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Abstract

To understand better the in situ microbial functional diversity under oil contam-

ination stress, soils were sampled along a contamination gradient at an oil field in

north-east China. Microbial community functional structure was examined with a

functional gene array, termed GeoChip. Multivariate statistical analysis and meta-

analysis were conducted to study the functional gene responses to oil concentra-

tions. The total functional gene abundance and diversity decreased along the

gradient of increasing contamination. The overall abundance of soil bacteria,

archaea and fungi decreased to 10%, 40% and 80% of those in the pristine soil.

Several functional genes in the families pgl, rbcL, nifH and nor and those encoding

cellulase, laccase, chitinase, urease and key enzymes in metabolizing organic

compounds were significantly decreased with oil contamination, especially under

high contamination stress. However, a few genes encoding key enzymes for

catechol, protocatechuate, and biphenyl degradation and in the gene families of

nir, rbcL and pgl showed a significant increase at a medium level of oil

contamination. Oil content and soil available nitrogen were found to be important

factors influencing the microbial community structure. The results provide an

insight into microbial functional diversity in oil-contaminated soils, providing

potential information for on-site management and remediation measures.

Introduction

With an increasing demand for oil, occurrences of oil

contamination have become widespread as a result of

exploration, production, maintenance, transportation, sto-

rage and accidental release (Atlas, 1981; Leahy & Colwell,

1990; Van Hamme et al., 2003; Head et al., 2006). Oil

contamination in oil fields is particularly serious across the

world (Xiong et al., 1997; Al-Hashem et al., 2007; Hamid

et al., 2008). Oil contaminants accumulate in soils and

migrate to other habitats such as groundwater, posing a

huge threat to the ecosystem and to human health. This is

especially true for polycyclic aromatic hydrocarbons

(PAHs), which are one of the main components in oils and

have high carcinogenic and toxicological properties (Totsche

et al., 2006; Wehrer & Totsche, 2008).

The degradation of contaminants in natural environ-

ments is critically dependent on the metabolic capabilities

of the indigenous microbial communities. Both laboratory

and field experiments have shown that the overall microbial

community is responsive to oil contamination. Certain

microorganisms become prevalent under long-term stress.

However, due to the extreme diversity and complexity of

microbial communities, and their as yet uncultured char-

acteristics, microbial detection, characterization and quan-

tification in natural environments remain challenging.

Difficulties in characterizing indigenous microbial commu-

nities impacted by oil contamination are exacerbated by the

myriad of substrates and metabolic products (Van Hamme

et al., 2003). The rapid development of genomic tools has

greatly advanced the knowledge of microbial communities

in complex environments. For example, 16S rRNA gene-

based PCR amplification has been widely used to examine

microbial community structure and responses under stress-

ful conditions. Most studies focus on the taxonomic-based

characterization of microbial community structure and

FEMS Microbiol Ecol 70 (2009) 324–333c� 2009 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

M
IC

RO
BI

O
LO

G
Y

 E
C

O
LO

G
Y

mailto:ligh@tsinghua.edu.cn


dynamics and the dominant species. However, it might be

difficult to directly link microbial phylogenetic diversity to

physiological functions because only a limited number of

organisms are well known for their narrowly defined meta-

bolic capabilities. Thus, from a practical perspective, track-

ing specific functional genes in oil-impacted environments

may be more useful for understanding microbial metabolic

potential and ecological activities. Sotsky et al. (1994)

detected bacterial populations containing both xylE and

alkB genes in sediments affected by an oil spill. Several other

functional genes, such as ndoB, nahAc and phnAc, have been

used to assess the composition and degradation capacity of

microbial communities in oil-contaminated sites or during

bioremediation (Laurie & Lloyd-Jones, 2000; Siciliano et al.,

2003; Tuomi et al., 2004; Park & Crowley, 2006). However,

comprehensive information regarding the indigenous mi-

crobial functional diversity at oil-contaminated sites is still

lacking.

