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Abstract: Functional gene markers can provide important information about functional gene diversity and potential activity of 
microbial communities. Although microarray technology has been successfully applied to study gene expression for pure cultures, 
simple, and artificial microbial communities, adapting such a technology to analyze complex microbial communities still presents a 
lot of challenges in terms of design, sample preparation, and data analysis. This work is focused on the development and application 
of functional gene arrays (FGAs) to target key functional gene markers for microbial community studies. A few key issues 
specifically related to FGAs, such as oligonucleotide probe design, nucleic acid extraction and purification, data analysis, specificity, 
sensitivity, and quantitative capability are discussed in detail. Recent studies have demonstrated that FGAs can provide specific, 
sensitive, and potentially quantitative information about microbial communities from a variety of natural environments and 
controlled ecosystems. This technology is expected to revolutionize the analysis of microbial communities, and link microbial 
structure to ecosystem functioning. 
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1 Introduction 
 

A great difficulty in studying microbial 
communities is that a majority (＞99%) of micro- 
organisms are as yet uncultivated[1]. As such, the study 
of microbial composition, structure, function, and 
dynamics in natural and/or controlled environments 
requires the use of molecular markers. Most studies use 
either the 16S rRNA or the gyrB genes as phylogenetic 
markers to identify microorganisms and their 
phylogenetic relationships in microbial communities of 
interest. Another option for molecular markers is the use 
of functional genes, such as amoA, which encodes 
ammonia monooxygenase, a key enzyme for ammonia 
oxidization[2], and nifH, which encodes dinitrogenase 
reductase, a key enzyme in nitrogen fixation[3−5]. 
Additional functional genes that are currently being used 
in environmental studies are described in Ref.[6].  A 
great benefit in the use of functional gene markers rather 

than phylogenetic markers is that the functional gene 
diversity and functional potential of microbial 
communities can be evaluated. However, though 
conventional molecular methods, such as PCR-based 
cloning and in situ hybridization can provide information 
on microbial community diversity, structure and function, 
they cannot provide a complete picture of microbial 
activity and dynamics in a rapid, parallel, and 
high-through-put manner. 

Microarrays provide a rapid mechanism for 
high-through-put analysis of microbial communities. 
This technology has been used successfully with pure 
cultures in the analysis of global gene expression.  
However, fully adapting this technology for use with 
environmental samples still presents many challenges in 
terms of probe design, gene sequence coverage, 
specificity, sensitivity and quantitative capability. To 
overcome these obstacles, functional gene arrays(FGAs) 
have been developed. This type of array targets microbial 
genes involved in key biogeochemical processes, such as 
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carbon, nitrogen, phosphorus, and sulfur cycling, organic 
contaminant degradation, and metal reduction, oxidation 
and resistance. Since most of processes targeted by the 
FGA are geochemical processes, these arrays are also 
called GeoChip[7]. GeoChip is a powerful tool which 
can be used to address several fundamental questions 
related to microbial ecology, biogeochemistry, and 
environmental biology. These include: 1) What 
functional processes is a microbial community capable of 
performing? 2) What are the dominant populations 
within a microbial community? 3) What is the dynamics 
of functional activity for a given microorganism, gene, or 
process? 4) How are microbial community structure and 
composition linked to ecosystem functioning? 5) What 
are the relationships between functional gene activity and 
environmental geochemistry? 6) How do environmental 
stressors and other environmental fluctuations affect 
microbial communities? 

