	on	the	
null	model	to	study	species	co‐occurrence	patterns	(Li	et	al.,	2018).	
Within	each	spatial	scale,	we	constructed	a	species	matrix	with	rows	
for	each	sample	and	columns	for	each	species.	Values	in	the	matrix	re‐
flect	the	presence	or	absence	(1/0)	of	the	species.	We	then	used	this	
species	matrix	to	predict	species	distributions	under	environmental	
constraints	with	a	species	distribution	model	(SDM)	in	the	R	package	
‘biomod2’	(Thuiller	et	al.,	2016).	After	this,	we	calculated	an	environ‐
mentally	constrained	checkerboard	score	(C‐score)	with	the	function	
‘ecospat.cons_Cscore’	in	the	R	package	‘ecospat’	(Di	Cola	et	al.,	2017).	
The	C‐score	was	the	mean	number	of	checkerboard	units	(CUs)	be‐
tween	all	possible	pairs	of	species	(or	OTUs)	in	a	matrix.	The	number	
of	CUs	for	any	pair	of	species	was	calculated	using	the	equation:

where	CUij	is	the	C‐score	for	species	pair	i and j,	Ri	is	the	total	sites	
(the	 number	 of	 species	 occurrences)	 for	 species	 i,	Rj	 is	 the	 total	
sites	 for	 species	 j,	 and	D	 is	 the	number	of	 shared	 sites	 in	which	
both	 species	 are	 present	 (Di	 Cola	 et	 al.,	 2017).	 Environmentally	
constrained	 C‐scores	were	 expected	 to	maximize	 the	 chance	 of	
distinguishing	 species	 interactions	 that	might	 shape	 species	 dis‐
tribution	 and	 community	 assembly,	 because	 environment	 was	
factored	out	as	a	possible	explanation	for	the	species	distribution	
patterns	encountered	(Di	Cola	et	al.,	2017).

The	function	‘ecospat.cons_Cscore’	returned	the	C‐score	index	for	
the	observed	community	(ObsCscoreTot),	the	mean	of	the	C‐score	
for	 the	 simulated	 communities	 by	 the	 null	 model	 (SimCscoreTot,	
n	=	10,000),	the	p‐values	to	evaluate	the	significance	of	the	differ‐
ence	between	the	former	two	 indices,	and	returned	the	standard‐
ized	effect	size	(SES)	for	the	whole	community	(SES.Tot).	If	p	<	0.050,	
we	 regarded	 the	 co‐occurrence	of	microbial	 community	 as	 a	non‐
random	pattern	 resulting	 from	biotic	 interactions,	 because	 the	 in‐
fluence	of	environmental	variables	was	partitioned.	Moreover,	SESs	
that	were	greater	than	two	or	less	than	minus	two	were	statistically	
significant	with	a	probability	of	<	0.050.	The	function	also	returned	

the	observed	and	simulated	C‐scores	and	the	SES	for	each	species	
pair.	 Species	 pairs	 with	 SES	 <	 −2	 reflected	 aggregation,	 because	
they	co‐occurred	more	than	expected	by	chance.	Species	pairs	with	
SES	>	2	reflected	segregation	of	species,	because	they	co‐occurred	
less	often	than	expected	by	chance.

Association	 networks	 of	 diazotrophs	 and	 bacteria	 were	 con‐
structed	 as	 previously	 described	 (Deng	 et	 al.,	 2012;	 Zhou	 et	 al.,	
2010).	Only	OTUs	detected	in	≥	141	of	the	188	biological	replicates	
were	kept	for	bacterial	community	network	construction,	and	138	
of	185	biological	replicates	were	kept	for	diazotrophic	community	
network	construction,	following	a	random	matrix	theory	(RMT)	al‐
gorithm	(Deng	et	al.,	2012).	The	association	network	examined	the	
pairwise	 correlation	coefficients	of	 species	based	on	OTU	abun‐
dance	data.	The	network	construction	and	network	topology	char‐
acterization	were	 processed	 by	 the	 network	 analysis	 pipeline	 at	
http://ieg2.ou.edu/MENA.	We	also	constructed	sub‐networks	for	
each	sample	from	the	global	network	using	the	R	package	‘igraph’	
(Ma	et	al.,	2016).	The	network	topological	properties,	including	av‐
erage	degree,	average	clustering	coefficient	and	modularity,	were	
calculated	for	each	sample	by	the	R	functions	‘knn’,	‘transitivity’	and	
‘modularity’,	respectively,	in	the	‘igraph’	package.