Here, the in situ microbial community structure was

examined along an oil contamination gradient in a long-

term oil field in north-east China. In order to better under-

stand the dynamics of microbial functional diversity, a

robust functional gene array, GeoChip (He et al., 2007),

was used, containing 24 243 oligonucleotide probes cover-

ing 4 10 000 genes in 4 150 functional groups involved in

nitrogen, carbon, sulfur and phosphorus cycling, metal

reduction and resistance, and organic contaminant degrada-

tion. Multivariate statistical analysis and meta-analysis were

conducted to study the functional gene responses to a

gradient of oil concentration. Our results indicated a

significant decrease in the microbial functional gene number

and diversity along the contaminant gradient. Key func-

tional genes encoding carbon and nitrogen cycling and

organic contaminant degradation showed variable responses

to oil contamination. Oil associated with soil available

nitrogen was the most significant environmental factor

controlling microbial functional gene diversity.

Materials and methods

Site description and sampling

Daqing oil field in north-east China was explored in the

1960s and has the largest production of crude oil among all

oil fields in China. Soil contamination is particularly serious

during long-term exploration, production and mainte-

nance. Soil samples were obtained from a contaminated site

(4613805600N, 12510401800E) in an area about 500 m� 500 m

at Daqing oil field. Five contaminated samples were col-

lected along an oil contaminant gradient near oil pumping

wells where the contamination accumulated over a number

of years through spillages. Uncontaminated samples were

obtained from pristine soils. All soil samples were collected

from the surface soil (10 cm deep). Several soil cores with

similar oil concentrations were mixed as replicates for

homogenization (200 g in total). Soils were sealed in sterile

sampling bags and transported to the laboratory on ice. Soil

physical and chemical parameters [pH, water content, total

nitrogen (nitrogen in all organic and inorganic forms),

available nitrogen (N, nitrate (NO3
�-N), nitrite (NO2

�-N)

and ammonium (NH4
1-N)), total phosphorus (phosphorus

in all organic and inorganic forms), available phosphorus

(P, phosphate (PO4
3�-P)) and organic matter] were deter-

mined according to recommended soil testing procedures

(Lu, 1999). Crude oil concentrations in the contaminated

soil were determined using an Ultrasonic-Soxhlet extraction

gravimetric method (Huesemann, 1995). Aliquots of soil

samples were stored at � 80 1C for molecular analysis.

Soil microbial community DNA extraction

The microbial community genomic DNA was extracted

from 5 g of well-mixed soil samples by combining freeze-

grinding and sodium dodecyl sulfate (SDS) for cell lysis as

detailed in Zhou et al. (1996). The crude DNA was purified

by agarose gel electrophoresis, followed by phenol–chloro-

form–butanol extraction. The purified DNA was quantified

with agarose gel electrophoresis, an ND-1000 spectrophoto-

meter (Nanodrop Inc.) and a Quant-ItTM PicoGreens kit

(Invitrogen, Carlsbad, CA).

GeoChip analysis

An aliquot (100 ng) of DNA from each sample was ampli-

fied in triplicate using the TempliPhi kit (Amersham Bios-

ciences, Piscataway, NJ) in a modified buffer containing

single-strand-binding protein (200 ngmL�1) and spermidine

(0.04 mM) to increase the sensitivity of amplification and

was incubated at 30 1C for 3 h (Wu et al., 2006). All of the

amplified DNA was denatured and then fluorescently

labeled and purified as described previously (Wu et al.,

2008). The labeled products were dried and resuspended in

130 mL hybridization solution containing 50% formamide,

3� SSC, 0.3% SDS, 0.7 mgmL�1 herring sperm DNA,

0.02 mM dithiothreitol and water. Hybridization to Geo-

Chip 2.0 was performed on an HS4800 Hybridization

Station (TECAN US, Durham, NC) in triplicate at 42 1C

for 10 h. Detailed probe information of GeoChip 2.0 was

described by He et al. (2007). Microarrays were scanned

using a ScanArray 5000s Microarray Analysis System

(PerkinElmer, Wellesley, MA) at 95% laser power and 68%

PMT (photomultiplier tube gain).

