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ABSTRACT

The oligonucleotide specificity for microarray hybrid-
ization can be predicted by its sequence identity to
non-targets, continuous stretch to non-targets, and/
or binding free energy to non-targets. Most currently
available programs only use one or two of these
criteria, which may choose ‘false’ specific oligo-
nucleotides or miss ‘true’ optimal probes in a con-
siderable proportion. We have developed a software
tool, called CommOligo using new algorithms and
all three criteria for selection of optimal oligonuc-
leotide probes. A series of filters, including sequence
identity, free energy, continuous stretch, GC content,
self-annealing, distance to the 30-untranslated region
(30-UTR) and melting temperature (Tm), are used to
check each possible oligonucleotide. A sequence
identity is calculated based on gapped global align-
ments. A traversal algorithm is used to generate
alignments for free energy calculation. The optimal
Tm interval is determined based on probe candidates
that have passed all other filters. Final probes are
picked using a combination of user-configurable
piece-wise linear functions and an iterative process.
The thresholds for identity, stretch and free energy
filters are automatically determined from experi-
mental data by an accessory software tool,
CommOligo_PE (CommOligo Parameter Estimator).
The program was used to design probes for both
whole-genome and highly homologous sequence
data. CommOligo and CommOligo_PE are freely
available to academic users upon request.

INTRODUCTION

Microarrays are a powerful and versatile tool for genome-wide
expression analysis (1–5) and environmental studies (6,7).
Two types of microarrays, cDNA arrays and oligonucleotide
arrays, are widely used. Oligonucleotide arrays have become
more and more popular because they offer a number of advant-
ages, including better specificity and easy construction (8,9).
In addition, oligonucleotide arrays provide practical solutions
to more complicated problems. For example, it is very difficult
to construct a comprehensive functional gene array represent-
ing diverse meta-genomic sequences from environmental sam-
ples (such as groundwater, soil or subsurface sediments) using
the PCR amplification approach because obtaining all the
diverse environmental clones and bacterial strains from
various sources as templates for amplification can be a big
challenge (7,9,10).

One major challenge for designing oligonucleotide arrays is
how to identify optimum probes for each gene in a group of
sequences or in a whole genome. Oligonucleotide probe
design programs differ in criteria to define optimal probes
and algorithms for probe selection. The probes designed
based on the same set of sequences could be quite different.

Previously, we experimentally demonstrated that the com-
bination of different probe design criteria is needed to obtain
optimally specific probes (11). A combination of multiple
criteria will allow more liberal cutoffs for each criterion
and thus be able to find more specific probes and fewer
non-specific probes. Although the existing programs have
used different criteria for probe design, no programs have
considered the three criteria, sequence identity, free energy
and continuous stretch together. And also for computation of
oligonucleotide specificity, most programs primarily rely on
BLAST for local alignment or suffix array for exact string
search, which do not always reflect the overall identity
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betweenanoligonucleotideand itsnon-targets.Therefore, those
criteria and algorithms used may lead to selection of ‘false’
specific oligonucleotides and/or exclusion of ‘true’ optimal pro-
bes. Moreover, most available programs have been developed
to design probes for whole-genome sequences in which the
proportion of homologous sequences are generally low. How-
ever, in environmental studies, a large number of sequences
are highly homologous (7). In this case, it is very difficult for
those programs to select specific probes for such highly homo-
logous sequences. On the other hand, it is well known that data
from microarray experiments have inherent high variations. It
is very unlikely that a fixed set of parameter values can be used
for all experimental conditions. Therefore, tools to estimate
parameter thresholds from experimental data are desirable.

In this study, a software tool called CommOligo has been
developed. The program uses global alignments for more
accurate calculations of identity and free energy, and a search
for the optimal interval of melting temperature. Then all
probe candidates are ranked using a combination of user-
configurable piece-wise linear functions and an iterative pro-
cess. The cutoff values for identity, stretch and free energy are
automatically estimated from experimental data by another
software tool CommOligo parameter estimator (Comm-
Oligo_PE). The program has been used to design probes for
whole-genome sequences and highly homologous sequences.

ALGORITHMS

A flowchart of the program is shown in Figure 1. A series of
filters are used to check each oligonucleotide from the begin-
ning to the end of each sequence. First, for each sequence,
oligonucleotides are masked using distance to the 30-UTR, GC
content, the maximum percentage of each single base (A, T, C
or G), non-ACGT symbols and maximum length of continuous
matches to non-targets. Then self-annealing, identity to non-
targets, and binding free energy to non-targets are calculated
for unmasked oligonucleotides. The optimal interval of Tm is
obtained from the oligonucleotides that have passed the above
filters. Probe optimization is an iterative process based on a
quality score. CommOligo is implemented in C++ and runs
under Microsoft Windows. The limit of distance to the 30-UTR
can be defined in number of nucleotides or percentage of
the target length. All thresholds and parameters are user-
adjustable through graphic user interfaces.