The	average	degree	referred	to	species	connectivity	in	the	com‐
munity	 (Zhou	et	 al.,	 2010).	The	average	clustering	 coefficient	was	
used	to	measure	how	well	nodes	were	connected	with	their	neigh‐
bours	(Deng	et	al.,	2016).	Modularity	was	used	to	demonstrate	a	net‐
work	that	could	be	divided	naturally	 into	communities	or	modules	
(Deng	et	al.,	2012).	Higher	modularity	indicated	a	higher	number	of	
within‐cluster	associations	than	between‐cluster	associations	com‐
pared	with	random	expectation	(Clauset,	Newman,	&	Moore,	2004).	
These	topological	properties	were	regarded	as	biotic	factors	in	ex‐
amining	their	contribution	to	the	variation	in	microbial	β‐diversity	at	
different	spatial	scales	using	multiple	regression	on	matrices	(MRM).	
We	were	not	able	to	include	environmentally	constrained	C‐scores	
in	MRM	because	C‐scores	could	not	be	calculated	with	one	sample.	
A	 general	 framework	of	 species	 co‐occurrence	 analysis	 and	RMT‐
based	network	analysis	is	 illustrated	in	the	Supporting	Information	
(Appendix	S1,	Figure	S2).

2.6 | Statistical analyses

Variation	 of	 environmental	 factors	 across	 sampling	 sites	 was	 de‐
termined	by	one‐way	ANOVA	followed	by	the	least	significant	dif‐
ference	 (LSD)	 test.	We	calculated	the	rates	of	distance	decay	 (i.e.,	
slopes	of	distance–decay	curves)	of	microbial	communities	at	three	
spatial	scales:	the	local	scale	(0–113	m),	the	meso‐scale	(3.4–39	km)	
and	the	regional	scale	(103–668	km).	The	slope	at	each	spatial	scale	
was	calculated	based	on	the	following	equation:

where	S	is	the	microbial	community	similarity,	G	is	the	geographical	
distance,	a	is	an	intercept	parameter	and	z	is	the	slope	coefficient	

CUij= (Ri−D)(Rj−D)

ln (S)= ln (a)+z ln (G)

http://ieg2.ou.edu/MENA
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of	the	distance–decay	curve	(Martiny	et	al.,	2011).	The	microbial	
phylogenetic	 β‐diversity	 (phylogenetic	 distance)	 was	 calculated	
based	 on	 the	 matrix	 of	 abundance‐weighted	 UniFrac	 distance	
using	 the	 R	 package	 ‘GUifrac’,	 because	 abundance‐weighted	mi‐
crobial	phylogenetic	distance	involves	both	taxonomic	and	phylo‐
genetic	information	in	communities	(Burns	et	al.,	2015).	Microbial	
community	 similarity	 was	 calculated	 as	 one	minus	 the	 phyloge‐
netic	distance.

To	explore	whether	the	sequencing	depth	accounted	for	differ‐
ences	 in	 the	 distance–decay	 slopes	 of	 diazotrophic	 and	 bacterial	
communities,	we	 resampled	 the	sequence	of	both	communities	 to	
obtain	 communities	 with	 different	 sequence	 depth.	 Specifically,	
bacterial	communities	with	11,500	and	18,400	sequences	were	gen‐
erated	by	resampling	50	and	80%	of	overall	16S	rRNA	sequences,	
respectively.	 Likewise,	 diazotrophic	 communities	 with	 5,000	 and	
8,000	sequences	were	generated	by	resampling	50	and	80%	of	over‐
all nifH	sequences,	respectively.	We	performed	the	resampling	steps	
in	an	 in‐house	Galaxy	pipeline	 (http://zhoul	ab5.rccc.ou.edu:8080/)	
using	both	OTU	table	and	corresponding	representative	sequences.	
We	then	calculated	the	distance–decay	slopes	for	each	community	
at	each	of	the	three	spatial	scales.

We	tested	whether	the	distance–decay	slopes	were	significantly	
different	from	zero	or	whether	the	distance–decay	slopes	at	three	
spatial	scales	differed	substantially	from	each	other.	To	this	end,	we	
used	matrix	 permutations	 to	 compare	 the	 observed	 slopes	within	
the	three	spatial	scales	with	the	distribution	of	slopes	observed	in	
those	ranges	over	999	permutations,	following	the	method	in	a	pre‐
vious	study	(Martiny	et	al.,	2011).

We	used	the	MRM	analyses	to	explore	the	significance	of	geo‐
graphical	 distance,	 abiotic	 factors	 (dissolved	 organic	 carbon,	 dis‐
solved	 total	 N,	 soil	 water	 content,	 soil	 temperature	 and	 soil	 pH)	
and	 biotic	 factors	 (average	 degree,	 average	 clustering	 coefficient	
and	modularity)	in	relationship	to	microbial	β‐diversity.	We	applied	
a	 ln‐transformation	 on	 geographical	 distance	 because	 our	 sam‐
ples	 ranged	over	many	orders	of	magnitude,	which	made	the	data	
points	 skewed.	 Abiotic	 and	 biotic	 factors	 were	 ln‐transformed	 to	
achieve	normalization	except	 for	soil	pH,	which	 is	a	 logarithm	for‐
mat	 of	 hydrogen	 ion	 concentration	 (Bates,	 1964).	We	 then	 calcu‐
lated	the	dissimilarity	matrix	(by	the	Euclidean	method)	for	each	of	
the	geographical	distance,	abiotic	and	biotic	factors.	The	microbial	
community	dissimilarity	matrix	was	calculated	based	on	 the	abun‐
dance‐weighted	 Unifrac	 distance.	 We	 performed	 modified	 MRM	
code	based	on	the	R	package	‘ecodist’	(Goslee,	2007)	to	disentangle	
the	 potential	 relationships	 between	microbial	 β‐diversity	 and	 fac‐
tors	at	each	spatial	scale.	The	R2	value	of	the	MRM	model	represents	
the	total	explanatory	power	of	all	factors	involved	in	the	model,	and	
the	partial	regression	coefficient,	b,	represents	the	relative	contribu‐
tion	of	each	factor.	To	remove	covariant	factors	(Harrell,	2001),	we	
performed	 the	MRM	model	 and	 removed	 the	 non‐significant	 fac‐
tors.	Then	we	performed	the	MRM	model	again,	following	the	steps	
shown	previously	(Martiny	et	al.,	2011).