Since the first report of a microarray designed to 
examine gene expression in Arabidopsis thaliana[8], 
microbial ecologists have tried to answer the central 
question of whether  FGA-based technologies can 
provide specific, sensitive and quantitative detection of 
microbial populations and activities within the context of 
environmental applications. FGA-based technology has 
evolved over time to include increased coverage of 
functional gene sequences, improved bioinformatics 
systems for sequence retrieval, probe selection, data 
analysis, and information storage. The first prototype 
FGA was constructed using 89 PCR-amplicon probes 
from pure cultures and laboratory clones targeting 
nitrogen cycling genes[9]. However, the use of PCR 
amplicon probes complicates the design of a 
comprehensive FGA since a large diversity of 
environmental clones and bacterial strains would be 
required. To overcome this difficulty, the use of 
oligonucleotide probes has become popular in 
microarrays due to their high specificity, ease of 
construction, and low cost. Oligonucleotide FGAs are 
fabricated with synthetic oligonucleotide probes and can 
be spotted onto glass slides[10−12] or nylon membranes 
[13]. FGAs have been systematically evaluated to 
determine the sensitivity, specificity, and quantitative 
capability. In addition to providing information regarding 
the functional abilities of microbial communities, FGAs 
can also be used to examine phylogenetic relationships. 
For example, LOY et al[14] constructed an array 
containing both phylogenetic gene (16S rRNA gene) and 
functional gene (dsrA/B) markers. 

All these prototype or evaluation versions of FGAs 
could be designated by GeoChip 1.0. A newer, more 
comprehensive version, GeoChip 2.0, has been designed 

and evaluated[7]. This version was designed to provide a 
comprehensive tool for the analysis of microbial 
community structure, function, and dynamics in natural, 
contaminated, or/and controlled environments. The gene 
sequence coverage and probe number have been greatly 
increased from hundreds to tens of thousands. In addition, 
the sequence retrieval, probe design, data analysis and 
other related computational techniques have been greatly 
improved. GeoChip 2.0 contains 24 243 oligonucleotide 
(50-mer) probes and covers ＞1 000 genes in ＞150 
functional groups involved in nitrogen, carbon, sulfur 
and phosphorus cyclings, metal reduction and resistance, 
and organic contaminant degradation[7]. This array used 
experimentally established probe design criteria[15−16] 
and a new computational software tool, CommOligo[17], 
for oligonucleotide probe selection. Further, a 
complementary whole-community genome amplification 
(WCGA) technique has been demonstrated which allows 
for the analysis of sub-nanogram quantities of microbial 
community DNA[18]. This approach makes it possible to 
analyze environmental samples with very low biomass 
which greatly expands the number and type of samples 
that can be analyzed with the GeoChip. The next 
generation FGA, GeoChip 3.0, has been developed and is 
currently being evaluated. GeoChip 3.0 provides an 
expanded coverage, approximately 47 000 gene variants 
(sequences) from more than 290 gene categories. Many 
new features, including automated sequence retrieval, 
sequence verification, and sequence updates have been 
implemented. 
 
2 Development of functional gene arrays 
 
2.1 Challenges 

Design and development of FGAs requires 
overcoming several technical challenges in both 
microarray-based technologies[19] and bioinformatics 
software development. Sequences specific to proteins or 
genes of interest must be retrieved from public databases. 
Optimally, this is done by using keywords to search the 
database. However, several obstacles must be 
surmounted in obtaining appropriate sequences and then 
designing specific probes. First, genes or proteins may 
have a more general annotation rather than a specific 
gene designation, or may be differently annotated in 
different organisms. Second, functional gene variants can 
be very similar and most are homologues. Third, if a 
given sequence is obtained from uncultured microbes or 
laboratory clones, the complete gene may not be 
sequenced resulting in shorter sequences to design 
probes. Fourth, the sheer number of sequences available 
for each gene can be staggered and the number of 
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sequences available is rapidly increased, making the 
selection of variant-specific probes for all of the variant 
sequences quite difficult and often resulting in a low 
coverage of most functional genes. Fifth, development of 
a standardized set of criteria for oligonucleotide probe 
design remains challenging. Sixth, because FGAs are 
designed for use with microbial communities, the 
oligonucleotide probes must be specific enough to detect 
their target sequences even in complex samples with 
many unknown sequences. In addition, since FGAs are 
markedly different from the typical gene expression 
arrays, novel methods for data normalization and 
analysis must be developed. Finally, as mentioned above, 
in the current genomic and meta-genomic era, the 
number of microbial sequences is increased 
exponentially on practically daily basis. So periodic 
updates are necessary to maintain the applicability of 
FGAs. 
 
