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Understanding microbial interactions is essential to decipher the mechanisms of

community assembly and their effects on ecosystem functioning, however, the

conservation of species- and trait-based network interactions along environmental

gradient remains largely unknown. Here, by using the network-based analyses with three

paralleled data sets derived from 16S rRNA gene pyrosequencing, functional microarray,

and predicted metagenome, we test our hypothesis that the network interactions of traits

are more conserved than those of taxonomic measures, with significantly lower variation

of network characteristics along the environmental gradient in acid mine drainage. The

results showed that although the overall network characteristics remained similar, the

structural variation was significantly lower at trait levels. The higher conserved individual

node topological properties at trait level rather than at species level indicated that the

responses of diverse traits remained relatively consistent even though different species

played key roles under different environmental conditions. Additionally, the randomization

tests revealed that it could not reject the null hypothesis that species-based correlations

were random, while the tests suggested that correlation patterns of traits were

non-random. Furthermore, relationships between trait-based network characteristics

and environmental properties implied that trait-based networks might be more useful

in reflecting the variation of ecosystem function. Taken together, our results suggest that

deterministic trait-based community assembly results in greater conservation of network

interaction, which may ensure ecosystem function across environmental regimes,

emphasizing the potential importance of measuring the complexity and conservation of

network interaction in evaluating the ecosystem stability and functioning.
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INTRODUCTION

Fundamental mechanisms such as habitat filtering (e.g., resource
limitation and abiotic stress), historical contingency (e.g.,
dispersal limitation, disturbance, and priority effect), and species
interactions (e.g., competition and facilitation) are of particular
interest in explaining the processes of community assembly
(Chase, 2003; Fukami et al., 2005; Emerson and Gillespie, 2008;
Fukami, 2015). These community assembly mechanisms have
been the focus of tests of whether microbial biogeographic
patterns conform to patterns similar to that of macroscopic
animals and plants (Martiny et al., 2006). As a consequence
of this review, a large number of studies have focused on
the influences of contemporary environmental factors and
the legacies of historical events on the spatial distribution of
microbial communities. However, the importance of species
interactions for microbial community assembly and how these
interactions change along the environmental gradients remain
largely unexplored.

Understanding community assembly of microbial
communities is crucial, because the assembly mechanisms
and the resulting microbial diversity patterns have important
repercussions for ecosystem function. Through ecosystem-
wide interaction networks, microorganisms can facilitate and
accomplish diverse ecological processes and biogeochemical
cycling of matter, energy, and nutrients (Raes and Bork, 2008;
Faust and Raes, 2012). Microbial ecologists seek to unravel how
microbes form these complex networks, how these network
interactions affect community assembly processes and how
the changes of co-occurrence patterns will ultimately affect the
ecosystem functioning. Recent studies have reconstructed and
described the co-occurrence patterns of species and/or traits
in diverse natural habitats (Chaffron et al., 2010; Zhou et al.,
2010, 2011; Steele et al., 2011; Barberán et al., 2012; Gilbert et al.,
2012; Widder et al., 2014; Aylward et al., 2015; Ma et al., 2016),
offering initial implications about whether the organization
and variation of microbial co-occurrence networks along
environmental gradients contribute to and affect the ecosystem
function. Nevertheless, understanding the conservation of
network interaction in response to the environmental changes at
both species and trait levels remains largely unsolved, and which
may provide important insights into the underlying mechanisms
of community assembly and ecosystem stability (Cadotte et al.,
2012).

Community assembly can be driven by deterministic
and stochastic processes simultaneously and so both trait
convergence and species divergence can be observed within
the same community (Fukami et al., 2005). Indeed, increasing
evidence suggests that species and traits may show distinct
assembly patterns in microbial communities (Green et al., 2008;
Burke et al., 2011; Raes et al., 2011; Barberán et al., 2014). Thus,
species and traits may exhibit inconsistent responses to the
environmental changes, and traits are expected to show greater
deterministic response than that of species and converge toward
a common functional structure determined by environmental
conditions (Fukami et al., 2005). Basically, there are at least three
types of species/traits showing different distributions, such as

linear distribution (i.e., S/T1 and S/T2), normal/logarithmic
distribution (i.e., with peak/maximum at optima condition,
S/T3 and S/T4) and stochastic fluctuation (S/T5) along a given
environmental gradient (Figure 1A). In a previous model-based
prediction of the dynamics of community composition and
functional attributes (Kuang et al., 2016), we show that microbial
assemblages dynamics under anthropogenic disturbance, such
as in acid mine drainage (AMD) sites, are better predicted
using functional genes than taxonomic composition. Moreover,
our previous result suggests that a higher proportion of traits
are predictable under a certain condition in AMD, while most
of the species tend to show less deterministic pattern of their
relative abundances (proportion is represented as line thickness
in Figure 1A).