To	examine	the	relative	contribution	of	each	factor	at	the	three	
spatial	 scales,	 we	 performed	 MRM	 models	 according	 to	 spatial	

scales.	For	example,	at	the	local	scale,	we	calculated	R2	and	the	par‐
tial	 regression	 coefficient,	 b,	 for	 only	 those	 pairwise	 comparisons	
between	1	and	113	m.

3  | RESULTS

3.1 | Soil bacterial and diazotrophic communities

We	 identified	>	15,000	bacterial	OTUs	 in	188	paddy	 soil	 samples	
and	>	6,000	diazotrophic	OTUs	in	183	samples,	discarding	five	sam‐
ples	with	extremely	low	diazotrophic	OTU	richness.	α‐Proteobacteria 
were	 the	 most	 abundant	 in	 diazotrophic	 communities,	 followed	
by δ‐Proteobacteria and β‐Proteobacteria	 (Supporting	 Information	
Appendix	S1,	Figure	S3a).	Only	42%	of	diazotrophic	sequences	were	
classified,	 suggesting	 that	our	knowledge	about	 the	 taxonomic	 in‐
formation	 on	 diazotrophic	 communities	 in	 paddy	 soil	 was	 limited.	
In	 contrast,	 <	 20%	of	 overall	 bacterial	 sequences	were	 taxonomi‐
cally	unclassified	(Supporting	Information	Appendix	S1,	Figure	S3b).	
δ‐Proteobacteria	 were	 the	 most	 abundant	 in	 bacterial	 communi‐
ties,	 followed	 by	 Acidobacteria,	 α‐Proteobacteria,	 β‐Proteobacteria,	
Chloroflexi and γ‐Proteobacteria.

Almost	all	bacterial	OTUs	(96.1%)	and	diazotrophic	OTUs	(91.6%)	
were	detected	in	more	than	one	sample.	Abundant	OTUs	tended	to	
have	higher	occupancy	in	both	diazotrophic	and	bacterial	communi‐
ties	(Supporting	Information	Appendix	1,	Figure	S4).	Therefore,	com‐
munities	were	divided	into	sub‐groups	according	to	the	occupancy	of	
OTUs	[i.e.,	OTUs	detected	in	0–25%	(endemic	taxa)	and	in	75–100%	
(ubiquitous	taxa)	of	all	samples;	Nekola	&	White,	2004].	α‐Proteobac‐
teria	were	still	the	most	abundant	in	ubiquitous	diazotrophic	commu‐
nities,	accounting	for	24.3%	of	total	OTUs	(Supporting	Information	
Appendix	S1,	Figure	S3a).	δ‐Proteobacteria	were	still	the	most	abun‐
dant	 in	ubiquitous	bacterial	 communities,	accounting	 for	13.2%	of	
total	OTUs	(Supporting	Information	Appendix	S1,	Figure	S3b).

3.2 | Species co‐occurrence patterns

Overall	species	co‐occurrence	patterns	of	bacterial	and	diazotrophic	
communities	were	non‐random	across	spatial	scales,	as	indicated	by	
C‐scores	 (Supporting	 Information	Appendix	S1,	Tables	S1	and	S2).	
Both	communities	 showed	 the	highest	C‐scores	at	 the	 local	 scale,	
the	medium	C‐scores	at	the	meso‐scale	and	the	lowest	C‐scores	at	
the	 regional	 scale	 (Figure	 1a,b).	 The	 result	 suggested	 that	 species	
interacted	more	 frequently	 at	 the	 local	 scale.	 Species	 interactions	
became	weaker	as	spatial	scale	enlarged.