Maximum length of continuous matches to
non-targets and self-annealing

In CommOligo, the maximum length of continuous matches
is used not only as a filter but also for picking the best probes
after filtering. The process to check continuous matches
(stretches) of a given oligonucleotide to its non-target
sequences is similar to the method used in OligoPicker
(12). A table of words of length 10 is constructed by scanning
all sequences, and the table has a size of 410. To search con-
tinuous matches >10 bases, multiple words from the oligonuc-
leotide, where the last word may overlap with its preceding
word, are checked against the word table for occurrences in
other sequences. When a stretch longer than the user-specified
cutoff is detected, oligonucleotides containing the stretch
are masked. For unfiltered oligonucleotides, the maximum

number of continuous matches to non-target sequences is
calculated.

For self-annealing measurement, if an oligonucleotide has
continuous matches longer than a user-specified threshold
within itself, it will be filtered out.

Sequence identity

Most preexisting software tools calculate identities using local
alignment algorithm such as BLAST, but actual hybridization
is performed on a global identity scenario (13). In Comm-
Oligo, identities between an oligonucleotide and its non-
targets are calculated as the percentage of matches in their
optimal gapped alignment generated from Myers’ bit-vector
algorithm (14), which is considered the fastest for generic
global alignment. The identity of an oligonucleotide is the
maximum identity with its non-targets. Oligonucleotides with
identities higher than a user-specified threshold are filtered out.

Binding free energy

Calculation of the exact minimum binding free energy between
a probe and a sequence would require a complete comparison
of all possible alignments, which is too slow to be applied in
probe design. In CommOligo, we only calculate free energy
values for global alignments with high identities. An oligo-
nucleotide is filtered out if the binding free energy to its non-
targets is less than a user-specified threshold. The binding free
energy of an oligonucleotide is the minimal free energy to its
non-targets.

Global alignment algorithms produce a dynamic program-
ming matrix or equivalent with mismatch/gap scores. Given
the number of mismatches/gaps, the end positions of align-
ments can be located in the matrix. However, a further step is
needed to generate the alignments between individual nucle-
otides. To generate all alignments with high identities, we tra-
verse the dynamic programming matrix from elements with
small number of mismatches/gaps in the bottom row to the top
row (Figure 2). An element in the matrix is calculated from its
adjacent top-left, top and/or left element, and the matrix can be
considered a directed graph. The edges of the graph connect an
element from its preceding elements where its value is derived.
The traversal algorithm is essentially a breadth first search on a
directed graph. It utilizes the bit vectors generated in Myers
algorithm during identity calculation. Let the oligonucleotide
be O ¼ o1o2 . . . on, a non-target sequence be S ¼ s1s2 . . . sm,
horizontal positive bit vector be Ph, vertical bit vector be Pv,
diagonal equal bit vector be Eq and mismatch vector of the
bottom row be D, the algorithm outputs VCAlignment, a vector
of alignments with high identities. An alignment corresponds
to a path from the bottom row with high identities to the top
row and is denoted as a vector of points (x, y), where x 2
{o1, o2, . . ., on, �} and y 2 {s1, s2, . . ., sn, �} with ‘�’ as a gap.
As the dynamic programming matrix is traversed, the current
column and row position of each path is recorded as (c, r).

Traversal algorithm is as follows:
For i ¼ 1 to m
If D[i] - lowest mismatch/gaps the in D < T, where T > 0

is a threshold

1. append an empty path to the path vector VCAlignment, set its
current position to (i, m)

2. TraversePath (the last path)
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TraversePath (current path)
1. If the current row r of the current path ¼ 1, return
2. Calculate vcDelta: a vector of (deltaX, deltaY), where deltaX

and deltaY is the difference in column and row between
the current position and the next position.
(a) if the Eq bit of the current position (c,r) is set,

append (1,1)
(b) if the Ph bit of (c,r) is set, append (1,0)
(c) if the Pv bit of (c,r) is set, append (0,1)

3. From the second to the last element in vcDelta
(a) append a copy of the current path to vcPath
(b) for the last path (newly appended)

(i) If deltaX ¼ 1 and deltaY ¼ 1, append (or, sc)
(ii) If deltaX ¼ 1 and deltaY ¼ 0, append (�, sc)

(iii) If deltaX ¼ 0 and deltaY ¼ 1, append (or, �)
(iv) c�¼deltaX, r�¼deltaY
(v) TraversePath (the appended path)

4. For the first element in vcDelta
(a) If deltaX ¼ 1 and deltaY ¼ 1, append (or, sc) to current

path
(b) If deltaX ¼ 1 and deltaY ¼ 0, append (�, sc) to current

path
(c) If deltaX ¼ 0 and deltaY ¼ 1, append (or, �) to current

path
(d) c�¼deltaX, r�¼deltaY
(e) TraversePath (current path)

Given an alignment between an oligonucleotide and a
sequence, the binding free energy is calculated using the
method very similar to the MFOLD program (15,16). Free
energy for a loop/bulge is calculated using parameters from
MFOLD (15). Free energy of the matches and single mis-
matches is calculated using the nearest-neighbor model with
established parameters (17–23). It should be noted that the free
energy value is calculated at 37�C rather than the actual
hybridization temperature.