Correlations based on these relative species abundances
or relative metabolic potentials are widely used to uncover
biologically or biochemically meaningful relationships between
different species/traits across environmental gradients (Weiss
et al., 2016). Generally, a positive correlation reflects mutualistic
interactions or correlated environmental responses, while
negative correlations suggest antagonistic relationships such as
resource competition or differences in fitness optima across
gradients. The correlations (i.e., correlation coefficients) between
species/traits can remain relatively constant or shift dramatically
in different ranges of an environmental gradient because of their
distinct environmental responses (Figure 1B). Here, because
higher proportion of traits, rather than species, respond more
deterministic to environmental changes (i.e., most of the traits
should be similar to T1∼T4 as represented in Figure 1A, whereas
more species are similar to Supplementary Figure S5), we
hypothesize that less variation of correlation coefficients can be
found at trait level. It should be noted that some species and traits
will disappear entirely under a certain environmental condition.
Therefore, the different patterns of correlations we supposed
here are based on those species/traits that can persistently exist
in a large range of environmental gradient, and the data of
these species and traits are used for subsequent comparisons of
network node properties.

In this study, we use network-based modeling methods
to assess the ecological characteristics of these correlations,
including the features of nodes (i.e., individual species/traits)
and edges (i.e., different relationships between nodes) within the
network (Weiss et al., 2016). Since these network interactions
describe the co-occurrence of different species or traits across
different samples, and not their real physical interactions directly,
they are mathematically calculated based on the species- or
trait-based correlations (Fuhrman and Steele, 2008; Fuhrman,
2009; Zhou et al., 2010, 2011; Barberán et al., 2012). Thus,
the individual node network properties reflect its relationships
with other nodes and its topological position, while the overall
network structure is determined by the general characteristics
of different nodes within the network. Several key network
indexes of nodes and overall topology are calculated and used
for the statistical tests of our hypothesis. Finally, according to
our hypothesis that shown above, we suppose that the molecular
ecological network (MEN) properties (i.e., network indexes)
exhibit relatively higher variation at the species level because
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FIGURE 1 | Conceptual figures showing the hypotheses regarding the differences of network conservation between species and trait levels. (A) The relationships

between a given environmental gradient and relative species abundance or relative metabolic potential. Line thickness represents the proportion of different types of

species/traits in the acid mine drainage (AMD) communities. (B) Changes of corretions (i.e., correlation coefficients) between different species/traits in different ranges

of an environmental gradient. (C) Network properties and their variations at species and traits levels along environmental gradient.

of their dramatic changes of interspecies relationships along
different ranges of the environmental gradient, but remain fairly
conserved at the trait level (Figure 1C).

Here, using AMD as a model system with low species richness
(Denef et al., 2010), we tested the hypothesis by comprehensively
comparing the species- and trait-based MENs in response
to environmental changes across 40 environmental samples
that were collected from diverse AMD sites across Southeast
China (Kuang et al., 2013). These acidic, metal-rich and
low-complexity environments exhibit a strong environmental
gradient and harbor metabolically active acidophiles, and with
a relatively comprehensive understanding of microbial diversity
and metabolic abilities (Méndez-García et al., 2015), making
them ideal systems for MENs analyses. Our results supported
the hypothesis that the conservation of network interaction is
significantly higher at trait level rather than at species level, and
the trait-based network characteristics are more related to and
affected by the environmental changes.