Across	 spatial	 scales,	 most	 of	 the	 species	 pairs	 significantly	
co‐occurred	 for	 both	 bacterial	 and	 diazotrophic	 communities	
(Figure	1c,d).	Among	bacterial	species	pairs,	more	species	pairs	were	
shown	 to	 be	 aggregated	 at	 the	 local	 and	meso‐scales	 (Figure	 1c),	
suggesting	that	species	co‐occurred	more	than	expected	at	smaller	
scales.	 The	 proportion	 of	 segregated	 species	 pairs	 of	 the	 bacte‐
rial	 community	 increased	with	 enlarged	 spatial	 scales,	 suggesting	
that	 species	 associations	of	bacterial	 communities	have	 simplified	
(Figure	1c).

http://zhoulab5.rccc.ou.edu:8080/
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3.3 | Spatial scale dependence of microbial β‐
diversity

The	distance–decay	relationships	of	diazotrophic	and	bacterial	com‐
munities	were	examined	at	the	local	 (1–113	m),	meso‐	(3.4–39	km)	
and	regional	(103–668	km)	scales.	When	distance	increased	from	1	
to	668	km,	the	dissimilarity	of	diazotrophic	communities	increased	
from	 0.090	 to	 0.720,	which	was	 substantially	 higher	 than	 that	 of	
bacterial	 communities	 (from	0.060	 to	0.520)	 (Figure	2).	Significant	
(p	<	0.050)	distance–decay	relationships	of	diazotrophic	communi‐
ties	were	observed	at	 the	 local	 and	 regional	 scales	but	not	 at	 the	
meso‐scale	(Figure	3a),	suggesting	that	the	distance–decay	slopes	of	
diazotrophic	communities	were	scale	dependent.	Scale‐dependent	
distance–decay	slopes	were	also	observed	for	bacterial	communities	
(Figure	3b),	but	a	significant	distance–decay	slope	of	bacterial	com‐
munities	was	observed	only	at	the	local	scale	(Figure	3b),	suggesting	
that	sampling	at	the	meso‐	and	regional	scales	did	not	increase	com‐
munity	dissimilarity.

Resampling	 of	 communities	 showed	 that	 sequence	 depth	 did	
not	alter	 the	patterns	of	distance‐decay	 for	both	bacterial	 and	di‐
azotrophic	communities	across	spatial	scales	(Supporting	Information	
Appendix	S1,	Table	S3),	rejecting	the	possibility	that	differences	in	
sampling	depth	underlie	different	scale‐dependent	distance–decay	
patterns	of	both	communities.

3.4 | Discerning drivers of microbial 
community assembly

To	identify	abiotic	drivers	for	the	distance–decay	relationships	of	
microbial	communities,	we	measured	a	number	of	climatic	and	soil	
geochemical	factors	to	reveal	the	extent	of	environmental	hetero‐
geneity	across	sampling	sites	(Supporting	Information	Appendix	S1,	
Figure	S5).	Soil	temperature,	soil	water	content,	soil	pH,	concentra‐
tions	of	ammonium,	nitrate,	dissolved	organic	carbon	and	dissolved	
total	N	were	significantly	(p	<	0.050)	different	at	the	regional	scale.	
For	 example,	 Jurong	 had	 the	 highest	 concentration	 of	 dissolved	

total	N	and	nitrate	but	the	lowest	soil	water	content	and	soil	tem‐
perature.	Xiantao	had	the	highest	soil	pH	and	ammonium	content.	
Similar	 to	 the	 observation	 of	 high	 environmental	 heterogeneity,	
we	observed	high	variation	in	network	topological	properties,	with	
Changxing	showing	the	highest	average	degree,	average	clustering	
coefficient	 and	modularity	 (Supporting	 Information	Appendix	S1,	
Figure	 S5).	 The	 topological	 properties	 showed	weak	 correlations	
with	abiotic	factors	for	both	bacterial	and	diazotrophic	communi‐
ties	(Supporting	Information	Appendix	S1,	Figure	S6).

The	MRM	analyses	showed	that	geographical	distance	explained	
27%	of	variation	for	diazotrophic	communities,	which	was	similar	to	
abiotic	factors	(25%;	Table	1).	Soil	pH	was	the	most	important	abiotic	
factor,	 followed	 by	 soil	 ammonium	 content	 and	 dissolved	 organic	
carbon	(Table	2).	Biotic	factors	explained	only	17%	of	variation	for	
diazotrophic	communities,	among	which	the	average	degree	was	the	
dominant	 factor.	On	the	contrary,	geographical	distance	explained	
17%	of	variation	and	biotic	 factors	explained	40%	of	variation	 for	
overall	bacterial	communities	(Table	1),	with	modularity	as	the	domi‐
nant	biotic	factor	(Table	2).	Abiotic	factors	made	similar	contribution	
(c.	23%)	to	bacterial	and	diazotrophic	communities	(Table	1).

Relative	contributions	of	geographical	distance,	abiotic	and	biotic	
factors	to	microbial	communities	varied	by	spatial	scales	 (Table	2).	
Specifically,	geographical	distance	and	average	degree	contributed	
to	diazotrophic	communities	at	the	local	and	regional	scales	but	not	
at	the	meso‐scale.	In	comparison,	geographical	distance,	average	de‐
gree	and	soil	pH	contributed	to	bacterial	communities	at	 the	 local	
but	not	at	the	meso‐	and	regional	scales.