Calculation and optimization of melting
temperature (Tm)

Tm is calculated for each unfiltered oligonucleotide using the
nearest-neighbor model with parameters from SantaLucia (24)
and a fixed DNA concentration of 10 mM. We try to design
probes for maximum number of sequences within a user-
specified range, range. In other words, the best Tm interval
[t1, t1 + range] is the one with maximum number of sequences
that have probes. If multiple Tm intervals have the maximum
number of sequences with probes inside, the interval with
maximum number of probes is selected. The algorithm is as
follows: first, unfiltered oligonucleotides are sorted according
to their Tm values. Second, a Tm range window is moved from
the first oligonucleotide to the last and the number of
sequences ns with oligonucleotides and the number of oligo-
nucleotides no inside the window are calculated. Finally, the
best Tm interval is chosen according to ns and no. Oligonuc-
leotides with Tm outside the best Tm interval are filtered out.

Probe quality score and probe optimization

After all filters are applied, a sequence may have more probes
than it requires. In this case, an optimization step will ensure
that the best probes are selected. CommOligo picks probes
according to two criteria: (i) probe candidates with lowest

cross-hybridization and located in different regions in the tar-
get are picked first; (ii) for the same target, identities between
any two probes must be less than a user-specified threshold. To
measure how good a probe is, a quality score valued between 0
and 1 is assigned. Cross-hybridization is more complicated
than that a single measurement can predict, and the definition
of good probe can be subjective and application dependent.
The score combines four individual scores between 0 and 1,
each measuring continuous matches, sequence identity, and
binding free energy between the oligonucleotide and its non-
targets, and its distance to other probes for the same target,
respectively.

A score for identity with non-targets of an oligonucleotide Si

is calculated using a piece-wise linear function. Oligonuc-
leotides with identities more than the filter threshold tf (e.g.
85%) have been filtered out. An oligonucleotide with identity
tf is assigned a score sf (e.g. 0.5). On the other hand, it can be
assumed there will be no cross-hybridization if the identity is
sufficiently low (e.g. <40%) or less than a saturation threshold.
Thus an oligonucleotide with an identity less than the satura-
tion threshold ts is assigned score 1.0. A user-specified ‘mid-
dle’ point is used to partition the interval between the filter
threshold and saturation threshold for flexibility. The score
function is as follows:

si ¼

1‚ x 2 0‚ tsð �
sm þ 1�sm

ts�tm
ðx � tmÞ‚ x 2 ts‚ tmð �

sm�sf

tm�tf
ðx � tf Þ + sf ‚ x 2 tm‚ tf

� �
0‚ x 2 tf ‚100%

� �

8>>><
>>>:

where x is the identity of the oligonucleotide to its non-targets.
The score Sc for continuous match are calculated in the same

way as Si. Score Sd measures its distance to other probes of the
same target and score Se for free energy is calculated in a
similar way, except their tf < ts and their equations are non-
decreasing.

The quality score S for an oligonucleotide can be a weighted
average

S ¼ weSe þ wdSd þ wiSi þ wcSc

we þ wd þ wi þ wc

where we, wd, wi and wc are user-configurable weights, or
S ¼ min(Se, Sd, Si, Sc).

The filter point, saturation point and middle point are
user-configurable. The score function for identity should
reflect the relationship between hybridization intensity and
the identity. Assuming there are sufficient experimental
data (relative intensity) with a known sequence identity, a
scatter plot can be drawn to show the relationship between
the hybridization intensity and sequence identity. Ideally, the
score for identity should follow the trend line of the scatter
plot. The score for other parameters could be determined in the
same way. Filter thresholds are hard limits in previous sec-
tions. The saturation point defines a minimal requirement for
‘best’ probe or no cross-hybridization. The ‘middle’ points are
provided to achieve non-linear effect between the filter thresh-
old and saturation threshold. If the relationship between
hybridization and the measurement is linear between filter
and saturation point, ððts þ tf =2Þ‚ð1 þ sf =2ÞÞ can be used as
the middle point.
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The minimum distance and the maximum identity to
other probes of the same target actually depend on probes
that have been already picked. Initially, distance scores of
all oligonucleotides of the target are assigned to 1.0 and the

oligonucleotide with the highest combination score is picked.
Then the identities of other oligonucleotides to the selected
probe are calculated and oligonucleotides with identities
higher than user-specified threshold are removed from the

Figure 1. Flowchart for CommOligo.
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probe candidates. Distances of other oligonucleotides to the
selected probe are determined, their new scores are calculated
and the oligonucleotide with the best combined score is
selected. This process is repeated until all oligonucleotides
are checked or the probes picked for the sequence meets
the user-specified number.