MATERIALS AND METHODS

Sample Grouping According to the
Environmental pH
The geochemical properties of these 40 AMD samples are
distinct along a clear gradient of environmental pH (between
1.86 and 4.10) and our previous studies (Kuang et al., 2013,
2016) demonstrated that solution pH was the most dominant
factor shaping the taxonomic and functional structures in these
microbial communities, revealing the distinct strategies of acidic
adaptation. While other environmental properties such as Fe2+

and heavymetal ions were also varied at similar pH condition and
influenced the microbial communities, indicating the differences
of heavy metal resistance and utilization and competition of
resources. In this study, we aimed to compare the structural
conservation of MENs in response to the pH gradient and
samples within a specific pH gradient were grouped together for
the MENs construction. Specifically, we separated samples into 6
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a priori pH groups (i.e., G1–G6) based on the solution pH, and
kept a similar the sample size similar among different groups,
ranging from 6 to 8 samples (the pH condition and sample
size of each pH group were shown in Supplementary Table S1).
To validate that whether this sample grouping can explicitly
reveal the environmental gradient, we compared the differences
of overall environmental properties in the entire data set and
between two pH groups by permutational multivariate analysis
of variance test (PERMANOVA, “adonis” function of vegan 2.3-0
in R; R Core Team, 2014; Oksanen et al., 2015) on the Euclidean
distance matrixes, which are calculated by overall measured
environmental properties including electrical conductivity (EC),
dissolved oxygen (DO), total organic carbon (TOC), total
phosphorus (P), and the concentrations of sulfate (SO2−

4 ), ferric
(Fe3+), ferrous (Fe2+), aluminum (Al), arsenic (As), cadmium
(Cd), copper (Cu), lead (Pd), and zinc (Zn) (Supplementary
Figure S1A; the overall environmental properties are available
in Supplementary Table S2 in Kuang et al., 2013). Additionally,
principal component analysis was used to link the general pattern
of overall environmental properties to distinct pH condition.
Meanwhile, similar PERMANOVA and principal component
analysis were also performed for different biological data sets to
show their variation that explained by our sample grouping along
the pH gradient (see details of the biological data sets below).
Further, Bray–Curtis similarities of community composition and
functional structure were calculated using species- and trait-
based data sets to show their variations between samples with
different values of Group Difference ranging from 0 to 5. For
example, similarities of samples with Group Difference of 0
revealed variation of samples in the same pH group, while
similarities of samples with Group Difference of 5 showed the
beta diversities of samples between G1 and G6 (i.e., samples with
most distinct pH values and environmental properties).

Data Set
In this study, relationships between different species/traits along
the pH gradient were estimated by conducting pairwise Pearson
correlations using three paralleled data sets (Supplementary
Figure S1B). The correlations between different species were
calculated based on the relative OTU (operational taxonomic
unit, defined at the 97% 16S rRNA similarity level) abundances
derived from 16S rRNA gene pyrosequencing data (Kuang et al.,
2013). This sequencing data has been deposited in the European
Nucleotide Archive database (accession no. PRJEB9908).

Meanwhile, the correlations between different traits were
evaluated based on two functional data sets. One of them was the
metabolic potentials (i.e., signal intensities) of diverse GeoChip
probes (GCps), which covering major functional genes involved
in biogeochemical processes and stress toleration and adaptation
based on functional microarray (GeoChip 4.0; Tu et al., 2014;
Kuang et al., 2016). This GeoChip data set is publicly available
at http://ieg.ou.edu/4download/.

The other functional data set was the abundances (i.e., copy
numbers) of KEGG orthologs (KOs) from different KEGG
(Kyoto Encyclopedia of Genes and Genomes) categories,
including metabolism, genetic information processing,
environmental information processing, and cellular processes

(Kanehisa and Goto, 2000). We generated this predicted
metagenomic content (i.e., composition of KOs) from the
16S rRNA gene sequence data of each sample through a
recently developed computational approach called PICRUSt
(Langille et al., 2013), in order to provide a complementary
model-based functional profiling strategy for the trait-based
network construction (Supplementary Figure S1B). PICRUSt
is a bioinformatics program to infer the metagenome relying
on the reference genomes that pre-annotated against KEGG
database and output a table of KOs abundances. The accuracy
of metagenome prediction is assessed by the nearest sequenced
taxon index (NSTI, the sum of phylogenetic distances for each
OTU to its closely nearest related microbe) and in general
decreases with increasing NSTI (Langille et al., 2013). Our
samples had good NSTI values of 0.11 ± 0.07 (mean ± SD)
according to the comparison of NSTI values across various
environmental microbiomes (Langille et al., 2013), providing a
reliable data set for metagenome prediction by PICRUSt.

