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eye disc (5) may thus be visualized as ex-
panding concentric rings of dp-ERK.

In accordance with the multiple func-
tions of DER during development, many of
the dp-ERK patterns are attributed to DER
activation. The temporal and spatial corre-
lation of DER-induced dp-ERK to Rho ex-
pression stands out. The only exception is
the activation of DER in the ventral ecto-
derm at stage 10 that is induced by Spitz-
processing machinery restricted to the mid-
line. These findings point to Rho as the
limiting element in activation of the DER
pathway. Different ranges of diffusion were
observed for Spitz in different biological
contexts, highlighting the importance of
molecules that may restrict or facilitate li-
gand diffusion in regulating the spatial pat-
tern of receptor activation.
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Thermophilic Fe(III)-Reducing Bacteria from the
Deep Subsurface: The Evolutionary Implications

Shi V. Liu,* Jizhong Zhou, Chuanlun Zhang, David R. Cole,
M. Gajdarziska-Josifovska, Tommy J. Phelps†

Thermophilic (45° to 75°C) bacteria that reduce amorphous Fe(III)-oxyhydroxide to
magnetic iron oxides have been discovered in two geologically and hydrologically
isolated Cretaceous- and Triassic-age sedimentary basins in the deep (.860 meters
below land surface) terrestrial subsurface. Molecular analyses based on 16S ribosomal
RNA (rRNA) gene sequences revealed that some of these bacteria represent an
unrecognized phylogenetic group of dissimilatory Fe(III)-reducing bacteria. This dis-
covery adds another dimension to the study of microbial Fe(III) reduction and biogenic
magnetism. It also provides examples for understanding the history of Fe(III)-reducing
microorganisms and for assessing possible roles of such microorganisms on hot
primitive planets.

Dissimilatory Fe(III) reduction is proposed
to be an early form of microbial respiration
(1), and it may have influenced the
geochemistry and the paleomagnetism of
the Archaean Earth (2). Microbial Fe(III)
reduction has been observed primarily in
low-temperature environments that have
been extensively influenced by modern
surface processes (3). Previous studies on

dissimilatory Fe(III)-reducing bacteria
have been focused on mesophilic microor-
ganisms within Proteobacteria (4), which
are located distant from the deep branches
on the phylogenetic tree (5). The paucity
of information on thermophilic dissimila-
tory Fe(III)-reducing microorganisms (6)
is striking in that thermophilic species are
frequently found in many other groups of
microorganisms such as methanogens, sul-
fate-reducing bacteria, and acetogens (7).
This lack of information presents a diffi-
culty in explaining microbial Fe(III) re-
duction on primitive Earth, which was
reputedly warmer than Earth is now (8).
Although the geological evidence for mi-
crobial Fe(III) reduction in Archaean
Earth is recognized (2), the early evolu-
tion of microbial Fe(III)-reducing micro-
organisms on Earth has not yet been de-
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lineated in biological studies.
We studied two geologically and hydro-

logically separated sedimentary basins, the
Triassic-age Taylorsville Basin in Virginia
and the Cretaceous-age Piceance Basin in
Colorado. Geological and hydrological stud-
ies have shown that the deep portions of
these basins have been isolated from surface
processes for millions of years (9). The cur-
rent temperature at the sampling depths
(2652 to 2798 m below land surface) in the
Taylorsville Basin ranges from 65° to 85°C,
and the pore fluid pressure ranges from 30 to
35 MPa (9). The current temperatures at the
three sampling depths (856 to 862 m,
1996 m, and 2090 to 2096 m below land
surface) in the Piceance Basin were estimat-
ed to be 42°, 81°, and 85°C, respectively (9).
Core samples were collected from tightly
cemented, low-porosity arkosic silt stone and
from organic-rich, laminated shale in the
Triassic Taylorsville Basin, as well as from
three geologic units in the Piceance Basin:
one in the Tertiary Wasatch Formation and
two in the Upper Cretaceous Williams Fork
Formation (9). Drilling fluids were sampled
from the fluid-receiving tank at different
times during the drilling operation in the
Piceance Basin. The sedimentary rock and
drilling fluid samples were processed anaer-
obically and shipped on ice overnight to our
laboratory for initiation of microbial incuba-
tions (10).

Enrichment cultures for thermophilic
Fe(III)-reducing microorganisms were pre-
pared with mineral media containing amor-
phous Fe(III) oxyhydroxide as an electron
acceptor, and hydrogen (H2) or short-chain
fatty acids as the electron donors (10).
Previous studies had shown that these sub-
stances are potentially available in deep
terrestrial subsurface environments (11)
and thus may be suitable substrates for
deep-subsurface Fe(III)-reducing microor-
ganisms. Within 1 to 2 weeks of inocula-
tion with subsurface samples or enrich-
ment cultures, black magnetic precipitates
formed in incubation mixtures held at
60°C (Table 1). The Taylorsville Basin
enrichment cultures used the fatty acids
formate, acetate, and lactate as electron
donors for Fe(III) reduction and magnetic
mineral formation. The Piceance Basin
enrichment cultures utilized H2 and pyru-
vate as electron donors in addition to the
above three fatty acids.