Automatic estimation of cutoff values for
cross-hybridization

CommOligo predicts cross-hybridization using three criteria.
In order to systematically determine the thresholds for those
criteria based on experimental data, an accessory tool,
CommOligo_PE has been developed. CommOligo_PE uses
a user-specified threshold T to identify the low signal spots.
A probe is considered no cross-hybridization if its signal is less
than or equal to T. Our goal is to find the cutoff values to cover
the low signal spots using two indexes. One is the negative
predictive value (NPV):

NPV ¼ ðNumber of probes with signal not bigger than T
and satisfying the criteriaÞ=ðNumber of probes
that satisfy the criteriaÞ

The other is probe coverage (C):

C ¼ ðNumber of probes with signal not bigger than T
and satisfying the criteriaÞ=ðNumber of probes
with signal not bigger than TÞ

NPV measures the correctness of a prediction and C measures
the completeness of prediction. The ideal criteria should have
an NPV of 1.0 and a C of 1.0. Thus our goal is to maximize
both NPV and C. However, the maximum NPV and the max-
imum C often contradict and there is no universal solution to
this dilemma. In CommOligo_PE, users can specify an optim-
ization goal to either maximize C or NPV. Since maximizing
NPV freely may lead to very low C and maximizing C freely
may lead to very low NPV, users can specify a minimal NPV
value and/or a minimal C value as constraints. With an experi-
mental data file, an optimization goal and optimization con-
straints, CommOligo_PE tries to find the best cutoff values.
This is done by an exhaust search in full parameter space. For
maximizing speed, the search range for identity, stretch and

free energy are from 50 to 96%, from 10 to 40, and from �70
to 0, respectively. For all possible cutoff values, Comm-
Oligo_PE calculates NPV and C values. The best cutoff values
are those that maximize the optimization goal and satisfy
constraints.

In a typical case, a user can specify T, a minimal NPV (e.g.
95%), and an optimization goal (e.g. to maximize C), and
CommOligo_PE will output the best cutoffs for identity,
stretch and free energy.

For some applications, maximizing NPV around the maximal
C is more desirable than maximizing C. Since the maximal
C depends on data and T, CommOligo_PE provides an auto-
matic optimization goal, which is a two-step process. First, the
maximum C is sought and then the best NPV with C >90% of
the best C generated in the first step is used for optimization,
both under user-specified constraints. Users can run the
estimation process in two separate steps as well.

CommOligo_PE can optimize cutoff values for five sets of
criteria: (i) identity, (ii) stretch, (iii) free energy, (iv) identity
and stretch, and (v) identity, stretch and free energy. It should
be noted CommOligo_PE maximizes C or NPV under given
constraints for training data. To help users investigate results
for testing data and compare different sets of criteria, Com-
mOligo_PE provides an option for cross-validation. In cross-
validation, the dataset is partitioned into 10 equally sized
subsets randomly and the calibration process is run 10 times,
each time one subset is used for testing and the rest for
training. The average values of all cutoff values, NPV and
C for both training and testing data are outputted.

RESULTS

Automatic estimation of thresholds for identity,
stretch and free energy

Experimental data from Rhee et al. (10) and He et al. (11) for
50mer oligonucleotides were used to estimate thresholds for
sequence identity, stretch and free energy. Signal was
expressed as the ratio to its perfect match. The data file is
provided in Supplementary Data.

Table 1 shows the estimated cutoffs for five sets of criteria:
(i) identity only, (ii) stretch only, (iii) free energy only, (iv)
identity and stretch combined, and (v) identity, stretch and free
energy combined. It can be seen that the criteria combining
identity, stretch and free energy had a higher C than others
when the signal threshold was 8 and 10%. Actually, under the
experimental conditions examined, spots with signal <10%
generally had an SNR <3.0 (11), and thus a signal threshold
of 10% is recommended. For example, for 50mer oligonuc-
leotides, with a maximal cross-hybridization of 10%, a min-
imal NPV of 95%, and a C of 70%, the thresholds were
determined to be 87% identity, 17-base stretch and �29
kcal/mol of free energy. This suggests that combination of
the three can yield a better coverage.

To further compare the five sets of criteria, CommOligo_PE
was run for cross-validation. The same dataset was randomly
partitioned into 10 subsets. CommOligo_PE was run 10 times,
each time using one subset for testing and the rest for training.
The average cutoff values, average NPV and average C values
for both testing and training data for a run are shown in Table 2.
Since not all criteria had cutoff values in the search range

Figure 2. Directed graph of the dynamic programming matrix for alignment
of sequence ACCAA and ACGGA (A), and the traversal of the dynamic
programming matrix for alignment of sequence ACCAA and ACGGA with
two mismatches (B).
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under the constraints, the average values were calculated using
the actual number of values, and the number of times that
cutoff value was generated is listed in Table 2 as well. The
average cutoff values and the NPV and C values for training
data were close to the values derived with all data for training.
The combination of identity, stretch and free energy had NPV
ranked in the middle among the five sets of criteria for all
signal thresholds and had the highest C for 8 and 10% signal
threshold. The NPVs are close to each other among different
sets of criteria because the constraint limits it to 95% or higher
for training data. In general, the results in Table 2 suggest that
the criteria combining the three had a better C with a similar
NPV. This is consistent with results trained from all data
shown in Table 1.