Network Construction
In order to form reliable correlations and comparable MENs
along the environmental gradient, only OTUs/GCps/KOs found
in >50% of samples in each pH group were selected for
subsequent analyses (Supplementary Figure S1C). Our MENs
were constructed following the mathematical and bioinformatics
framework developed previously (Luo et al., 2007; Zhou
et al., 2010, 2011; Deng et al., 2012). Briefly, profiles of
OTUs/GCps/KOs were standardized to mean value of 0 and
variance value of 1. The standardized data matrixes were used for
subsequent correlation analysis, and pairwise Pearson correlation
coefficients were calculated to measure the similarity between
OTUs/GCps/KOs across different samples in each pH group.
A threshold value, which was automatically identified based
on the data structure itself using the random matrix theory
(RMT)-based approach, was used to perform correction on
multiple pairwise correlations. The optimal threshold value was
determined when the nearest neighbor spacing distribution of
eigenvalues follows Poisson distribution (Luo et al., 2007). The
similarity matrices were then converted into adjacency matrices
using the optimal thresholds. Finally, valid correlations (i.e.,
co-occurrence links between different OTUs/GCps/KOs) based
on the framework described above were retained for MEN
construction (Supplementary Figure S1C). In total, 18 networks
across 6 pH groups were constructed including 6 OTUs-MENs, 6
GCps-MENs, and 6 KOs-MENs.

Network Analyses and Statistics
In this study, the coefficient of variation (CV) of the topological
index, which is defined as the ratio of the standard deviation
to the mean, was used to standardly assess the extent of
conservation of MEN structure in response to the environmental
changes (Supplementary Figure S1D). The overall network and
individual node topological indexes were calculated based on the
adjacency matrix (Zhou et al., 2010, 2011; Deng et al., 2012).

For the overall topology, the average geodesic distance
(avgGD), average clustering coefficient (avgCC) and modularity
(Clauset et al., 2004) were estimated (see the detailed definitions
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in the legend of Supplementary Table S2) and their CVs were
subsequently calculated across the pH groups. For a given
network, the avgGD shows how close between nodes and the
avgCC is used to measure the extent of module structure (Zhou
et al., 2010, 2011). While a module is a group of nodes that
interact strongly among themselves but little with others in other
modules, and the modularity reflects how a network is modular
(Zhou et al., 2010, 2011). Because only a single data point of
each overall network index was estimated for each MEN, thus
only one CV value could be calculated across 6 pH groups
and the statistical significance could not be assessed between
species- and trait-based MENs. In order to perform the t-tests
to show whether the CVs of these overall network indexes are
significantly different between species- and trait-based MENs, a
total of 100 random networks were generated individually for
each MEN (i.e., 18 MENs in total) using the Maslov–Sneppen
procedure (Maslov and Sneppen, 2002). This method keeps the
numbers of nodes and links unchanged but rewires all of the
links’ positions based on the corresponding MEN, therefore the
random networks and the original one have same size and are
comparable to each other. Accordingly, the average and standard
deviation for the simulated CVs were obtained based on these
random networks and the statistical comparisons of the CVs
between species- and trait-based MENs were applied by t-test
using the standard deviations derived from the corresponding
random networks (Zhou et al., 2010, 2011).

For the node properties, only shared nodes found in >3
networks were kept for the statistical analyses. In total, 48,
2,501, and 2,129 nodes were shared (e.g., OTUs that were
found in >3 networks among 6 OTUs-MENs) among OTUs-,
GCps-, and KOs-MENs, respectively. In this study, we used node
connectivity (also called node degree) to describe the topological
property of a node in a network. Generally, connectivity of a
give node is the sum of links connecting this node with all
other connected nodes, representing how strongly a node is
connect to other nodes in the network (Zhou et al., 2010) and
explicitly revealing a basic network feature of nodes. Since the
node connectivity is dependent on the number of nodes in the
network (i.e., network size) and the original value can’t be directly
compared between different networks, we calculated and ranked
the node connectivity of each network, and normalized these
ranks between 1 and 100 according to this formula:

Rankinorm = ( 1−
Max− Rankiorg

Max− 1
)× 99+ 1

where Rankinorm is the normalized value of node i, Rankiorg
is the original value of node i and Max gives the maximum
values for the rank of node across the network. The frequency
distributions of their CVs across 6 pH groups were plotted
based on different data sets and the statistical significance was
tested by Wilcoxon test. Additionally, these normalized ranks
were compared by cross-validation under lower and higher pH
conditions. Their conservation was assessed by the distances (D-
values) between normalized ranks of nodes and diagonal line.
The normalized rank of a given node lying on the diagonal
line reflects that it is completely constant under lower and

higher pH conditions. The D-values for different data sets
(i.e., 48, 2,501, and 2,129 normalized ranks in OTUs, GCps,
and KOs data sets, respectively) were compared and tested by
ANOVA. Furthermore, the pairwise correlation coefficients of
every pair of OTUs/GCps/KOs were visualized along the pH
gradient. We calculated the CV of each pair along the pH
gradient and compared them among different data sets using
ANOVA to estimate the difference of conservation of their co-
occurrence patterns. We finally assess whether these correlation
patterns were non-random by performing the randomization
test. Specifically, we randomized the correlation coefficients for
each column (i.e., a pH group, and a total of six columns for a
data set) and calculated the CV of each row (i.e., six randomized
correlation coefficients) and the mean CV for all rows. We
repeated this randomization 999 times to obtain 999 mean CV
values and form the null distribution for each data set. We then
calculated the P-value as the rank of the mean observed CV
relative to this null distribution to estimate that whether the
observed correlation patterns were significantly different from
random distribution pattern.

Random Grouping of Samples
To test whether the conservation of network interaction was
actually related to the pH gradient, additional random grouping
of our 40 AMD samples was also performed using GCps data
set. All the methods for the network construction and indexes
calculation that mentioned above were same except that samples
were grouped along the pH gradient or randomly. Comparison
of the overall topological properties of GCps-MENs were then
conducted between pH-based sample grouping and random
grouping.

Association of Network Characteristics
with Environmental Properties
To decipher whether the changes of network characteristics are
relevant to the environmental properties, their relationships were
measured by Mantel tests. A connectivity score was defined
as 101 subtract the normalized rank of each node in each
MEN and set as zero when the value of normalized rank
was missing. Thus, this connectivity score was ranged from
0 to 100 and reflected the network characteristic of nodes.
Nodes with higher connectivity score suggest that they are
module hubs with strong interaction with other nodes and
locate in key topological positions in the network. Meanwhile,
we used node significance to identify the correlations between
the nodes and the environmental properties (Zhou et al., 2010,
2011). Specifically, the node significance was calculated as the
square of Spearman correlations between relative abundances
of OTUs/signal intensities of GCps/abundances of KOs and
every standardized environmental property (i.e., a total of 14
environmental variables as mentioned above) for all shared nodes
(i.e., 48, 2,501, and 2,129 shared nodes for OTUs-, GCps-,
and KOs data sets, respectively) in each MEN. Higher node
significance indicates higher correlation between a given node
and a certain environmental variable. Finally, the Mantel test
was performed to estimate the relationship between connectivity
score and node significance based on their Euclidean distance

Frontiers in Microbiology | www.frontiersin.org 5 August 2017 | Volume 8 | Article 1486

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Kuang et al. Community Assembly in Acid Mine Drainage

matrices across 6 pH groups for each environmental variable
in different data sets. Here, we attempt to understand the
importance of network structure in the ecosystem functioning
that referred by the state of the environmental properties, and use
this Mantel test to examine whether the change of nodes’ network
topology is related to and affected by environmental properties.
Generally, significant relationship implies that nodes with similar
network topological characteristics will have similar correlations
with an environmental variable.

RESULTS

Environmental Properties, Community
Composition and Functional Structure
across Different pH Groups
The pH values of our samples showed a clear gradient across
different pH groups (see details in SectionMaterials andMethods
and Supplementary Table S1; a total of 6 a priori pH groups
were defined), which was demonstrated previously as the major
factor shaping the taxonomic and functional structures (Kuang
et al., 2013, 2016). Consistent with this, the overall measured
environmental properties were significantly different in the entire
data set (PERMANOVA, R2 = 0.19, P < 0.05) and between
groups with distinct pH values (e.g., G1 vs. G3) but remained
similar between groups with narrow pH range (e.g., G1 vs.
G2; Supplementary Table S1). Principal component analysis
also suggested that the variation of these overall environmental
properties was well explained by our sample grouping along
the pH gradient (Supplementary Figure S2A). Additionally,
similar trends were found for species- and trait-based data sets
(Supplementary Figure S2B–D and Supplementary Table S1).
Further, Bray–Curtis similarities of community composition
and functional structure showed consistent patterns that both
species- and trait-based similarities significantly decreased (P
< 0.05) between samples with more distinct pH values and
environmental properties (Supplementary Figure S3). These
results suggested that the sample grouping used in this study
could explicitly reveal the gradient of variation of environmental
properties, with significant shifts in community composition and
functional structure, implying that the structural variation of
MENs across these pH groups may reflect their response to the
changes of environmental conditions.