3.5 | Ubiquitous and endemic communities

Spatial	 scale	 dependence	 might	 differ	 in	 ubiquitous	 and	 endemic	
communities;	 therefore,	 we	 examined	 their	 distance–decay	 slopes	
and	possible	drivers	across	spatial	scales.	Ubiquitous	communities	of	
diazotrophs	 and	 bacteria	 showed	 shallower	 distance–decay	 slopes	
than	endemic	communities	(Figure	2b,c).	Geographical	distance	made	
a	smaller	contribution	to	the	variation	of	ubiquitous	communities	than	

F I G U R E  1  Mean	of	observed	and	
simulated	environmentally‐constrained	
C‐scores	of	(a)	bacterial	community	and	
(b)	diazotrophic	community	at	three	
spatial	scales.	Only	observed	C‐scores	
that	are	significantly	(P	<	.050)	different	
with	simulated	C‐scores	are	averaged.	
Relative	proportion	of	aggregated,	
segregated	and	random	species	pairs	of	(c)	
bacterial	community	and	(d)	diazotrophic	
community	at	three	spatial	scales.

(a) (b)

(c) (d)
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endemic	communities,	whereas	biotic	factors	made	a	higher	contri‐
bution	to	the	variation	of	ubiquitous	communities	than	endemic	com‐
munities	(Supporting	Information	Appendix	S1,	Tables	S4	and	S5).

The	distance–decay	slopes	of	ubiquitous	diazotrophic	communi‐
ties	were	similar	at	the	local	and	regional	scales,	and	were	much	larger	
than	that	at	the	meso‐scale	(Figure	3c).	Consistently,	average	degree	

contributed	to	ubiquitous	diazotrophic	communities	at	the	local	and	
regional	 scales	 but	 not	 at	 the	 meso‐scale	 (Supporting	 Information	
Appendix	S1,	Table	S4).	In	contrast,	ubiquitous	bacterial	communities	
showed	no	difference	 in	distance–decay	slopes	across	three	spatial	
scales	(Figure	3d),	suggesting	that	there	was	no	spatial	scale	depen‐
dence	 for	 ubiquitous	 bacterial	 communities.	 This	might	 result	 from	
similar	 contributions	of	 dominant	 drivers,	 including	 soil	 pH	 and	 av‐
erage	degree,	across	the	three	spatial	scales	(Supporting	Information	
Appendix	S1,	Table	S5).	Both	endemic	communities	of	bacteria	and	
diazotrophs	had	steeper	distance–decay	slopes	at	the	local	scale	than	
that	at	the	meso‐	and	regional	scales	(Figure	3e,f),	corresponding	to	
the	 finding	 that	 geographical	 distance	 contributed	 to	 variation	 of	
endemic	communities	at	the	local	but	not	at	the	meso‐	and	regional	
scales	(Supporting	Information	Appendix	S1,	Tables	S4	and	S5).

4  | DISCUSSION

Few	 studies	 have	 mapped	 imprints	 of	 species	 associations	 on	
changes	 of	 microbial	 β‐diversity	 (Ohlmann	 et	 al.,	 2018).	 Using	 C‐
scores	 and	 topological	 properties	 of	 RMT‐based	 association	 net‐
works	 to	 interpret	 species	 associations,	we	were	 able	 to	 examine	
the	biotic	effects	underpinning	spatial	variation	in	microbial	β‐diver‐
sity.	We	found	that	after	controlling	species	responses	to	environ‐
mental	changes,	species	interactions	(as	indicated	by	C‐scores)	still	
persisted	(Figure	1).	The	C‐score	was	the	highest	at	the	local	scale	
(Figure	1a,b)	and	became	lower	as	spatial	scales	increased,	suggest‐
ing	that	species	interacted	more	frequently	at	smaller	spatial	scales.	
Consistently,	network	topological	properties	made	a	higher	contri‐
bution	to	community	β‐diversity	at	the	local	scale	than	at	the	meso‐	
and	regional	scales	(Table	2).

Although	numerous	studies	have	reported	differences	in	the	bio‐
geographical	patterns	of	microbial	taxa,	there	have	been	very	few	
studies	to	disentangle	differences	between	distance–decay	patterns	
of	 taxonomic	 and	 functional	 microbial	 communities	 (Angermeyer 
et	al.,	2015).	For	the	diazotrophic	community,	the	slopes	of	distance–
decay	curves	were	significantly	different	at	the	three	spatial	scales,	
unveiling	high	heterogeneity	of	diazotrophic	N‐fixing	capabilities	in	
paddy	 soil.	 This	 corresponded	 to	 high	 heterogeneity	 of	 dissolved	
total	N,	nitrate	and	ammonium	concentrations	across	spatial	scales	
(Supporting	Information	Appendix	S1,	Figure	S5).	Long‐term	cultiva‐
tion	can	promote	higher	biological	N‐fixing	potential	of	paddy	soil,	
which	 might	 be	 attributed	 to	 enlarged	 diazotrophic	 communities	
(Bannert	et	al.,	2011).	Hence,	a	high	variability	of	diazotrophic	β‐di‐
versity	might	have	important	implications	for	soil	N	bioavailability.	
Notably,	we	did	not	observe	a	significant	distance–decay	slope	for	
diazotrophic	 communities	 at	 the	 meso‐scale	 (Figure	 3a),	 suggest‐
ing	that	different	paddy	fields	might	share	similar	functional	traits	
to	achieve	stable	N‐fixing	 functions.	 Intriguingly,	 scale‐dependent	
distance	decay	was	also	observed	for	both	ubiquitous	and	endemic	
diazotrophic	 communities	 (Figure	 3c,e),	 suggesting	 that	 the	 scale	
dependence	of	the	diazotrophic	community	was	likely	to	be	robust	
across	OTUs	with	different	occupancies.