Probe design datasets

Both whole-genome sequences and groups of highly homo-
logous sequences were used to examine the performance of
CommOligo. Here, we show the results for two datasets. The
first was the whole-genome CDS sequences of Methanococcus
maripaludis with 1766 ORFs; the second was groups of
dissimilatory nitrite reductase genes, nirS and nirK, from
our earlier collections with a total of 842 sequences, which
were highly homologous (9). The homology of the two sets
of sequences was measured by CD-HIT (25). At the thres-
hold of 85% identity, CD-HIT produced 1754 clusters for
M.maripaludis and 399 clusters for nirS and nirK. In other
words, CD-HIT found that 0.7% of M.maripaludis and 52.6%
of nirS and nirK sequences were redundant at 85% identity.
At the cutoff of 50% identity, CD-HIT found that 4.0% of
M.maripaludis and 83.1% of nirS and nirK sequences are
redundant. This indicates the group sequences were much
more homologous than the whole-genome sequences.

Probe design by CommOligo

50mer oligonucleotide probes were designed using the fitted
thresholds, 87% of sequence identity, 17-base stretch and
�29 kcal/mol of binding free energy with non-targets for
the above two datasets. The maximal identity and the maximal
length of continuous stretch were calculated for the first probe
of each sequence. Identities of an oligonucleotide to its non-
targets were calculated using ungapped alignment in a Perl
script. Continuous stretches of a probe matching non-targets
were first identified using BLAST (26), and then stretch
lengths were determined using a Perl script. Free energy
was calculated by CommOligo.

The relationships between sequence identity, stretch length
or binding free energy and the number of designed probes
were shown in Figure 3, which was a cumulative graph, with
y value denoting the number of probes at no more than
x identity. The maximum number of probes for a sequence
was set to one when the probes were designed. Thus the
number of probes equals the number of sequences with a
probe designed. For the M.maripaludis genome sequences,
CommOligo selected 1734 unique probes, and most probes

Table 1. Cutoff values for five sets of criteria estimated by CommOligo_PE

Signal
threshold (%)

Criteria NPV (%) Coverage (%)

5 Identity
Stretch
Energy > �12.00 96.2 30.1
Identity and stretch
Identity < 0.85, stretch < 13

and energy > �12.00
96.2 30.1

8 Identity < 0.77 96.6 28.3
Stretch
Energy > �19.00 95.8 46.5
Identity < 0.81 and stretch < 12 97.4 38.4
Identity < 0.87, stretch < 17

and energy > �24.00
95.0 57.6

10 Identity < 0.77 96.6 27.5
Stretch < 11 95.7 43.1
Energy > �19.00 95.8 45.1
Identity < 0.87 and stretch < 11 95.7 43.1
Identity < 0.87, stretch < 17

and energy > �29.00
96.0 69.6

Optimization goal was set to an automatic mode. The minimal NPV was set to
95%. Blank cells indicate no cutoff values were found in search range under the
constraints. Data from Rhee et al. (10) and He et al. (11) in the Supplementary
Data were used for training. When the optimization goal was changed to
maximizing coverage, ‘identity < 0.81 and stretch < 12’ was changed to
‘identity < 0.81 and stretch < 18’, and ‘identity < 0.87, stretch < 17 and
energy > �29.00’ was changed to ‘identity < 0.87, stretch < 17 and
energy > �32.00’, while the others remained the same.

Table 2. Estimated criteria with cross-validation

Signal
threshold (%)

Criteria Training
NPV (%)

Training C (%) Testing
NPV (%)

Testing C (%) N of runs with
cutoffs generated

5 Identity 0
Stretch 0
Energy > �12.40 95.9 31.2 93.3 30.8 10
Identity < 0.81 and stretch < 11 96.2 34.1 70.8 39.1 2
Identity < 0.85, stretch < 13 and energy > �13.00 95.9 32.0 91.7 30.9 10

8 Identity < 0.77 96.3 31.3 82.5 31.3 10
Stretch < 11 95.2 43.9 66.7 33.3 2
Energy > �20.00 95.8 48.8 91.7 55.0 10
Identity < 0.81 and stretch < 14 96.5 42.5 85.0 38.7 10
Identity < 0.83, stretch < 17 and energy > �29.20 96.8 58.1 89.1 58.6 10

10 Identity < 0.77 96.0 28.8 98.0 30.3 10
Stretch < 11.00 95.9 43.2 96.3 44.5 10
Energy > �20.10 95.9 47.9 91.7 48.6 10
Identity < 0.84 and stretch < 13 96.0 44.2 91.3 36.0 10
Identity < 0.87, stretch < 17 and energy > �30.70 95.7 72.2 93.3 72.6 10