2.2 Strategies 

Several strategies have been devised to address 
many of the above challenges. To overcome some of the 
complexities of sequence searching and selection, a new 
strategy has been developed to obtain and screen 
appropriate sequences. First, functional gene sequences 
are retrieved by using very broad key words to obtain 
related sequences as many as possible. Next, all of the 
sequences are screened by selecting seed sequences (that 
are known to encode the protein or enzyme of interest) 
and then HMMER is used to remove all unrelated 
sequences. Then, sequences for each functional gene are 
aligned by using a multiple sequence alignment(MSA) 
program and only shared gene regions are used for 
subsequent probe design. Finally, oligonucleotide probes 

are designed using experimentally established design 
criteria and a novel software package. Use of both gene- 
and group-specific probes allows for the detection of 
both divergent and closely related sequences. 

The major steps used in the development of FGAs 
are shown in Fig.1. 1) Individual functional gene 
sequences are retrieved from public databases (e.g. NCBI 
GenBank). 2) All retrieved sequences are screened by 
using HMMER software and unrelated sequences are 
removed. 3) 50 mer oligonucleotides are designed using 
experimentally established design criteria[15−16] with a 
modified CommOligo[17] program, which allows for 
selection of  group-specific probes. The following 
criteria are used for the gene- and group-specific probe:  
1) gene-specific probes must have a sequence identity 
≤90%, stretch ≤20 bases, and free energy ≥−147 
kJ/mol[16]; 2) group-specific probes must have a 
sequence identity ≥ 96%, continuous stretch length   
≥ 35 bases, and free energy ≤ −252 kJ/mol[15]. 
Oligonucleotide probes are designed based on all 
variants (sequences) of each individual gene. To ensure 
specificity for the entire array, each designed probe is 
verified by evaluating the sequence identity, stretch and 
free energy against a larger database, such as NCBI and 
EMBL. The probes that have passed all of the selected 
criteria are then commercially synthesized, and spotted 
onto glass slides (e.g. Corning UltraGAPS), air dried and 
then UV-cross-linked according to the slide 
manufacturers suggested methods. 
 
3 Target preparation and hybridization 
 

A key element in obtaining the best microarray data 
possible is the use of high quality DNA or RNA. The 

 

 

Fig.1 Major steps for development of functional gene arrays, preparations of environmental samples, and data analysis of array 
hybridization 
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major steps in target preparation and hybridization are 
outlined in Fig.1. 
 
3.1 DNA extraction and purification 

Microbial community DNA is generally extracted 
and purified by using a freeze-grind method established 
by Ref.[20]. Modifications may be required depending 
on sample type and the particular experimental 
requirements [21]. There are also many commercial kits 
available for DNA extraction and purification. Several of 
these have been evaluated with regards to extraction 
efficiency using a variety of sample types[22]. Optimally, 
purified DNA should have A260/A280＞1.80, and A260/A230

＞1.70. If a sample has little (e.g., <2.0 µg) DNA, 
WCGA can be used to increase the amount of DNA 
available for hybridization[18]. 
 
3.2 RNA preparation 

RNA, as an ideal indictor of microbial activity, can 
also be used with FGAs. The use of mRNA allows for 
the study of the transcriptional activities of microbial 
communities and provides insight into microbial activity 
rather than just ability. However, it is difficult to obtain 
quality mRNA from environmental samples especially 
since mRNA tends to be in low abundance. A few 
methods are currently available for extraction of 
community RNA from environmental samples. HURT et 
al[21] describes a simultaneous DNA and RNA 
extraction and purification method. A new gel 
electrophoresis method to isolate community RNA has 
been reported[23]. As with DNA, RNA quality is 
important as well. Purified RNA should have ratios of 
A260/A280＞1.90 and A260/A230＞1.70. A large amount of 
RNA (10−20 µg) is required for hybridization, but often 
insufficient quantities of RNA are obtained from 
community samples. So, an amplification with a novel 
whole community RNA amplification(WCRA)[24] 
approach may be required. This method can produce a  
1 200- to 1 800-fold amplification from10 to 100 ng of 
environmental RNA[24]. 
 