The Overall Network Structure and Its
Variation of Different MENs
The structural conservation of overall network topology was
assessed using species and trait data. In total, 48, 2,501, and
2,129 nodes were shared (e.g., OTUs that were found in >3
networks among 6 OTUs-MENs) among OTUs-, GCps-, and
KOs-MENs, respectively. Several overall network topological
indexes including the average geodesic distance (avgGD), average
clustering coefficient (avgCC) andmodularity were estimated and
their CVs were calculated across 6 pH groups (Supplementary
Table S2). The values of the overall network topological indexes
across the environmental gradient were consistent without
significant differences among different data sets, however,

significant differences (P < 0.05) were found for their CVs
with higher variation in OTUs-MENs compared to those in
GCps- and KOs-MENs (Supplementary Table S2). Additional
comparison of the overall network topologies of GCps-MENs
revealed significantly higher variations in randomly grouped
data set than that were grouped based on the pH gradient
(Supplementary Table S3), suggesting that the conserved trait-
based network interaction was actually related to the pH
gradient. Although, previous studies have focused on how
environmental changes (e.g., elevated CO2) affect the overall
network topology of species as well as functional gene network
interactions in microbial communities (Zhou et al., 2010, 2011),
little research has comprehensively compared their structural
conservation across an environmental gradient. These results
suggested that even though the overall topology remained similar,
the structural variation between species- and trait-based MENs
varied markedly under the same environmental gradient. This
significantly lower overall structural variation at trait levels
than that at species level revealed more conserved network
interactions between traits during the environmental changes,
and might be one of the underlying mechanisms to maintain the
ecosystem stability.

Conservation of Node Topological Pattern
among Different MENs
The node connectivity of each MEN was ranked and
normalized before statistical analyses of individual node
network characteristics. The frequency distributions of the
CVs clearly showed a significant difference between species-
and trait-based MENs (P < 0.0001, Wilcoxon test; Figure 2).
Specifically, the overall trend of CVs for GCps- and KOs-MENs
remained similar (P = 0.064) but their values were significantly
lower than those of OTUs-MENs. Consistently, cross-validation
supported this pattern that higher percentage of nodes (GCps:
76% and KOs: 79%) revealed less variation (<20%, gray areas
in Figure 3) of normalized ranks between lower and higher
pH conditions with significant linear correlations (P < 0.0001,
red lines in Figure 3) at trait levels than that at the species
level (OTUs: 50%; non-significant linear correlation, P =

0.58). Additionally, similar results were also found that the
D-values were significantly higher (P < 0.05, ANOVA) at species
level compared to trait levels [DOTUs = 23.4 ± 17.8, DGCps =

13.2 ± 7.2 and DKOs = 11.2 ± 8.7 (mean ± SD)], suggesting
significantly higher variation of normalized ranks at species level
(Figure 3). These results indicated that the conservation of node
connectivity for trait-based MENs were higher compared to
those of species-based MENs. Furthermore, the comparison of
conservation of node correlations clearly showed significantly
higher mean CVs of correlation coefficients between OTUs than
those between GCps or KOs (P < 0.001, ANOVA), while no
significant difference was found between GCps and KOs (P =

0.25; Figure 4). A randomization test revealed a non-significant
P-value (P = 0.76) for the correlation patterns of OTUs and
indicated that the null hypothesis that species correlations were
random could not be rejected. In contrast, a significant P-value
(P < 0.001) was found and suggested a non-random correlation
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FIGURE 2 | Frequency distributions of the coefficient of variation (CV) of the normalized ranks of node connectivity based on OTUs, GCps, and KOs, respectively. The

difference in their distributions was tested by Wilcoxon test.

patterns for GCps and KOs. These patterns suggested that the
correlations of traits are more conserved than those of species
in response to the environmental changes. In summary, our
findings revealed that the topological positions of diverse traits in
different MENs were relatively conserved across environmental
gradients even though different species played key roles under
distinct environmental conditions.