Data were partitioned into 10 subsets. Values shown are averages. Settings were the same as in Table 1.
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(99.8%) with sequence identities <75%, 4 (0.2%) probes at
sequence identities 75–87%, and 0 at sequence identities
>87%. For the group of nirS and nirK sequences, the program
selected 187 probes, and 97 probes with sequence identities
<75%, 90 between sequence identities 75 and 87%, and 0 with
sequence identities >87% (Figure 3A). For the stretch length of
a designed probe to its non-targets, CommOligo chose 65, 15,
557, 727, 300, 67, 3 and 0 unique probes at the maximal stretch
lengths of <10, 11, 12, 13, 14, 15, 16 or 17 bases, respectively
for the whole-genome sequences. For the group of nirS and
nirK sequences, the program selected 31, 9, 20, 27, 18, 22, 21
and 39 unique probes at stretch lengths of <10, 11, 12, 13, 14,
15, 16 or 17 bases, respectively (Figure 3B). For the binding
free energy of a probe to its non-targets, CommOligo chose
1553, 172, 23, 6 and 0 probes at binding free energy values of
>0, 0 to �10, �10 to �20, �20 to �29, and <�29 kcal/mol,
respectively for the M.maripaludis genome sequences. For

nirS and nirK group sequences, the program selected 44,
33, 71, 32 and 0 unique probes at binding free energy values
of >0, 0 to �10, �10 to �20, �20 to �29 and <�29 kcal/mol,
respectively (Figure 3C). Compared with previous design
criteria determined by experiments, 85% identity, 15-base
stretch and �30 kcal/mol of free energy (11), the number
of designed probes and distributions of their identities and
stretches did not change (only three more probes selected at
relatively high similarities and stretches) for the whole-
genome sequences. However, for nirS and nirK sequences,
44 more probes were selected, and most of them were distrib-
uted at relatively high similarity and/or long stretch levels
(data not shown).

Probe design by other software

Since different programs use different criteria, it is challenging
to compare the probe design results. Here, maximal sequence
identities and maximal lengths of continuous stretches to non-
targets were calculated for designed probes. Those two criteria
were experimentally established by Kane et al. (13), and then
modified by Tiquia et al. (9), Rhee et al. (10) and He et al. (11).
Four other programs, OligoArray (27) and OligoArray 2.0
(28), OligoPicker 2.3.8 (12) and ArrayOligoSelector (29)
(http://sourceforge.net/projects/arrayoligosel/), were used to
design probes for the same two datasets, M.maripaludis
and nirS and nirK. Those programs were set to use the
same cutoff values when the options were available. Other-
wise, the closest values or default values were used. For the
whole-genome sequences, the results from the four programs
were generally good. ArrayOligoSelector, OligoArray, Oli-
goArray 2.0 and OligoPicker selected probes for 1759,
1698, 1698 and 1724 sequences, respectively, and 1463,
1670, 1506 and 1721 with identities <87% and stretches
<17 bases. However, those software tools also selected
some probes with sequence identity >87% and/or continuous
stretch length >17 bases. For example, ArrayOligoSelector
had 296 with sequence identity >87% or/and maximal stretch
length >17 bases, which may cross-hybridize with non-targets
(Table 3). The average and standard deviation of identity to
non-targets were 60.8 and 4.7% for OligoArray, 62.0 and 5.2%
for OligoArray 2.0, 63.0 and 3.7% for OligoPicker, and 64.1
and 4.7% for ArrayOligoSelector, respectively, compared with
59.9 and 2.7% for CommOligo.

For the nirS and nirK sequences, OligoPicker, Array-
OligoSelector, OligoArray and OligoArray 2.0 selected 162,
146, 112 and 55 probes with identity <87% and continuous
match <17 bases, respectively compared with 187 for Com-
mOligo, but they also generated a different number (7–736) of
probes with sequence identity >87% and/or maximal stretch
length >17 bases (Table 3). The results indicated that all other
software might not be suitable for selecting probes for groups
of highly homologous genes.

DISCUSSION

The best oligonucleotide probe should have maximum hybrid-
ization with its target and minimum cross-hybridization with
its non-targets. Although the nearest-neighbor model (24) has
been widely used to study the binding free energy in solution,
the hybridization kinetics on microarray slides seems to be