3.3 Nucleic acid labeling 

The community DNA (5 µg) is fluorescently labeled 
with Cy5 or Cy3 by random priming using the Klenow 
fragment of DNA polymerase as described previously 
[18]. Total community RNA (10−20 µg) is labeled using 
Cy5 or Cy3 with SuperscriptTM II/III RNase H- reverse 
transcriptase (Invitrogen Life Technologies, CA, USA) 
as described by HE et al[25]. The labeled DNA or cDNA 
targets are purified using a QIAquick PCR purification 
column and dried in a speedvac centrifuge (Savant 
Instruments Inc., Holbrock, NY, USA). The labeled 
targets can then be hybridized or co-hybridized (if two 

dyes are used) to FGA chips. Hybridizations are carried 
out under stringent conditions at 50 ℃  and 50% 
formamide as described previously[12, 18]. The hybridi- 
zation temperature can be lowered (e.g., 45 ℃, 42 ℃) 
in order to detect more diverse sequences. 
 
3.4 Array scanning and image processing 

A microarray scanner (e.g. ProScan Array, Perkin 
Elmer, Boston, MA, USA) equipped with lasers at a 
resolution of 10 µm or higher can be used to process 
FGA slides. The laser power and photomultiplier tube 
(PMT) gain are adjusted to avoid saturation of spots. 
Scanned image displays are saved as 16-bit TIFF files 
and analyzed by quantifying the pixel density (intensity) 
of each spot using image quantification software tools 
(e.g. ImaGene 6.0, Biodiscovery Inc. Los Angeles, CA, 
USA). 
 
4 Data analysis 
 

The most difficult task involved in the use of FGAs 
for the study of microbial communities is data analysis 
and interpretation. Generally, FGA data analysis includes 
three major steps, preprocessing, normalization, and 
statistical analysis (Fig.1). 
 
4.1 Array quality validation 

The first step is to check the quality of individual 
spots, regions, and the whole array. The following is a 
simple method for preprocessing digital array data output 
from image processing software (e.g. ImaGene). 1) Poor- 
quality spots, which are flagged by the image processing 
software using predetermined criteria, are removed. 2) 
Spots with low signal intensities are removed based on 
the signal-to-noise ratio(SNR). Normally, an SNR of 2.0 
is used as the cutoff[26]. 3) Any outliers are removed. An 
outlier is defined as any positive spot whose [signal- 
signal mean of all probe replicates (slides)] is more than 
three times the standard deviation of the probe replicates. 
4) One or more arrays are discarded if the overlap of all 
detected spots is lower than 80% among replicates. 
 
4.2 Data normalization 

The second step is data normalization. The purpose 
of data normalization is to adjust the microarray data for 
effects that bring variations in the microarray technology 
rather than biological differences between samples, or 
probes on an array. Microarray technology variations 
may be due to dye bias, labeling efficiency, different 
scanning properties and settings, or the use of different 
regents, which can be systematically corrected. 
Normalization can be performed within a chip and/or 
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among replicate chips. However, a normalization of FGA 
data needs to consider the following situations. 1) What 
percentage of spots on each array has positive signals? 
An FGA (e.g. GeoChip 2.0) normally contains a 
comprehensive set of probes and some microbial 
communities may be very simple. 2) Which spots are 
used as the control for normalization? 3) What is the 
distribution of signals among positive spots or all spots 
on the array? Normalization methods may need to be 
modified based on the answers to the above questions. 
For example, after data preprocessing, FGA data can be 
normalized by the total or the mean signal intensity of 
replicates since it is assumed that the microbial 
community is not different among replicates. 
 