Data analysis

Signal intensities of each spot were measured with IMAGENE

6.0 (Biodiscovery Inc., El Segundo, CA). Only the spots
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automatically scored as positive in the raw output data were

used for further analysis. The signal intensities used for final

analysis were subtracted from the background. Intensities of

three replicates were normalized with mean signal intensi-

ties as described previously (Wu et al., 2008). Spots with

signal-to-noise ratio (SNR)o 2.0 [SNR = (signal intensi-

ty� background intensity)/background SD] and outliers of

replicates (4 2 SDs) were removed. Gene detection was

considered positive when a positive hybridization signal

was obtained from Z51% of spots targeting the gene in all

replicates. A matrix was generated from the normalized

pixel intensities of all protein-encoding genes. The func-

tional-gene-normalized signal intensities were defined as

‘species’ abundance. The normalized hybridization data for

individual functional gene sequences were then reorganized

based on phylogenetic groups (e.g. fungi, archaea, bacteria,

Gram-positive bacteria, Gram-negative bacteria, Alpha-,

Beta-, Gamma- and Deltaproteobacteria) (Zhou et al.,

2008). Hierarchical cluster analysis of the total functional

genes was performed using the unweighted pair-wise aver-

age-linkage clustering algorithm (Eisen et al., 1998) with R

and VEGAN statistics packages.

A meta-analysis (Luo et al., 2006) of the response of

functional genes to increasing oil content was conducted.

Noncontaminated samples (DQ1–3), medium-contami-

nated samples (DQ4–6) and high-contaminated samples

(DQ7, 8) were combined separately and filtered with those

genes appearing in all samples of each combination. The

response ratio of gene i was calculated between medium-

and noncontaminated samples and high- and noncontami-

nated samples as follows:

rri ¼ lnð�xi=�yiÞ ði ¼ 1; . . . ; nÞ

where �x is the mean of normalized signal intensity in low- or

high-contaminated samples; �y is the mean of the normalized

signal intensity in noncontaminated samples.

The variance (v) is

vi ¼
s2

xi

mxi
�x2

i

þ
s2

yi

myi
�y2

i

ði ¼ 1; . . . ; nÞ

where s is the SD of gene i in noncontaminated samples

(DQ1–3), medium-contaminated samples (DQ4–6) and

high-contaminated samples (DQ7, 8); m is the number of

gene i in noncontaminated samples (DQ1–3), medium-

contaminated samples (DQ4–6) and high-contaminated

samples (DQ7, 8).

The 90%, 95% and 99% confidence interval (CI) for the

response ratio is

CIi ¼ rri � l
ffiffiffiffi

vi
p ði ¼ 1; . . . ; nÞ

l= 1.64, 1.96 and 2.58 for 90% CI, 95% CI and 99% CI,

respectively.

The difference is significant only if 90% CI, 95% CI or

99% CI of a response variable does not overlap with zero.

Canonical correspondence analysis (CCA) was performed

to identify the relationship between geochemical parameters

and microbial functional genes using CANOCO for Windows

version 4.5 (ter Braak & Smilauer, 1998). The functional-

gene-normalized signal intensities were log transformed

[Y = log (A�X1B), A = 1.0, B = 10.0] and downweighted

for a rare species for CCA. Monte Carlo tests were used to

assess the significance of the environmental variables with

999 permutations.

Results

Microbial functional gene diversity

The oil content in contaminated soils ranged from 4.4 to

157 mg g�1 (Table 1). Such high contamination levels have been

shown to influence the soil ecosystem, as Saterbak et al. (1999)

reported a decrease in earthworm survival and seed germina-

tion at more than 10 mg hydrocarbon g�1 soil. Other geochem-

istry values varied considerably among the samples (Table 1).

The total number of functional genes decreased under oil

contamination (Table 2). An average of 964 genes was

detected in uncontaminated soils and 399 genes in contami-

nated soils. Also, diversity indices (both Simpson’s recipro-

cal and Shannon–Weaver) indicated lower levels of

functional gene diversity in the contaminated soils. Even-

ness was similar across all samples. Although samples

Table 1. Geochemical data of soil samples from Daqing oil field in north-east China

No. Oil (mg g�1) pH Water (%) TN (mg kg�1) N (mg kg�1) TP (mg kg�1) P (mg kg�1) OM (mg g�1)

