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Development of functional gene microarrays for microbial
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Functional gene arrays (FGAs) are a special type of microarrays

containing probes for key genes involved in microbial functional

processes, such as biogeochemical cycling of carbon, nitrogen,

sulfur, phosphorus and metals, virulence and antibiotic

resistance, biodegradation of environmental contaminants, and

stress responses. FGAs have been demonstrated to be a

specific, sensitive, and quantitative tool for rapid analysis of

microbial communities from different habitats, such as waters,

soils, extreme environments, bioreactors, and human

microbiomes. In this review, we first summarize currently

reported FGAs, and then focus on the FGA development. We will

also discuss several key issues of FGA technology as well as

challenges and directions in future FGA development.
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Introduction
Microbes are the most diverse groups of organisms known

in terms of phylogeny and functionality, and mediate

almost every biological process on the planet, such as

biogeochemical cycling of carbon (C), nitrogen (N), sulfur

(S), phosphorus (P), and metals (e.g. iron, copper, and zinc),

and biodegradation or stabilization of environmental con-

taminants. However, characterization, identification, and

quantitative analysis of such diverse microbial commu-

nities in natural setting are of great challenge with con-

ventional molecular biology tools [1–3]. The recent

advance of metagenomic technologies such as high

throughput sequencing [4,5�,6] and functional gene arrays

(FGAs) [7,8��,9�,10] provides powerful high throughput

tools for analyzing microbial communities.

FGAs are a special type of microarrays containing probes

for key genes involved in microbial functional processes
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of interest, such as biogeochemical cycling of C, N, S, P

and metals, antibiotic resistance, biodegradation of

environmental contaminants, and stress responses. In

the past decade, a variety of FGAs have been developed

(Table 1), and among them, GeoChip has been the most

comprehensive FGA [7,8��,9�,11–13]. Various versions of

GeoChip have been developed and used to characterize

microbial communities in terms of functional diversity,

composition, structure and metabolic activity/capability

from a variety of habitats, such as groundwater [7,14–17],

soil [8��,18,19,20��], extreme environments [21�,22], bio-

reactor systems [23], and oil-contaminated sites

[9�,10,24]. The results demonstrate that FGAs are a

powerful tool to analyze microbial communities and their

linkages with environmental factors and ecosystem func-

tioning.

In this review, we first summarize currently reported

FGAs, and then focus on the FGA development with

GeoChip as an example. We also discuss several key

issues of FGA technology and future challenges and

directions in FGA development.

History of functional gene arrays
Representatives of currently reported FGAs are summar-

ized in Table 1. The first FGA was constructed with 89

PCR-amplicon probes targeting four functional genes

(nirS, nirK, amoA, and pmoA) derived from pure culture

isolates and clone libraries [11]. Then various FGAs were

developed with PCR amplicons or oligonucleotides to

target specific functional processes, such as N cycling [25–
28], mathanotroph [29,30], virulence, antibiotic resist-

ance, and antimicrobial resistance [31–36]. Recently,

two small scale FGAs for bioleaching systems [37] and

diverse microbial communities [38��] were developed. As

comprehensive FGAs, GeoChips constructed with 50-

mer oligonucleotides have evolved several generations.

The first generation of GeoChip (GeoChip 1.0) was

constructed with 763 probes involved in nitrogen cycling,

methane oxidation, and sulfite reduction [12] and 2402

probes involved in organic contaminant biodegradation

and metal resistance [13]. Since GeoChip 1.0 only has a

limited probe set, a comprehensive FGA, GeoChip 2.0

was developed with 24 243 probes from 150 gene

categories [7]. Three years later, GeoChip 3.0 was devel-

oped with additional gene categories and several distinct

features, such as a common oligonucleotide reference

standard (CORS) for data normalization and comparison

[39�], a software package for data management and future

update [8��]. Based on GeoChip 3.0, the latest generation,
icrobial community analysis, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.001
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Table 1

Summary of representatives of various functional gene arrays

Functional process (FGA) No. functional gene families Probe type No. functional

gene probes

Refs

N cycling and methanotroph 4 (amoA, nirS, nirK, pmoA) Amplicons 89 [11]

N cycling 4 (amoA, nifH, nirS, nirK) 70-mer oligos 61 and 64 [25]

Antibiotic resistance 2 (tet, blaTEM-1) Amplicons 18 [31]