Association of Network Characteristics
with Environmental Properties
We finally examined whether the differences of network
characteristics between species and trait levels could reflect
their different correlations to the environmental properties. We
used connectivity scores and node significance to assess the
network characteristics and the correlations between nodes and
environmental properties, respectively (see details in Section
Materials and Methods). Mantel tests revealed stronger and
more significant correlations between connectivity scores (i.e.,
network characteristics) and node significance (i.e., correlations
between nodes and environmental properties) for all the
environmental variables at trait levels than at species level
(Supplementary Table S4). These results suggested that the
trait-based network characteristics were more related to and
affected by environmental conditions, possibly revealing more
deterministic responses to the environmental changes.

DISCUSSION

Co-occurrence patterns not only show how particular organisms
occur together under certain environmental conditions but also

help to shed light on community assembly rules (Gotelli and
McCabe, 2002). Our understanding of community assembly is
based on the measures of the species diversity and composition,
but species traits are increasingly being emphasized as important
in explaining variation in community assembly and ecosystem
function (Cadotte et al., 2013). Traits directly influence
physiological and biochemical performance or species’ fitness,
and determine how species interact with one another or even
the contributions of species to ecosystem function (McGill
et al., 2006; Cadotte et al., 2011). By using the network-based
approach, we explicitly showed distinct co-occurrence patterns
between species and trait levels in an anthropogenically disturbed
ecosystem. This study highlights the importance of interaction
networks in understanding microbial community assembly, and
more importantly, addresses how the conservation of network
interaction responds to the environmental changes. Our results
reveal that the conservation of trait-based network interaction
stands in stark contrast to that of OTU networks, which often
show high variation of network properties along environmental
gradients (Widder et al., 2014) or across geographic locations (Ma
et al., 2016). Further, this study clearly indicates that, although
the co-occurrence (i.e., interacting relationships) at species
level varied dramatically along the pH gradient, it remained
strongly conserved at trait level. Such findings can be possibly
explained by the fact that environmental conditions determine
the available types of ecological niches that can be colonized
randomly by whichever suitable species with similar traits,
but that species composition within a functionally equivalent
group depends on those species happen to arrive there first
during the history of community assembly, that is trait-based

Frontiers in Microbiology | www.frontiersin.org 7 August 2017 | Volume 8 | Article 1486

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Kuang et al. Community Assembly in Acid Mine Drainage

FIGURE 3 | The cross-validation results of normalized rank of node

connectivity based on (A) OTUs, (B) GCps, and (C) KOs. The mean values of

normalized rank of node connectivity under lower and higher pH were

calculated using the data set of environmental group G1–G3 and G4–G6,

respectively. Red lines show the best-fitted linear regression models, and the

normalized ranks located within gray areas (OTUs: 50%; GCps: 76%; KOs:

(Continued)

FIGURE 3 | Continued

79%) represent <20% of the difference between lower and higher pH

conditions. D-values are the distances between normalized ranks of nodes

and diagonal line. The Dmean (mean ± SD) were calculated based on the

normalized ranks of 48, 2,501, and 2,129 nodes in OTUs, GCps, and KOs

data sets, respectively.

assembly is deterministic and species-based appears much more
stochastic (Fukami et al., 2005; Burke et al., 2011; Fukami, 2015).
Thus, this deterministic trait-based assembly results in a more
conserved network interaction among different traits along the
environmental gradient.

Previous studies have reported that the
metagenomic/functional composition is less variable than
taxonomic composition in the human and ocean microbiomes
(Human Microbiome Project Consortium, 2012; TARA Oceans
Consortium, 2015). However, in our AMD samples, the
variation of species- and trait-based communities can be well
explained by the pH gradient (Supplementary Figure S2), and
consistent patterns of their similarities were observed with
significant decrease along the increase of environmental distance
(Supplementary Figure S3), suggesting a stronger environmental
filtering in this extreme environment. This result implied that
the conserved trait-based network interaction was inherently
due to the correlated or opposite environmental responses
of diverse traits but not their similar functional structures.
Furthermore, the test of random grouping in this study showed
that the variation of the overall topology was significantly
higher using the data set of random grouping than that of
pH-based grouping (Supplementary Table S3). This result
supports our idea that when the samples are randomly grouped,
their trait distributions are no longer predictable and fluctuate
stochastically among the groups. Therefore, this test, to some
extent, resulted in trait distributions similar to those of relative
species abundances, implying that different types of responses
to pH is a key underlying mechanism explaining differences of
network conservation between species and traits.