DQ1 0 7.8 12.4 599.5 44.5 523.7 3.7 3.9

DQ2 0 7.7 10.3 311.6 66.8 985.8 5.3 9.3

DQ3 0 7.2 4.7 249.3 14.8 581.7 3.2 15.6

DQ4 4.4 7.9 21.3 – – – – 30.4

DQ5 22.2 8.6 16.4 507.5 4.9 511.2 37.7 95.0

DQ6 49.1 7.7 7.3 750.0 50.0 580.0 11.8 106.8

DQ7 87.0 7.3 23.4 516.4 64.3 561.0 39.1 178.7

DQ8 156.8 7.5 12.3 800.1 69.3 378.8 30.5 217.7

TN, total nitrogen; N, nitrogen; TP, total phosphorus; P, phosphorous; OM, organic matter.
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DQ1–3 were all from uncontaminated sites, microbial

heterogeneity was observed, as only 33–36% of detected

genes were shared among all of the uncontaminated soils.

An even lower overlap was observed among contaminated

soils (24–29%), and between uncontaminated and contami-

nated soils (18–28%). Hierarchical cluster analysis of all

functional genes was performed to generate a dendrogram

to examine the relationship between the bacterial commu-

nity structures. As shown in Fig. 1, samples fell into three

groups: noncontaminated (DQ1–3), low- to medium-

contaminated (DQ4–6) and high-contaminated (DQ7, 8),

which is similar to the results observed with hydrocarbon-

contaminated coastal sediments (Paisse et al., 2008).

Microbial community patterns

The richness of bacteria, archaea and fungi in the eight

samples is shown in Fig. 2. Bacteria decreased to around

60% of the average uncontaminated level in low- to med-

ium-contaminated soils, and around 40% in high-contami-

nated soils (Fig. 2a). Archaea decreased dramatically in most

contaminated samples to 10% of the average uncontami-

nated level (Fig. 2b). Extensive changes in archaeal commu-

nities following exposure to oil were also reported in beach

microcosms (Roling et al., 2004a). Fungi in most contami-

nated samples decreased to about 80% of the average

uncontaminated level (Fig. 2c).

The composition and abundance of Actinobacteria, Fir-

micute and Proteobacteria (Alpha-, Beta-, Gamma- and

Deltaproteobacteria) were compared (Fig. 2a). Alpha- and

Gammaproteobacteria were the dominant bacterial groups

across all samples, representing 22.2–32.5% and 28.4–43.5%

of the total bacterial abundance, respectively. A significant

negative relationship was observed between oil content with

Gammaproteobacteria (r =� 0.82, P = 0.007), Alphaproteo-

bacteria (r =� 0.72, P = 0.022), Deltaproteobacteria

(r =� 0.69, P = 0.030), Actinobacteria (r =� 0.67, P = 0.033)

and Betaproteobacteria (r =� 0.63, P = 0.048), but oil con-

tent did not significantly influence Firmicutes.

Key functional gene responses under oil
contamination stress

The changes observed in each functional gene group were

examined in detail (Fig. 3, Supporting Information,

Table 2. Total number of functional genes detected, unique and overlapping genes and diversity indices

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8

% of genes detected

DQ1 26.3� 36.3w 32.9 23.9 23.9 21.72 23.2 18.2

DQ2 26.6 32.7 25.4 22.6 21.2 26.4 19.6

DQ3 17.7 28.2 27.8 24.3 26.1 21.5

DQ4 14.8 25.8 27.5 26.6 23.7

DQ5 12.7 24.6 24.2 23.6

DQ6 11.0 28.2 27.9

DQ7 13.3 29.3

DQ8 10.6

Total genes detected 1047 1115 730 479 419 355 459 283

Diversity indices

Simpon’s (1/D) 486.6 467.7 333.5 181.5 189.9 190.3 211.1 127.8

Shannon–Weaver H0 6.56 6.59 6.21 5.69 5.65 5.57 5.74 5.26

Evenness 0.94 0.94 0.94 0.92 0.94 0.95 0.94 0.93

�Values in bold represent unique genes in each sample.
wValues in italics represent genes overlapping between two samples.