F I G U R E  2  The	distance‐decay	relationships	for	(a)	overall	
diazotrophic	and	bacterial	communities,	(b)	ubiquitous	and	endemic	
diazotrophic	communities	and	(c)	ubiquitous	and	endemic	bacterial	
communities.	The	slopes	of	the	distance‐decay	relationships	are	
significantly	(P	<	.050)	lower	than	zero.
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Soil	 pH	 was	 the	 only	 factor	 that	 contributed	 to	 the	 varia‐
tion	 of	 diazotrophic	 community	 β‐diversity	 at	 three	 spatial	 scales	
(Table	2),	suggesting	a	strong	impact	of	soil	pH	on	diversification	of	
diazotrophic	communities	 in	paddy	soil.	This	 result	was	consistent	
with	extensive	studies	showing	soil	pH	to	be	an	 important	abiotic	

factor	shaping	microbial	community	structure	in	diverse	ecosystems	
(Liu	et	al.,	2016;	Shen	et	al.,	2016).

In	contrast,	a	significant	distance–decay	slope	of	overall	bacte‐
rial	communities	was	observed	only	at	the	local	scale	(Figure	3b).	
The	 result	 was	 consistent	 with	 another	 study	 of	 grassland	 soil	

F I G U R E  3  The	distance‐decay	relationships	for	(a)	overall	diazotrophic	communities,	(b)	overall	bacterial	communities,	(c)	ubiquitous	
diazotrophic	communities,	(d)	ubiquitous	bacterial	communities,	(e)	endemic	diazotrophic	communities	and	(f)	endemic	bacterial	communities	
at	the	local	(green),	meso	(light	blue)	and	regional	(dark	blue)	scales.	The	slopes	of	distance‐decay	relationships	are	labeled	in	figures,	and	
all	lines	(except	the	dash	lines)	are	significantly	(P	<	.050)	lower	than	zero.	Significantly	(P	<	.050)	different	slopes	at	three	spatial	scales	are	
represented	by	different	alphabets	in	parentheses.

(a) (b)

(c) (d)

(e) (f)

  

Overall Endemic Ubiquitous

R2 p R2 p R2 p

Diazotroph Geographical	distance 0.273 .001 0.285 .001 0.129 .001

Abiotic	selectiona 0.254 .001 0.251 .001 0.198 .001

Biotic	selectionb 0.174 .001 0.097 .001 0.395 .001

Bacteria Geographical	distance 0.171 .001 0.270 .001 0.244 .001

Abiotic	selection 0.230 .001 0.193 .001 0.296 .001

Biotic	selection 0.403 .001 0.180 .001 0.456 .001

aAbiotic	factors:	dissolved	organic	carbon,	dissolved	total	nitrogen,	ammonia,	nitrate,	soil	water	
content,	soil	temperature	and	soil	pH.	
bBiotic	factors:	average	degree,	average	clustering	coefficient	and	modularity.	

TA B L E  1  Relative	contributions	of	
geographical	distance,	abiotic	factors	and	
biotic	factors	to	diazotrophic	and	bacterial	
communities	with	different	occupancies
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microbial	 communities	 showing	 that	 pronounced	 heterogeneity	
of	microbial	β‐diversity	was	significant	only	at	centimetre	 scales	
(O'Brien	 et	 al.,	 2016).	 Such	phenomena	might	 be	 attributable	 to	
several	 causes.	 First,	 paddy	 soil	may	 become	 homogenized	 as	 a	
result	of	cyclic	tillage	and	irrigation	within	a	field.	Therefore,	ho‐
mogenized	 abiotic	 factors	 driven	 by	 those	 agricultural	 practices	
may	contribute	more	to	bacterial	community	variation	compared	
with	spatial	distance,	which	offsets	the	distance	effect.	Second,	at	
the	local	scale,	we	observed	the	highest	proportion	of	aggregated	
species	 pairs	 in	 the	 bacterial	 communities,	 compared	 with	 the	
meso‐	 and	 regional	 scales	 (Figure	 1c).	 A	 previous	 study	 showed	
that	 patchy	 species	 aggregation	 in	 bulk	 soil	might	 lead	 to	 diver‐
gent	 composition	 of	 communities	 (Faust	 &	 Raes,	 2012).	 Species	
competition–cooperation	trade‐offs	might	also	have	shifted	with	
changes	in	availale	nutrients	in	the	rhizosphere	(Yang	et	al.,	2018),	
leading	 to	 variation	 in	 community	 composition	 within	 the	 local	
scale	 (Chesson	 &	 Huntly,	 1997;	 Kneitel	 &	 Chase,	 2004;	 Tilman,	
2000).	Third,	sampling	across	the	whole	region	might	not	have	con‐
tributed	to	significant	increases	in	bacterial	diversity	above	what	
was	 already	 observed	 at	 the	 local	 scale.	 This	might	 be	 because	

the	sequencing	depth	was	not	yet	sufficient	 to	capture	 fully	 the	
underlying	genomic	composition	of	bacterial	communities,	which	
have	 large	 species	 pools	 (Supporting	 Information	 Appendix	 S1,	
Figure	S7).