4.3 Statistical analysis 

The third step is statistical analysis of FGA data. 
The following methods are commonly used. 1) Principal 
component analysis. This is an exploratory multivariate 
statistical method for simplifying data sets which reduces 
the dimensionality of the variables by finding new 
variables independent of each other. A few of the new 
variables, typically 2−3, are selected to explain the 
majority of variance in the original data. For microarray 
data analysis, genes or experiments can be considered 
variables. The main advantage of PCA is that it identifies 
outliers in the data or genes that behave differently than 
most of the genes across a set of experiments. 2) Cluster 
analysis. One of the most commonly used methods is 
cluster analysis. Cluster analysis is used to identify 
groups of genes, or clusters that have similar profiles. 
Clusters and genes within them can be subsequently 
examined for commonalities in functions and sequences 
for better understanding of how and why they behave 
similarly. Cluster analysis can help establishing 
functionally related groups of genes to gain insights into 
structure and function of a given microbial community. 
The most popular clustering method was developed by 
EISEN et al[27], and other algorithms were described by 
HEYER et al[28], TAVAZOIE and CHURCH[29], and 
ZHOU et al[30]. 3) Neural network analysis. Since 
clustering methods have some serious drawbacks in 
dealing with data with a significant amount of noise, a 
fundamentally different network-based approach has 
been proposed for microarray data analysis[31−33]. 
Unsupervised neural networks, such as self-organizing 
maps(SOMs), are more robust and accurate for grouping 
large data sets. The main advantage of SOMs is that they 
are robust to noise, and SOMs are also reasonably fast 
and can be easily scaled up to large data sets. One 
disadvantage of SOMs is that they require 
pre-determined choices about geometry. In addition, it is 
very difficult to detect higher-order relationships 
between clusters of profiles due to the lack of a tree 

structure[33]. To overcome some of the limitations of 
SOMs, an unsupervised neural network, termed the 
self-organizing tree algorithm(SOTA), was proposed[34]. 
This new algorithm combines the advantages of 
hierarchical clustering (tree topology) and neural 
network (accuracy and robustness) and was used to 
analyze gene expression data[33]. There are many 
commercial and free software tools available for general 
microarray data analysis. Such tools are as simple as 
Excel (Microsoft), or as complicated as Matlab (The 
MathWorks), and those include R, GeneSpring (Agilent 
Technologies), Genesight (BisDiscovery), S-Plus 
(Insightful Corporation), SPSS (SPSS Inc.), SAS (SAS 
Institute Inc.), and SAM[35]. It is noted that most 
currently available tools are focused on the analysis of 
gene expression data. Therefore, we need to carefully 
choose suitable tools for FGA data analysis. For example, 
to examine the correlations between the differences of 
uranium concentrations and those of various functional 
gene abundances, we used R to implement the Mantel 
test[7]. 
 
4.4 Data interpretation 

Finally, such large data sets need to be simply 
presented and biologically interpreted.  Richness of 
different gene categories in the community as a whole in 
the studied samples can be determined from the number 
of probes that detect their target(s). With probes by 
category (e.g. nifH) as indicators of individual taxa, 
Simpson’s diversity index, Shannon diversity index, and 
Evenness based on Simpson’s index can be calculated as 
described previously[36]. To compare different samples, 
some genes are specifically detected in one sample, and 
some in all samples tested. The numbers of these two 
type of genes can be calculated as unique and overlap 
genes as described previously[18]. Clustering is one of 
the most popular methods to analyze and visualize 
microarray data. Using a hierarchical clustering 
algorithm, the relationship between different samples 
taken at different times/sites and different clusters among 
those samples can be identified. Such analysis can also 
be applied to each gene/category with its variants. The 
software Cluster can be used for cluster analysis and 
TreeView for visualization[27]. In addition, the network 
analysis of microarray data has received significant 
attention, and such a method may be used to present and 
interpret FGA results. 
 
5 FGA specificity, sensitivity and quantita- 

tive capability 
 
5.1 Specificity 

Specificity is one of most important parameters to 
ensure the production of high quality microarray data. 
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This is especially true for analyzing environmental 
samples since there may be numerous variants for each 
gene present in the sample. Microarray specificity can be 
controlled by probe design and hybridization conditions. 
Using a 50-mer FGA containing 763 probes for genes 
involved in nitrogen (e.g. nirS, nirK, nifH) and sulfur 
cycling (e.g. dsrA/B), TIQUIA et al[11] showed that 
hybridizations at 50 ℃ could differentiate sequences 
with ＜86% identity, while at 55 ℃ sequences with  
＜90% identity could be distinguished. RHEE et al[12] 
examined a more comprehensive FGA with 1 662 50-mer 
probes for genes involved in contaminant degradation 
and found that hybridization at 50 ℃  and 50% 
formamide could differentiate sequences with ＜88% 
identity. However, significant cross-hybridization was 
observed with 70-mer probes which had free     
energy ＜−147 kJ/mol[37]. We therefore experimentally 
established probe design criteria based on sequence 
identity, continuous sequence stretches and free energy in 
order to increase specificity[15−16]. These criteria have 
been implemented in a novel software tool, CommOligo, 
for microarray probe design[17]. Probes for GeoChip 2.0 
were designed by using this newly developed software. 
Evaluation of GeoChip 2.0 revealed only a very small 
percentage of false positives (0.002%−0.004%) and no 
false negatives under experimental conditions[7]. Thus, 
the use of appropriate probe design criteria allows for a 
highly specific array. 
 