Fig. 1. Hierarchical cluster analysis of all functional genes. DQ1–3 were

pristine soil samples; DQ4–8 were contaminated samples with increasing

oil concentration. Samples grouped with oil contamination level.
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Figs S1–S4). Response ratios were calculated to reveal the

gene changes in response to increasing oil contamination

levels (Fig. 3). A positive value indicated an increase in gene

abundance relative to the uncontaminated soil, whereas a

negative value indicated the opposite. Three CIs, 90%, 95%

and 99%, were used to examine the significance of changes.

In total, 83 genes were present in all medium- and non-

contaminated soils with response ratios in the range � 1.87

to 1.48 (� 0.28 average), while only 75 genes were common

to all high- and noncontaminated soils with response ratios

in the range of � 2.12 to 0.86 (� 0.61 average). For each

functional gene category, a significant decrease in medium-

contaminated soils was observed: 38% in carbon cycling,

33% in nitrogen cycling and 19% in organic contaminant

degradation. In high-contaminated soils, a greater decrease

was observed: 67% in carbon cycling, 71% in nitrogen

cycling and 44% in organic contaminant degradation. The

response ratios among high- to medium-contaminated soils

ranged from � 1.72 to 0.65 (� 0.35 average) (Fig. S1).

Many response ratios in the medium- or high-contaminated

soils were below zero, which indicated the negative impact

of contamination on soil microbial communities.

Several functional genes involved in carbon degradation

and fixation dramatically decreased with increasing oil

concentration, including genes encoding cellulase, laccase

and Rubisco. However, none of the functional genes encod-

ing chitinase showed a significant response to oil contam-

ination. For nitrogen fixation-related functional genes, most

nifH genes were not significantly influenced by medium

contamination. However, oil contamination had a negative

impact on most genes encoding urease. For nitrogen reduc-

tion genes, nasA, norB and nosZ decreased in medium-

contaminated soils. The genes narG, nirS, norB and nosZ

decreased in high-contaminated soils.

Several functional genes involved in organic contaminant

degradation were at similar levels in contaminated

soils, especially in medium-contaminated soils. Genes in-

volved in degradation of catecholic PAH derivatives were

stable in both medium- and high-contaminated soils. Some

genes, such as pcaG and menC, even showed a significant

increase in medium-contaminated soils. However, func-

tional genes involved in benzoate, aniline and protocatech-

uate degradation were significantly influenced by high oil

contamination.
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Fig. 2. Abundance of (a) bacteria (Actinobacteria, Firmicute, Alpha-, Beta-, Gamma- and Deltaproteobacteria), (b) archaea and (c) fungi based on

measurement from the GeoChip hybridization. The y-axis represents the total signal intensity of genes derived from bacteria, archaea and fungi.
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Relationships between community structure
and environmental variables

CCA was performed to discern possible linkages between

geochemical parameters and microbial community func-

tional structure (Fig. 4). Only geochemical parameters that

were significant were included in the CCA biplot. For all

functional genes, 33.4% of the total variance could be

explained by the first two constrained axes, with the first

axis explaining 17.4%. Both the first canonical axis

(P = 0.018) and the sum of all canonical axes (P = 0.001)

were significant. Samples showed grouping patterns similar

Phthalate 903977
Protocatechuate 14585922
Protocatechuate 21241142
Protocatechuate 22975204
Protocatechuate 23468821

Pyrene 22711993
Pyrene 33333869
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Catechol-ortho derivative 1747425

Catechol-ortho derivative 31791735
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Fig. 3. Response ratios (mean� SE for each gene) of (a) medium contamination (DQ4–6) to noncontaminated (DQ1–3) and (b) high contamination

(DQ7–8) to noncontaminated (DQ1–3). �Significant at 90% CI; ��significant at 95% CI; ���significant at 99% CI. Gene number is the protein ID

number for each gene as listed in the GenBank database.
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to those observed with hierarchical clustering, with non-,

low- to medium- and high-contaminated soils grouped

together, respectively. The first axis was negatively correlated

with oil concentration, soil organic matter, water content

and soil available phosphorus and the second axis was

positively correlated with soil available nitrogen and nega-

tively with pH. Because oil accounted for the majority of

total soil organic matter, it was considered that of all

geochemical variables, soil available nitrogen and oil con-

centration had a stronger influence on microbial functional

gene structure. Pristine soils were highly correlated with the

nitrogen content. Contaminated soils, especially those with

high contamination, were controlled by oil concentration.