Figure 3. The relationships between sequence identity (A), stretch length (B) or
binding free energy (C) and the number of designed probes. Vertical lines
x ¼ 0.87, x ¼ 17 and x ¼ �29 indicate the fitted thresholds for probe design
criteria.
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more complicated. Kane et al. (13) suggested that an oligo-
nucleotide probe showing >75–85% identity with non-targets
may cause cross-hybridization. Their studies also showed that
a probe, which had 15- and 20-base stretches with non-targets
over 50 bases had detectable cross-hybridization. Previous
studies showed that no significant cross-hybridization was
observed when an identity was 85–88% for 50mer (9,10),
and 80% for 60mer (30) oligonucleotide probes. Another
study showed that significant cross-hybridization could hap-
pen when free energy <�35 kcal/mol for 70mer oligonuc-
leotides (31). In our recent study, the relationships between
hybridization signal and sequence identity, continuous stretch,
binding free energy or mismatch position were examined, and
a set of criteria were experimentally suggested for 50 and
70mer oligonucleotide probe design (11). The experimental
data demonstrated that it was difficult to exclude all experi-
mentally verified non-specific oligonucleotides using a single
criterion, and that an appropriate combination of multiple
criteria could exclude all non-specific probes (11). By com-
bining multiple criteria, more liberal cutoffs can be used for
each criterion. Indeed, the estimated parameter thresholds,
identity of <87%, continuous stretch of <17 bases, and
free energy of >�29 kcal/mol showing the best choice for
designing 50mer oligonucleotides at a maximal cross-
hybridization of 10%, are also very consistent with our experi-
mentally established criteria: <85%, <15 bases and
>�30 kcal/mol, respectively. Users can select their thresholds
by choosing their tolerance of cross-hybridization, the min-
imal NPV and the minimal coverage using CommOligo_PE.
Besides the above three criteria, other factors (GC content, the
percentage of continuous single base and Tm) are also used to
reject oligonucleotide candidates in CommOligo. To ensure
probe sensitivity, an oligonucleotide probe must be accessible
by its target. One of the most important characteristics is that
an oligonucleotide probe should have no strong secondary
structures. In CommOligo, an oligonucleotide probe is
checked by self-annealing. In addition, oligonucleotide speci-
ficity and sensitivity may be affected by experimental condi-
tions, such as hybridization temperatures, and the percentages
of formamide used.

It is not surprising that all four other programs produced
some probes with sequence identity >87% or continuous
stretch >17 bases because they do not implement both criteria.
For example, OligoArray, OligoArray 2.0 and ArrayOligo-
Selector do not use the continuous stretch as a criterion. On
the other hand, CommOligo combines three criteria and more
probes may be excluded than it uses two criteria. It should be
also noted that CommOligo uses gapped alignment while the
testing script uses ungapped alignment. OligoPicker selected a

close number of probes to CommOligo for M.maripaludis
(1721–1734), or nirS and nirK (162–187) sequences with iden-
tity <87% and continuous stretch <17 bases because both
programs implement identity and stretch criteria. However,
OligoPicker uses a BLAST-based approach, while Comm-
Oligo uses a global alignment algorithm. In addition, the
probes from OligoPicker may not have free energy less
than �29 kcal/mol, because CommOligo adopts the free
energy as a cross-hybridization criterion while OligoPicker
does not. These results suggest that most of preexisting soft-
ware have been developed for designing oligonucleotides
for whole-genome sequences, not for highly homologous
sequences, and that CommOligo can be used for both types
of sequences.

Most of probe design programs use BLAST to calculate a
local sequence identity (12,27,32,33). BLAST reports the most
similar regions between two sequences, while the length of
those similar regions cannot be controlled. In most cases,
a local alignment does not really reflect the overall identity
between an oligonucleotide and its non-targets. Therefore, a
filter based on local identity may filter out true specific probes
and keep false-specific probes. ProbeSelect (34) selects oligo-
nucleotides with words occurring least frequently in non-target
sequences using a suffix array and a sequence landscape.
However, the word frequency has no clear association with
the sequence identity. PROBEmer (35) uses a suffix array to
check exact matches and n-off matches. We believe that the
global identity between a probe and non-target sequences is
more relevant to probe specificity. Thus the identity is calcu-
lated using global alignment in CommOligo. An accurate
measurement of sequence identity can be obtained for both
filtering and probe optimization.

Because the calculation of the exact minimum binding free
energy between a probe and a sequence is too slow, probe
design programs only calculate the free energy for highly
homologous regions. ArrayOligoSelector (29) and OligoArray
2.0 (28) use BLAST to find those regions. ProbeSelect (34)
uses Myers’ global alignment to locate the end positions of
an alignment with the given number of mismatches and uses a
heuristic algorithm to test alternatives. In CommOligo, we
propose a traversal algorithm to generate all alignments for
more accurate free energy calculation. This ensures that all
alignments with high global identities are evaluated.

It is ideal to keep the melting temperatures of all probes in a
narrow range. Some software tools, such as OligoArray (27)
and PROBEmer (35) use a user-defined interval. OligoPicker
(12) automatically filters probes around the median Tm with a
user-defined interval. OligoWiz (32) tries to find the best
length of probes with the minimum deviation from the center

Table 3. Number and quality of designed probes by different programs

Programs used Whole-genome sequences of M.maripaludis (1766 ORFs) Group sequences of nirS and nirK (842 gene sequences)
ORFs
rejected

Probes
designed

Sim. <87%
and Str. <17

Sim. >87%
or Str. >17

ORFs
rejected

Probes
designed

Sim. <87%
and Str. <17

Sim. >87%
or Str. >17

ArrayOligoSelector 7 1759 1463 296 0 842 146 696
OligoArray 68 1698 1670 28 35 807 112 695
OligoArray 2.0 68 1698 1506 292 51 791 55 736
OligoPicker 42 1724 1721 3 673 169 162 7
CommOligo 32 1734 1734 0 655 187 187 0
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of melting temperature of all positions. These methods may
filter out some specific probes because the Tm calculation is
based on all possible oligonucleotides, especially when
sequences have high identity and only few probes can be
picked. By searching only the probe candidates that passed
all other filters, CommOligo is able to design probes for max-
imum number of sequences against Tm interval.