5.2 Sensitivity 

FGA sensitivity is also a major concern, especially 
for samples from complex environments where many of 
the sequences will be in low abundance. When 
PCR-generated probes were used for functional gene 
arrays(FGA), the detection limit for nirS was 
approximately 1.0 ng of pure gDNA or 25 ng of soil 
community DNA[9]. The detection sensitivity for 
Geobacter chapellei SSU rRNA gene sequences in soil 
extracts was approximately 500 ng of total RNA using 
oligonucleotide capture and detector probes[38]. Other 
studies of 50-mer FGA probes have shown similar 
detection limits[11−12]. Coupled to WCGA, as little as 
10 pg of community DNA could be detected with 50-mer 
FGAs[18]. These studies demonstrate that the current 
microarray technology can provide detection of very 
small amounts of DNA especially if combined with 
available amplification techniques, although improved 
sensitivity is still necessary for environments with 
extremely low biomass. 
 
5.3 Quantitative capacity 

Another important issue is the capability of 

microarray-based technologies to provide quantitative 
information regarding microbial communities. Previous 
studies using pure culture, mixed culture, and 
environmental samples have demonstrated linear 
relationships between target DNA or RNA 
concentrations and hybridization signal intensity[9, 12, 
18]. Similar linear relationships were observed with 
randomly amplified DNA[18] or RNA[24] using 50 mer 
FGAs. These studies demonstrate the promise for the use 
of FGAs as a quantitative tool to analyze environmental 
samples. 
 
6 Applications of functional gene arrays for 

microbial community analysis 
 

Since all probes for GeoChip are designed by using 
functional gene coding sequences, both DNA and RNA 
can be used as targets for measuring gene abundance and 
gene expression, respectively. Therefore, GeoChip can 
be used in a variety of studies, including (but not limited 
to) 1) detection of functional genes and/or organisms in a 
particular environment; 2) linkage of microbial 
community structures to ecosystem functioning; and 3) 
estimation of gene abundance and activity. GeoChip can 
be used for analysis of any environmental samples, such 
as soil, water, sediments, oil fields, deep sea, and animal 
guts. Here, a few studies are presented to demonstrate the 
power of FGAs as tools to analyze microbial 
communities in different ecosystems. 

The first study examined microbial communities at 
the Oak Ridge ERSP (environmental remediation science 
program) FRC (field research center) site contaminated 

with nitrate, uranium, and organic compounds using an 
FGA (GeoChip 1.0) with 2 006 (50-mer) oligonucleotide 
probes[11−12]. As expected, the highest number of genes 
was detected in uncontaminated background samples, 
while the lowest number of genes was detected for the 
highly contaminated sample, suggesting contaminants 

strongly affected the microbial communities[18]. 
GeoChip 2.0 has been used for the analysis of 