Discussion

In this study, we examined changes in microbial functional

genes along an oil contamination gradient of an oil field

using a functional gene array, GeoChip, to gain an insight

into in situ microbial community responses to oil contam-

ination. The GeoChip has been shown to provide robust

results in tracking hundreds to thousands of functional

genes and to be a powerful approach to dissection of

microbial functional community structure in complex en-

vironments (Leigh et al., 2007; Yergeau et al., 2007; Wu et al.,

2008; Zhou et al., 2008; Liang et al., 2009; Mason et al., 2009;

Waldron et al., 2009; Wang et al., 2009). This type of array is

useful for monitoring environmental microbial community

structure and linking genomic information with the key

biogeochemical processes. Crude oil is a complex mixture of

a diverse group of organic compounds. A large number of

probes for genes involved in organic contaminant degrada-

tion are targeted by probes on the array, as well as functional

genes in nitrogen, carbon and sulfur cycling. Meta-analysis

and other statistical analyses indicated that changes in

microbial functional diversity were associated with oil

contamination in the studied area.

Organic chemical pollution has been reported to signifi-

cantly affect microbial communities from a variety of

environments. Oil-induced diminished microbial popula-

tion diversity was observed using both culture-dependent

and culture-independent approaches (Van Hamme et al.,

2003). In this study, both detected functional gene number

and diversity decreased with increasing oil contamination

level. The decrease in diversity may be due to the toxicity of

some oil components or metabolic products (Cheung &

Kinkle, 2001), or to selection for metabolic generalists

(Roling et al., 2004b). Until now, studies on archaeal

community dynamics under oil contamination have mainly

focused on some extreme or strictly anaerobic environ-

ments. Roling et al. (2004a) reported a negative effect on

archaea by oil spills in beach sediments in laboratory

experiments. Sandaa et al. (1999) also observed a decrease

in archaeal numbers with increasing heavy-metal contam-

ination in soils. In this study, we found a dramatic decrease

in in situ archaea in oil-contaminated soils as indicated by

the limited archaeal genes on the array. Although some

archaea have the capacity to utilize petroleum hydrocarbon

(Le Borgne et al., 2008), their true functions in the field,

especially in oil-contaminated aerobic environments, are

not understood. Thus, further work is needed.

Several indigenous fungi such as Trichoderma sp., Peni-

cillium sp., Aspergillus sp. and Phanerochaete sp. have been

isolated from oil-contaminated soils and reported to be

capable of degrading both aliphatic and aromatic hydro-

carbons (Bokhary & Parvez, 1993; Bishnoi et al., 2008;

Husaini et al., 2008). In this study, fungi appeared to be

more resistant to oil contamination than bacteria and

archaea, which may be due to their higher ability to

colonize, penetrate and spread in various soils (Novotny

et al., 1999; Husaini et al., 2008). Most fungal functional

genes detected are involved in carbon degradation, encoding

laccase, cellulase, chitinase and polygalacturonase. The genes

mainly derived from Piloderma byssinum, Trametes sp.,

Polyporus ciliatus, Pleurotus sp., Penicillium griseoroseum

and Aspergillus aculeatus, some of which are believed to

catalyze PAH degradation by an extracellular ligninolytic

enzyme system (Bezalel et al., 1996; Pickard et al., 1999).

Detecting microbial catabolic genes in the environment is

a more direct way of linking microbial metabolic potential

to changing environmental conditions (Junca & Pieper,

2004). For example, catabolic genes such as ndoB, alkB and

xylE in the bulk soil were affected by different treatments,

Fig. 4. CCA of GeoChip hybridization signal intensities and soil geo-

chemical variables: oil concentration, pH, water content, organic matter

(OM), nitrogen (N) and phosphorus (P). DQ1–3 are pristine soil samples;

DQ4–8 are contaminated samples with increasing oil concentration.
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while no detectable shift in the 16S rRNA gene composition

occurred during a PAH phytoremediation field trial (Sicilia-

no et al., 2003). The abundance of functional genes, such as

nahAc, alkB and xylE, has been used to estimate the toluene

and naphthalene microbial degradation potential in petro-

leum hydrocarbon-contaminated sites (Tuomi et al., 2004;

Salminen et al., 2008). In the current study, although the

overall gene number and diversity decreased along the oil

contamination gradient, some genes remained at the same

level as in the original pristine soils regardless of the

contamination level. This was especially true for functional

genes involved in organic contaminant degradation, such as

functional genes involved in the degradation of naphtha-

lene, pyrene, biphenyl and catecholic PAH derivatives.