Ecosystem function broadly refers to the state of the system
(e.g., stocks of materials like carbon, nitrogen, and nutrients)
and the rates of processes involving fluxes of energy and matter
that sustain the system, thus the environmental properties can
be widely used to characterize ecosystem function (Jax, 2005).
Clear evidence has revealed that changes of ecosystem functions
like global CO2 elevation (Zhou et al., 2010, 2011) and the
shifts of fluvial network hydrology (Widder et al., 2014) and soil
physiochemical features (Ma et al., 2016) apparently affect the
phylogenetic or functional network topology. Our observation
further indicated that, compared to species-based networks,
trait-based networks might be more useful in reflecting the
variation of ecosystem function. This implies that although global
climate change factors fundamentally impact species diversity,
composition and co-occurrence patterns, higher conservation
of trait-based network interaction during environmental change
might result in higher ecosystem stability.

In this study, the network structural conservation and
interaction pattern of the predicted metagenome were similar
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FIGURE 4 | The comparison of the pairwise correlation coefficients between OTUs, GCps, and KOs across different pH groups.

to those based on functional microarray data, although this
functional profiling was relying on the phylogenetic data.
However, the limitation of interpreting PICRUSt predictions
should be considered that the detected patterns depends on the
reference genomes. The relatively insufficient metagenomes in
extreme habitats such as hypersaline and acidic communitiesmay
cause the prediction accuracy to appear artificially lower (Langille
et al., 2013). Therefore, other community functional measures
like metatranscriptome and metaproteome are needed for testing
our hypothesis in further study.

Computational exploration through microbial correlation
networks is considered as a necessitating technique to study the
microbial communities because of their enormous complexity
(Weiss et al., 2016). However, the performance and limitations
are different among these computational methods, which may
cause different inferring correlation networks (Weiss et al., 2016).
To test whether different approaches for network construction
will affect our results, SparCC, which is particularly designed
to deal with compositional data (Friedman and Alm, 2012,
available at https://bitbucket.org/yonatanf/sparcc), was used
complementarily for our analyses of network conservation (see
details in Supplementary Text). Consistent results were found by
using SparCC (Supplementary Figure S4, S5 and Supplementary

Table S5, S6), implying that our observed pattern of network
conservation was insensitive to the approaches of network
construction. Despite of this, it should be noted that our
hypothesis was only tested by correlation-based methods, which
may have several limitations, implying that other approaches like
Bayesian network based on graphical model were still needed
to further validate our findings (Friedman, 2004). Moreover, the
statistical tests of overall network topologies were dependent on
the random networks, which serving as a null model. However,
the significant differences of the network properties between
species- and trait-based networks may be an artifact due to
the null model networks we used in this study (see detailed in
SectionMaterials andMethods; Artzy-Randrup et al., 2004; Beber
et al., 2012). Therefore, the interpretation of topological features
between species- and trait-based networks should be addressed
in future by using different null models.

In addition to the network construction, the comparison
is another key challenge for interpreting the complexity and
conservation among multiple biological networks. Although, we
applied basic statistical analyses based on the indexes of the
topological properties to assess the conservation of network
characteristics, recent developed graph-theoretic algorithms
provide more powerful performance to qualify the similarity
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and the conserved parts between networks (Pavlopoulos et al.,
2011; Ali et al., 2014; Hu and Reinert, 2015; Yaveroğlu et al.,
2015). Future study using these advanced methods will help us to
uncover the hidden features of interaction networks, and to better
evaluate the dynamics of these features during the succession of
the microbial communities.

In summary, we have linked the organization and
conservation of species- and traits-based network interactions
to the ecological processes of community assembly in AMD
system, and emphasized that in addition to the calculation of
diversity indexes based on species/trait richness and abundance,
measuring the complexity and conservation of their network
relationships and characteristics can be considered as an
alternative way to provide a further understanding of ecosystem
stability and functioning (Zhou et al., 1991). Ultimately,
simultaneously illustrating the changes of diversity, composition
and network interaction during the succession of microbial
communities using species- and trait-based data will increase
our knowledge of the modeling of ecosystem dynamics, and help
with the engineering and manipulation of complex microbial
communities that are relevant for waste water treatment, food
production and the prevention and treatment of diseases (Faust
and Raes, 2012).
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