Optimization of probe candidates will ensure that the best
oligonucleotides are selected for a gene when the number of
designed oligonucleotides is more than that required by a user.
OligoDesign (33) uses a sigmoid function to calculate a score
for each property (maximum number of matching nucleotides
by BLAST, longest continuous stretch, Tm, self-annealing and
secondary structures) of an oligonucleotide and then calculates
the weighted average of scores of all properties. CommOligo
uses a piece-wise linear function to calculate a score for indi-
vidual measurements of an oligonucleotide and the overall
score is the weighted average or the minimum of all individual
scores. Piece-wise linear functions are chosen because they are
consistent with hard-limit filters and all parameters are easy to
set by the users according to their applications and experiences.
By utilizing an iterative process, the specificity and distances
between probes of the same target are taken into account.

Commonly used oligonucleotide probes are between 15 and
70mers. Our effort has been focused on long oligonucleotide
probes from 40 to 80mers. CommOligo comes with a set of
default parameters for 50mer probes. All parameters are user
adjustable and one can turn off a filter by setting its parameters
to a considerably large or small value. However, setting the
criteria for the selection of oligonucleotides with a particular
length is still a challenge. This requires experimental data to
support, such as those described by Kane et al. (13), Tiquia
et al. (9), Rhee et al. (10), Bozdech et al. (31) and He et al.
(11), or sufficient knowledge about their hybridization. Our
software can compute probes from 10 to 128mers. However,
long oligonucleotide probes (>80mer) are rarely used because
they may cause less probe availability for a given dataset,
synthesis difficulty and higher possibility of secondary struc-
tures. For a probe <15mer, the signal intensity is too weak so
that it may not be practically useful for detection. For short
oligonucleotide probes, some further measurements for sens-
itivity may be needed. In addition, while a mismatch match
(MM) probe (one mismatch at the middle position) is widely
used along with a perfect match (PM) probe for probes
<30mers, our software does not automatically select MM
probes. One may have to select a PM probe first, and then
replace the middle nucleotide of the PM probe to produce its
MM probe.

Systematical estimation of parameter thresholds for oligo-
nucleotide design is a new feature. Up to now, the selection
of suitable cutoff values for probe design criteria remains a
great challenge. Most thresholds are set arbitrarily, or based
on individual experiments. Here, CommOligo_PE has been
developed to determine thresholds for probe design criteria
using available experimental data. However, it requires high
quality and relatively large datasets to generate more accurate
cutoff values. Unfortunately, publicly available spike-in
large datasets are mainly for short oligonucleotide arrays.
For long oligonucleotides, only a few datasets are publicly
available. With an increase in experimental microarray data,
it is predicted that this estimator will be able to produce more

reliable thresholds for probe design. Since different hybrid-
ization protocols may result in significant differences in
results, large datasets under the same condition are desirable.
We used datasets from Rhee et al. (10) and He et al. (11),
which were performed under very similar conditions.

CONCLUSIONS AND FUTURE WORK

CommOligo differs from other probe design software in sev-
eral important ways. First, CommOligo is able to estimate
parameter cutoffs from hybridization data. Second, to handle
high homologous sequences, cross-hybridization is predicted
with three measurements, maximum sequence identity, min-
imum binding free energy and maximum continuous stretch
between a probe and its non-targets. Preexisting software only
use one or two of them. Our testing shows a combination of the
three measurements can generate better gene coverage at a
similar NPV. Third, special attention is paid to the calculation
of identity and binding free energy in a more accurate way.
Our sequence identity is based on the best global gapped
alignment between an oligonucleotide and its non-target
sequences. This approach is different from BLAST-based
local identity, or suffix tree for exact string detection,
which have been used by most available software. This
approach also ensures that only oligonucleotides with true
high identities are filtered. A traversal algorithm is proposed
to generate global alignments, allowing the most stable align-
ments to be compared for free energy calculation. Fourth, the
optimal interval of Tm is based on probe candidates that have
passed all other filters, rather than all possible oligonuc-
leotides, which ensures that a maximal number of sequences
have probes. Finally, three measurements and the distance
between probes for the same target are combined for probe
optimization using piece-wise linear functions in an iterative
process. Our evaluation results on both whole-genome and
highly homologous group sequences demonstrate that Com-
mOligo performed well and promises to be a general oligo-
nucleotide probe design tool for various types of sequences.

It should be noted that this program runs relatively slow. It
took 
18 h to design probes for the M.Maripaludis genome on
a PC with 2.50 GHz CPU and 512 MB memory. For a group of
highly homologous sequences, only a small fraction of genes
have probes. Our future studies will focus on development of
faster algorithms and selection of probes specific to a group of
sequences for highly homologous genes.
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