N cycling (N fixation) 1 (nifH) Amplicons 88 [26]

N cycling, methanotroph, S reduction 6 (amoA, nirS, nirK, nifH,

pmoA, dsrAB)

50-mer oligos 763 [12]

Contaminant degradation, metal resistance NSa 50-mer oligos 2042 [13]

N cycling (nodulation) 1 (nodC) 41–50 meroligos 130 [27]

Methanotroph 1 ( pmoA) �20-mer oligos 59 and 68 [29,30]

Virulence 2 (invA, sopB) 70-mer oligos 4 [32]

Virulence, antibiotic resistance NSa Amplicons 120 [33]

Comprehensive (GeoChip 2.0) >150 50-mer oligos 24 243 [7]

Bioleaching NSa 50-mer oligos 501 [37]

N fixation 1 (nifH) �20-mer oligos 194 [28]

Virulence >30 Oligos 791 and 2034 [35]

Virulence, antibiotic resistance (NimbleGen) 160 Oligos 1245 [34]

Antimicrobial resistance NSa Amplicons 800 [36]

Comprehensive(GeoChip 3.0) 292 50-mer oligos 27 812 [8��]

Comprehensive NSa cDNA clones 13 056 [38��]

Comprehensive (GeoChip 4.0, NimbleGen) 539b 50-mer oligos 120 054 [9�,10]

a NS: not specify.
b GeoChip also contains genes targeting human microbiomes with 36,062 probes in 139 functional gene families.
GeoChip 4.0 in the NimbleGen format has been devel-

oped, which not only contains functional categories from

GeoChip 3.0, but also includes additional functional

categories, such as genes involved in stress responses,

bacterial phages and virulence. In addition, GeoChip 4.0

contains 36 062 probes derived from human microbiomes.

Current development of functional gene
arrays
FGA development involves three major steps: first, gene

selection, sequence retrieval and verification, second,

oligonucleotide probe design and validation, and third,

array construction and evaluation (Figure 1).

Selection of target genes and sequence retrieval and

verification

A variety of genes can be used as functional markers

targeting different microbial functional processes. Gener-

ally, genes are chosen for key enzymes or proteins with

the corresponding function(s) of interest. Once a func-

tional gene is selected, seed sequences are identified.

Sequence retrieval and verification are performed gener-

ally by a pipeline [8��]. For each selected functional gene,

a query of key words is first used to search public

databases (e.g. GenBank Protein Database) to fetch all

candidate amino acid sequences. Second, to remove

unrelated sequences retrieved by key words, all candidate

sequences are verified by HMMER 2.3.2 [40] with the

selected seed sequences. Finally, all confirmed protein

sequences are used to retrieve their corresponding

nucleic acid sequences for oligonucleotide probe design

(Figure 1a).
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Oligonucleotide probe design and validation

A selection of specific oligonucleotide probes for FGAs

faces a few challenges. First, sequences for each func-

tional gene are generally homologs with high similarities.

Second, many functional gene sequences are obtained

from environmental samples by PCR amplification, and

hence they are short sequences instead of full-length

sequences. Third, sequences for many functional genes

of interest are increasing exponentially due to high

throughput sequencing approaches, such as 454 pyrose-

quencing and Illumina technologies. Therefore, many

software tools for microarray probe design may not be

suitable for FGAs. Currently, CommOligo [41] and its

new versions have been considered as one of most

popular tools for FGA probe design, which were used

for GeoChip probe design [7,8��,9�,10]. Generally, 50-

mer oligonucleotide probes that showed good specificity

and sensitivity [12,13,42] are chosen for GeoChips

[7,8��,9�,12,13].

CommOligo can select probes with different specificities

based on different criteria: first, gene-specific probes:

�90% sequence identity, �20-base continuous stretch,

and ��35 kcal/mol free energy with non-targets [43]; and

second, group-specific probes: a group-specific probe has

to meet the above requirements and must also have �96%

of sequence identity, �35-base of continuous stretch, and

��60 kcal/mol of free energy within the group [44].