microbial communities in different ecosystems. First, 
GeoChip 2.0 has been used to track the dynamics of 
metal-reducing bacteria and associated communities for 
an in-situ bioremediation study at the Oak Ridge ERSP 
FRC[7]. This system demonstrated for the first time that 
uranium can be bioremediated to concentrations below 
the USA EPA maximum contaminant level(MCL) for 
drinking water[39]. A significant correlation between 
U(Ⅵ) concentration and the amount of cytochrome genes 
detected (r=0.73, p＜0.05) was observed, indicating the 
importance of this group of micro- organisms in U(Ⅵ) 
reduction[7]. Second, RODRÍGUEZ-MARTÍNEZ et 
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al[40] used GeoChip 2.0 to monitor microbial 
community shifts in a diesel bioremediation system in 
Vega Baja, Puerto Rico, and found that an increase in the 
amount of genes involved in anaerobic degradation of 
organic contaminants was also observed over time, 
which is consistent with other evidence that the system 
shifted to a predominantly anaerobic process over time. 
Third, YERGEAU et al[41] investigated microbial N and 
C cyclings in Antarctic sediments using GeoChip 2.0, 
and found that cellulose degradation and denitrification 
genes positively correlated with soil temperature. Fourth, 
GeoChip has been used to investigate microbial 
community structures in bioremediating a 
hydrocarbon-contaminated aquifer, and active members 
were identified in stable isotope experiments fed with 
labeled biphenyl[42]. Fifth, GeoChip 2.0 has also been 
used to assess the gene−area relationship of microbial 
communities in soils, and the results suggested that the 
forest soil microbial community exhibited a relatively 
flat gene–area relationship, but the z values varied 
considerably across different functional and phylogenetic 
groups[43]. Another study characterized the structure of 
deep sea hydrothermal vent microbial communities of a 
mature deep-sea hydrothermal vent chimney and the 
inner and outer portions of a five-day old chimney 
(unpublished data).  The results showed that microbial 
functional diversity was much lower in the inner 
chimney than the outer or mature chimnies, which was 
confirmed by real-time PCR and clone library 
approaches. 

The latest version of GeoChip (GeoChip 3.0) has 
been used to study the effects of elevated CO2 on 
belowground microbial community, and the results 
suggest that the concentration of atmospheric CO2 
significantly affects soil microbial community, and that 
soil microorganisms may influence global carbon and 
nitrogen cyclings, and probably mitigate global warming 
effects (unpublished data). 

In addition to those comprehensive GeoChips 
mentioned above, some FGAs have been developed for 
study of specific ecosystems. For example, an 
oligonucleotide FGA has been developed for analyze 
microbial populations in acid mine drainages and 
bioleaching systems[44], and it is expected that such 
specific FGAs will be widely applied to particular 
ecosystems such as bioleaching, bioreactor, and 
microbial fuel cell(MFC) systems. 

Results from these studies demonstrate that FGAs 
can provide rapid, specific, sensitive, and potentially 
quantitative analysis for microbial communities in 
different ecosystems, and that the FGA technology can 
provide clearer and more comprehensive pictures of 

microbial communities in the environment. 
 
7 Summary and future perspectives 
 

FGA technology has received a great deal of 
attention during its development and subsequent 
applications. Several recent studies have demonstrated 
FGAs ability to provide specific, sensitive, and 
potentially quantitative information regarding microbial 
communities from a variety of natural environments and 
controlled ecosystems. This technology, with its 
high-density and high-through-put capacity, is expected 
to revolutionize the analysis of the dynamics of 
microbial community structure and function. FGAs have 
also been shown to provide direct linkages between 
microbial genes/populations and ecosystem functions 
and processes. 

However, in order for FGAs to fully realize their 
potential, a more rigorous and systematic assessment and 
development will be required. Key issues needing to be 
addressed include 1) improving experimental design to 
overcome and minimize inherent variations among 
hybridizations, 2) developing strategies to improve 
FGA-based quantitative accuracy, 3) developing 
approaches to increase hybridization sensitivity so as to 
detect extremely low biomass, 4) designing novel 
bioinformatic tools for data analysis and interpretation, 
and 5) integrating microarray technology into 
environmental studies to address overarching ecological 
and environmental questions and hypotheses. Future 
research and development focus must look not only to 
improve FGA technology, but also to improve and refine 
data analysis, interpretation and modeling. Novel 
strategies for experimental controls are needed in order 
to fully compare microarray data across samples, 
experiments, and labs. Improved bioinformatics tools are 
needed in order to automate sequence retrieval and 
selection and oligonucleotide probe design and testing 
for FGA updates. Automated tools are also needed for 
data analysis and statistical testing. Higher order analysis 
techniques and mathematical modeling are needed to 
expand FGA data analysis into network analysis, 
environmental and cellular modeling, simulation and 
prediction. 
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