The	 spatial	 scale	 dependence	 of	 bacterial	β‐diversity	 could	 be	
contingent	 on	 habitat	 types	 (Lozupone	 &	 Knight,	 2007;	 Zinger,	
Boetius,	 &	 Ramette,	 2014).	 For	 example,	 the	 sessile	 lifestyle	 of	
sediment	bacteria	 caused	 spatial	 isolation,	 and	 stronger	 variations	
in	 environmental	 conditions	 triggered	 different	 distance–decay	
slopes	(Zinger	et	al.,	2014).	A	study	on	the	bacterial	distance–decay	
relationship	 in	different	habitats	 showed	 that	marine	bacteria	had	
much	shallower	distance–decay	slopes	than	sediment	bacteria	but	
had	 a	 similar	magnitude	 of	 distance–decay	 slopes	 to	 soil	 bacteria	
(Ranjard	 et	 al.,	 2013).	 Furthermore,	 given	 that	water	 flow	enables	
the	dispersal	of	marine	bacteria,	no	significant	spatial	scale	depen‐
dence	was	 reported	 for	marine	 bacterial	β‐diversity	 (Zinger	 et	 al.,	
2014).	Consistently,	we	detected	no	distance–decay	slopes	of	bac‐
terial	communities	at	the	meso‐	and	regional	scales,	and	a	shallower	
distance–decay	slope	(≤	0.010)	at	the	local	scale	than	those	in	sed‐
iment	(0.003–0.070)	(Schauer,	Bienhold,	Ramette,	&	Harder,	2010),	

Diazotrophic 
communities The overall scale The local scale The meso scale

The regional 
scale

R2= 0.501 b R2= 0.341 b R2=	0.176	b R2= 0.286 b

Geographic	
distance

0.392* 0.103* 0.151**

Dissolved	organic	
carbon

0.058* 0.124*

Ammonium 0.123** 0.141**

Soil	temperature 0.102*

Soil	pH 0.219** 0.182** 0.224** 0.304**

Average	degree 0.295** 0.482** 0.331**

Average	clustering	
coefficient

0.064* 0.098*

Bacterial 
communities The overall scale The local scale The meso scale

The regional 
scale

R2= 0.440 b R2= 0.253 b R2=	0.037	b R2= 0.160 b

Geographic	
distance

0.332** 0.178*

Dissolved	organic	
carbon

0.055*

Dissolved	total	N 0.159*

Ammonium 0.115*

Soil	pH 0.215** 0.173*

Average	degree 0.403**

Average	clustering	
coefficient

0.164*

Modularity 0.345**

Note:	The	variation	(R2)	of	natural‐logarithm	transformed	community	distance	matrix	explained	
by	the	prediction	factors	and	the	partial	regression	coefficient	(b)	of	each	prediction	factor	are	
reported.	When	a	partial	regression	coefficient	is	shown,	the	significance	level	is	labeled	by	*	when	
p	≤	0.050	and	by	**	when	p	≤	0.001.

TA B L E  2  Relative	contribution	of	
abiotic	and	biotic	factors	for	diazotrophic	
and	bacterial	communities	at	different	
spatial	scales
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suggesting	that	paddy	soils	were	generally	 less	 limited	 in	bacterial	
species	dispersal.

Although	the	ubiquitous	diazotrophic	community	exhibited	spa‐
tial	scale	dependence	 in	β‐diversity,	 this	was	not	observed	for	 the	
ubiquitous	 bacterial	 community	 (Figure	 3c,d).	 As	 the	 spatial	 scale	
increased	 to	 encompass	 a	 greater	 environmental	 gradient,	 ubiq‐
uitous	bacteria,	with	broader	niche	adaptation	 than	ubiquitous	di‐
azotrophs,	might	 have	 been	 less	 susceptible	 to	 changes	 in	 spatial	
scales.	Moreover,	if	the	community	dynamics	(dispersal,	local	adap‐
tation	and	colonization)	were	more	stochastic,	it	is	plausible	that	the	
distance–decay	would	deteriorate	 as	nearby	 communities	became	
as	 different	 as	 distant	 communities	 (Bell,	 2010).	We	 inferred	 that	
ubiquitous	bacterial	community	dynamics	might	be	more	stochastic	
than	that	of	ubiquitous	diazotrophs	owing	to	the	much	larger	species	
pool.

In	 comparison,	 endemic	 communities	of	both	diazotrophic	 and	
bacterial	 communities	 had	 steeper	 distance–decay	 slopes	 at	 the	
local	scale	than	at	the	meso‐	and	regional	scales	(Figure	3e,f).	The	re‐
sult	was	consistent	with	a	modelling	framework	showing	that	the	rel‐
ative	contribution	of	endemic	species	to	β‐diversity	is	higher	at	the	
local	scale	because	endemic	species	are	more	aggregated	 (Morlon	
et	al.,	2008).