An increase in the abundance of genes encoding catechol

2,3-dioxygenases in isolates was also reported with BTEX

pollution in soil samples (Junca & Pieper, 2004). In crude

oil-contaminated soils, there was a drastic decrease in

alkanes and aromatic hydrocarbons with low volatility,

which was largely due to in situ microbial degradation

(Liang et al., 2009). The high abundance of organic con-

taminant degradation genes detected in oil-contaminated

soils indicated their potential importance in oil degradation.

Oil contamination influences soil microbial activities.

Several functional genes involved in carbon and nitrogen

cycling decreased in both medium- and high-contaminated

soils, such as rbcL (132036), pgl (21242808), urease

(14024887, 13881548, 1580797 and 15600060) and nosZ

(32478380), indicating the negative effect of oil on soil

microorganisms and their potential functions in carbon

and nitrogen cycling. Also, in other studies, soil microbial

urease and dehydrogenase activity showed a significant

negative correlation with oil concentration (Megharaj et al.,

2000; Li et al., 2005). Both functional gene and enzyme

activities could be used as the most sensitive indicator of oil

contamination. Also, some functional genes involved in

nitrogen and carbon cycling and organic contaminant

degradation showed an initial increase and then a decrease

with increasing oil level, indicating a possible selection for

those organisms at a low to medium contamination level,

but toxicity at high contamination level.

Nitrogen limitation is always considered as one of the key

factors that influence bioremediation of organic compounds

(Atlas, 1981; Oh et al., 2001). The optimal carbon/nitrogen

ratio has been known to be 10 : 1 (Atlas, 1981). The ratio of

oil content to total nitrogen is much higher in the site

studied, about 40 to 200 : 1, than the optimal value. Organic

nitrogen accounted for 87–99% of total nitrogen, and the

available nitrogen [N, nitrate (NO3
�-N), nitrite (NO2

�-N)

and ammonium (NH4
1-N)] that microbial directly used for

oil degradation only accounted for a really small portion. If

the microbial activities in nitrogen cycling were reduced, as

preliminarily evidenced by the decrease of functional genes,

nitrogen limitation must be a critical issue for in situ

bioremediation of oil contaminants in oil fields.

The in situ response of oil-stressed microbial functional

diversity indicated that the potential metabolic capacity of

microbial communities should be considered when design-

ing site-specific approaches for bioremediation. Most stu-

dies on functional genes in natural environments, including

this study, however, focus mainly on the characterization of

the presence and/or the abundance of a family of catabolic

genes rather than gene expression. More practical informa-

tion can be obtained if workable methods for mRNA

analysis can be developed (Van Hamme et al., 2003).

Recently, a new approach, termed whole-community RNA

amplification, has been developed to provide sufficient

amounts of mRNA from environmental samples for micro-

array analysis (Gao et al., 2007). Further work is needed to

examine in situ microbial functional gene expression under

contamination stress via RNA analysis. In addition, more

sampling efforts should be made to study in situ microbial

functional diversity and ecological functions under oil

contamination stress in oil fields.

In conclusion, the present study profiles in situ microbial

functional diversity changes along an oil contamination

gradient across an oil field. The microbial functional gene

numbers and diversity decreased with increasing oil con-

centration and exhibited similar patterns under similar

contamination levels. Soil microbial functional community

structure varied in response to contamination stress. Oil

content and soil available nitrogen were found to be

important factors influencing the microbial community

structure. The results not only extend our understanding of

the microbial ecology of contaminated environments but

also provide potential information for on-site management

and remediation measure.
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