Other oligonucleotide design software tools, such as

HPD [45], ProDesign [46], and HiSpOD [47��] may be

also used for FGA probe design. Since all designed probes

are based on a reduced data set, their specificity must be
icrobial community analysis, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.001
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Figure 1
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Schematic presentation of functional gene array development. (a) Selection of target genes, sequence retrieval, and verification; (b) oligonucleotide

probe design; (c) FGA construction and evaluation.
verified against large databases. Normally, multiple

probes for each sequence or each group of sequences

are designed so that only the best probe set is finally

chosen for array construction (Figure 1b).

FGA construction and evaluation

FGAs can be constructed in-house [7,8��,11–13] or com-

mercially [9�,10,34]. For in-house array construction, all

designed probes are synthesized commercially and

adjusted to a final concentration (e.g. 100 pmol/ml). Also,

positive control probes (e.g. 16S rRNA gene) and negative

control probes (e.g. human genes) should be synthesized

and spotted on each subgrid in triplicate or more. In

addition, some standards should be applied for spot

and array normalization and comparison [8��,38��,39�].
All oligonucleotide probes, controls and standards are

arrayed onto glass slides using an array spotter as

described previously [7,8��]. For commercial array con-

struction, different technologies are used. For example,

NimbleGen (Roche NimbleGen, Madison, WI) uses

micromirror array synthesis, which synthesizes all probes

and internal controls directly onto the glass slide surface

with different formats.
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A newly developed FGA should be extensively evaluated

in terms of specificity, sensitivity, and quantitative capa-

bility. First, the specificity of all designed probes is

computationally evaluated in terms of maximum

sequence identity, maximum stretch length, and mini-

mum free energy [7,8��]. Second, with known targets

(synthesized oligonucleotides, PCR products, and geno-

mic DNAs), optimal hybridization conditions are ident-

ified by minimizing the number of false positives and

false negatives [48], and probe specificity is further eval-

uated experimentally [7,8��]. Also, the array sensitivity is

estimated using known targets [11–14,29,42]. Addition-

ally, quantitative capability is assessed by quantitative

real-time PCR [12–14,20��]. Finally, the application of

the developed FGA is evaluated with environmental

samples [7,8��,11–13].

Key issues of functional gene array
technology
Although FGAs have been demonstrated to be specific,

sensitive, and quantitative for profiling microbial com-

munities, some challenges still remain, including probe
icrobial community analysis, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.001
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Figure 2
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Comparison of GeoChip 2.0 (G II), GeoChip 3.0 (G III), and GeoChip 4.0 (G IV) in terms of the number of covered functional gene families (a), the

number of total probes (b), the number of covered species/strains (c), and the number of covered coding sequences (d).
coverage, specificity, sensitivity, and quantitative capa-

bility.

Coverage

Earlier FGAs are comprised a limited number of probes

and cover a small number of functional groups, coding

sequences (CDSs), and microorganisms, but recently

developed FGAs greatly expand their coverage (Table

1). As the first comprehensive FGA, GeoChip 2.0 contains

24 243 probes for >10 000 CDSs in >150 functional gene

families derived from 130, 1404, and 221 archaeal, bac-

terial, and fungal species/strains, respectively, while Geo-

Chip 3.0 has 27 812 probes targeting about 57 000 CDSs in

292 functional gene families derived from 140, 2744, and

262 archaeal, bacterial, and fungal species/strains, respect-

ively. The latest version GeoChip 4.0 is more comprehen-

sive than GeoChip 3.0 with more than 120 000 probes

targeting >200 000 CDSs in 539 functional gene families

derived from 183, 4123, and 396 archaeal, bacterial, and

fungal species/strains, respectively (Figure 2). A compari-

son of GeoChip 2.0, 3.0 and 4.0 shows that the total number

of probes and covered CDSs appears to be exponentially
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Current Opinion in Biotechnology 2011, 23:1–7 
increased with more and more CDSs covered by group-

specific probes, which may be largely due to the recent

development of high throughput sequencing technologies

(Figure 2). Because of the limitation of microarray density,

this trend will challenge the development of more com-

prehensive FGAs, leading to a variety of specific FGAs.

Also, because of exponential increases in group-specific

probes, the FGA specificity and quantitative capability

may be affected.