The	biotic	mechanisms	that	accounted	for	the	spatial	scaling	of	
microbial β‐diversity	were	probably	 involved	with	species	associa‐
tions.	 For	 example,	 competitive	exclusion	 caused	by	 limited	nutri‐
ent	sources	among	species	has	been	suggested	to	limit	coexistence	
of	 species	 and	 result	 in	 segregation	 of	 microbes	 (Leibold,	 1998;	
Macarthur	&	Levins,	1967).	In	contrast,	metabolic	interdependence	
among	taxa	may	favour	species	coexistence	that	 leads	to	aggrega‐
tion	of	microbes	(Zelezniak	et	al.,	2015).	Those	species	associations	
might	occur	simultaneously	and	jointly,	which	contributes	to	the	ob‐
served	variation	in	community	composition	(Violle,	Nemergut,	Pu,	&	
Jiang,	2011).	Based	on	the	null	model	result,	we	observed	81–94%	
non‐random	species	pairs	(Figure	1c,d),	which	was	much	higher	than	
that	observed	in	plant	communities	 (Blois	et	al.,	2014;	Li	&	Waller,	
2016).	For	example,	Blois	et	al.	(2014)	found	only	2%	of	plant	species	
pairs	to	be	significant	(Blois	et	al.,	2014).	Li	and	Waller	(2016)	found	
16–31%	 of	 species	 pairs	 of	 plant	 communities	 to	 have	 significant	
associations,	 even	 at	 a	 smaller	 scale	 (1	m2	 quadrats)	 than	 ours	 (Li	
&	Waller,	2016).	Those	 results	 suggested	 that	 species	 interactions	
could	be	more	important	in	structuring	microbial	communities	than	
previously	appreciated,	because	microbial	species	were	more	likely	
to	be	aggregated	and	segregated.

The	MRM	analysis	 showed	 that	modularity	 of	 networks	made	
the	 largest	 contribution	 to	 β‐diversity	 of	 bacterial	 communities	
(Table	 2).	 Previous	 studies	 have	 shown	 that	 the	 topology‐based	
modules	 in	 microbial	 networks	 could	 be	 perceived	 as	 functional	
units	 in	microbial	 communities	 (Luo,	 Zhong,	 Yang,	&	Zhou,	 2006).	
Another	study	also	interpreted	modules	as	niches	for	microbial	com‐
munities	 (Chaffron	et	 al.,	 2010).	Accordingly,	 the	higher	 impact	of	
modularity	might	be	linked	to	a	greater	extent	of	segregation	among	
bacterial	species	into	niches	and	functional	units	(i.e.,	functional	dif‐
ferentiation).	Null	model‐based	analysis	showed	a	higher	proportion	

of	segregated	species	pairs	 in	the	bacterial	community	than	 in	the	
diazotrophic	community	across	spatial	scales	(Figure	1c,d),	probably	
owing	to	more	diverse	niches	and	functional	units	of	bacterial	com‐
munities	than	diazotrophic	communities.

Despite	 the	 potential	 of	 species	 association	 in	 structuring	mi‐
crobial	 communities,	 our	 results	 should	 be	 interpreted	 carefully,	
because	 complex	microbial	 associations	 and	 interactions	 are	 chal‐
lenging	to	measure	in	natural	environments.	Therefore,	using	multi‐
ple	methods	to	interpret	and	compare	species	association	patterns	
is	of	great	importance	to	demonstrate	the	reliability	of	the	results.	In	
our	study,	environmentally	constrained	species	co‐occurrence	pat‐
terns	and	RMT‐based	association	networks	showed	consistency	 in	
interpreting	species	association	across	spatial	scales.	Our	study	thus	
offers	a	new,	reliable	way	to	explore	the	biotic	mechanisms	underly‐
ing	community	spatial	assemblies.

In	 summary,	 this	 study	 demonstrates	 the	 spatial	 scale	 de‐
pendence	of	diazotrophic	and	bacterial	community	assemblies	 in	
paddy	 soil	 and	 reveals	 the	 driving	 mechanisms.	 This	 represents	
the	first	attempt	to	compare	spatial	assembly	processes	of	micro‐
bial	functional	communities	with	those	for	bacterial	communities.	
Given	the	 importance	of	species	associations	and	their	potential	
relationships	with	species	composition,	future	empirical	and	the‐
oretical	 research	 that	 investigates	 the	 biotic	 effect	 on	 changes	
to	microbial	β‐diversity	are	needed.	Moreover,	given	that	ubiqui‐
tous	 species	 are	 potentially	 important	 organisms	 for	 ecosystem	
functions	(Saunders	et	al.,	2016;	Zhang,	Shao,	&	Ye,	2012),	spatial	
dependence	should	be	taken	into	account	when	examining	the	di‐
versity	of	ubiquitous	functional	communities	and	associated	eco‐
system	services.
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