Specificity

The most important issue with microarray technology is

specificity, especially when environmental samples are

analyzed with FGAs. Array specificity is controlled by

probe design and hybridization conditions. Designing

specific probes for sequences recovered from environmen-

tal samples with PCR amplification is challenging. The use

of carefully selected design criteria can produce highly

specific oligonucleotide probes [43,44]. Also, probe speci-

ficity can be improved with specific FGA probe design

tools. For example, CommOligo uses global alignment

algorithms and multiple criteria and filters for selection
icrobial community analysis, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.001

www.sciencedirect.com

http://dx.doi.org/10.1016/j.copbio.2011.11.001


Development of functional gene microarrays He, Deng and Zhou 5

COBIOT-961; NO. OF PAGES 7
of optimal oligonucleotides, which could reduce cross-

hybridization [41]. In addition, an optimization of hybrid-

ization conditions can increase specificity, which is

generally controlled by temperatures and formamide con-

centrations [7,8��,12,43,49]. Finally, probe specificity can

be improved by designing mismatch (MM) probes paired

with their perfect match (PM) probes [49]. With more

information on the diversity of the microbial communities

of interest, it is expected that the prediction of probe

specificity will be more accurate.

Sensitivity

The sensitivity for spotted oligonucleotide arrays using

environmental samples is approximately 50–100 ng or 107

cells [12,13,29,50], or approximately 5% of the microbial

community [29], providing a coverage of dominant com-

munity members. For complex microbial communities,

many gene variants are expected to be in low abundances,

and several strategies have been implemented to improve

sensitivity. The most important approach is the amplifi-

cation of DNA or RNA targets [14,36,51], which greatly

improves the detection sensitivity (10 fg per reaction)

[14]. Also, increasing the probe length improves sensi-

tivity [42,52]. Another option is to reduce the volume of

hybridization solution to increase target concentrations.

For example, spotted FGAs generally use 40–120 ml

hybridization solution, while NimbleGen arrays only

need 7–30 ml. Based on our current studies, it appears

that NimbleGen arrays have higher sensitivity. A total of

1–2 mg community DNA from environmental samples is

enough for achieving good hybridization results. In

addition, microbial populations detected by GeoChip

2.0 were significantly higher than those estimated by
Please cite this article in press as: He Z, et al. Development of functional gene microarrays for m
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clone library analysis and were consistent with those by

extensive sequencing analysis [4,21�]. Nevertheless, nov-

el approaches, including, labeling, dye chemistry, slide

surface structure, image processing, and data analysis are

needed for further improving FGA sensitivity.

Quantitative capability

An important goal of microbial detection for environmen-

tal and ecological applications is to provide quantitative

information. A linear relationship between target DNA

and RNA concentrations and hybridization signal inten-

sities was obtained with FGAs [11–13,51]. This linear

relationship was observed for pure culture, mixed culture,

and environmental samples with or without whole com-

munity genome amplification (WCGA) (Figure 3). In

addition, quantitative real-time PCR analyses of repre-

sentative genes showed a good correlation between the

copy number of functional genes and the hybridization

signal intensity [13,20��,21�]. However, quantitative

capability can be affected by sequence divergence. For

example, group-specific probes may reduce FGA quan-

titative ability as mentioned above. One of strategies is to

design mismatch probes to distinguish signal from its

noise [49]. Another strategy is to use relative comparisons

between control and treatment samples so that any cross-

hybridization can be cancelled [7,11,14].

Future directions
FGA technology has revolutionized the study of microbial

ecology. It has been demonstrated to be a powerful tool to

provide sensitive, specific, and potentially quantitative

analysis of microbial communities from different ecosys-

tems. Although next generation sequencing technologies
icrobial community analysis, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.001
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are available, FGAs are specifically useful for providing

insights into our understanding of the functional diver-

sity, composition and structure of microbial communities

and their linkages with environmental factors and eco-

system functioning, and this is largely due to their unique

features, including defined probe sets with known func-

tions for community comparisons, rapid operation, and

easy data analysis. However, to fully realize its potential,

challenges for FGA development still remain, and this is

especially true for the study of complex microbial com-

munities. Therefore, the further development of FGAs

should focus on the following key issues. First, it is

necessary to develop more powerful software tools to

design specific probes for large sets of sequence data

generated from high throughput sequencing technol-

ogies. Second, because of sequence divergence in the

environment, novel approaches, and strategies for

improving sensitivity and quantitative accuracy are

needed. In addition, future FGAs will be in two different

types: more comprehensive FGAs for survey of diverse

microbial communities, and more specific FGAs for

specific detection and identification of microbial commu-

nities for particular ecosystems or functional processes of

interest.
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