The formation of magnetic products
was observed at temperatures between 45°
and 75°C (Fig. 1) and at a salinity of 0 to
4% NaCl. In various uninoculated con-
trols, significant abiotic Fe(III) reduction
and magnetic product formation was not
observed. Exposure of the thermophilic
Fe(III)-reducing enrichment cultures to
oxygen prevented the Fe(III) reduction,

an indication of the anaerobic nature of
the Fe(III)-reducing microorganisms. Fur-
thermore, the thermophilic formation of
magnetic iron oxides was prevented by the
ferric reductase inhibitor p-chloromercuri-
phenyl sulfonate (pCMPS), the hydroge-
nase inhibitor quinacrine dihydrochloride,
the protonophore carbonyl cyanide m-
chlorophenylhydrazone (CCCP), and the
electron transport inhibitors 2-n-heptyl-4-
hydroxyquinoline-N-oxide (HOQNO)
and dicumarol. The susceptibility of the
thermophilic Fe(III)-reducing cultures to
these metabolic inhibitors is consistent
with a dissimilatory mechanism for Fe(III)
reduction, which has been shown for me-

sophilic Fe(III)-reducing bacteria (12).
The sulfate reduction inhibitor molybdate
did not stop the Fe(III) reduction but
shifted formation of reduced minerals from
magnetite to siderite.

Magnetic precipitates (10 to 300 nm in
size) were deposited extracellularly in as-
sociation with microorganisms of different
morphologies (Fig. 2A). The magnetic
minerals were identified as a mixture of
magnetite and maghemite crystallites on
the basis of the lattice spacings revealed
by selected area electron diffraction (Fig.
2B) and by high-resolution electron mi-
croscopy. Magnetite was the predominant
phase. The existence of these two forms of

Table 1. Fe(III)-reducing and magnetic iron oxide-forming activities at 60°C in materials obtained from
deep terrestrial subsurface environments (21).

Source of
microorganisms

Activities with electron donor added into cultures*

Formate Acetate Lactate Pyruvate Hydrogen

Taylorsville Basin,
sedimentary rocks

1 1 1 2 2

Piceance Basin,
drilling fluids

1 1 1 1 1

*The plus sign indicates that Fe(III) reduction and magnetic mineral formation were observed within 5 days of
incubation.

Fig. 1. Temperature profile of the microbial Fe(III)-
reducing activity of the H2-utilizing enrichment cul-
tures from the Piceance Basin. After incubation for
5 days at the indicated temperatures, brown non-
magnetic amorphous Fe(III) oxyhydroxides in the
incubation tubes at 45° to 75°C became black
and magnetic, and were attracted to the magnetic stirring bars taped to the outsides of incubation tubes
during photographing. This caused the sloping of the precipitates toward the magnet side of the tube.
Precipitates in incubation mixtures at 25°, 35°, and 83°C remained brown and non-magnetic at the end
of incubation.

Fig. 2. Morphologies of bacteria and magnetic minerals and a selected area electron diffraction pattern
of magnetic crystals in drilling fluid cultures from the Piceance Basin that were grown on H2-CO2-Fe(III)
oxyhydroxide at 60°C. (A) SEM image of samples prepared anaerobically with minimum disturbance
(22). (B) Selected area electron diffraction pattern of magnetic crystals. The presence of magnetite
(Fe3O4) and maghemite (g-Fe2O3) was indicated by black dots in the rings with characteristic d-spacings
(23).
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magnetic iron oxides in the magnetic
precipitates was also confirmed by x-ray
diffraction and Mössbauer spectroscopic
analysis.

To further characterize the thermophilic
Fe(III)-reducing enrichment cultures, we
undertook a molecular analysis (13) of 16S
rRNA genes. Community DNAs were ex-
tracted from the Fe(III)-reducing enrich-
ment cultures incubated with non-
fermentable substrates (H2 and acetate) and
from those with a fermentable substrate
(pyruvate). The 16S rRNA genes were am-
plified and cloned into plasmid vectors, and
the restriction fragment length polymor-
phism (RFLP) patterns of the clones were
analyzed (14). Three dominant RFLP pat-
terns were observed in various enrichment
cultures (Table 2). RFLP patterns 1 and 2
were shared by enrichment cultures grown
with nonfermentable and fermentable sub-
strates, and the two patterns accounted for
43.6 to 54.6% of the clones. RFLP pattern 3
was observed in clones of H2- and pyruvate-
utilizing cultures but not in the acetate-
utilizing culture.

The 16S rRNA gene sequences of repre-
sentative clones bearing the three domi-
nant RFLP patterns were analyzed (15). All
of the sequences were affiliated with Ther-
moanaerobacter in the Gram-positive bacte-
ria (Fig. 3) and (Table 2). The clones of

RFLP patterns 1 and 3 were closely related
to the Thermoanaerobacter species, bearing
;98% similarity (Table 2). The clones of
the RFLP pattern 2, however, were most
closely related to T. ethanolicus but had a
13% dissimilarity (Table 2). Such a degree
of divergence in the 16S rRNA gene se-
quences suggests that the clones with RFLP
pattern 2 may represent a previously unrec-
ognized genus or family of bacteria (16).

From the analysis of the RFLP patterns
in various cultures, we hypothesize that
the microorganisms directly responsible
for the dissimilatory Fe(III) reduction are
those bearing RFLP pattern 2. This pat-
tern was shared by Fe(III)-reducing micro-
bial populations grown on three dif-
ferent electron donors. RFLP pattern 1
was also common to enrichment cultures
grown on all three substrates. However,
isolated bacteria such as TOR-39 (6)
whose 16S rRNA sequences are highly
similar to pattern 1 clones were unable
to catalyze nonfermentative dissimilatory
Fe(III) reduction. Bacteria bearing the
RFLP pattern 3 might play some role in
the Fe(III)-reduction in the hydrogen-
and pyruvate-grown cultures. However,
bacteria with this RFLP pattern are un-
likely candidates for producing the ob-
served dissimilatory Fe(III) reduction; this
RFLP pattern was absent from acetate-

grown cultures and the clones with this
pattern were highly similar in 16S rRNA
gene sequences to those of fermentative
Thermoanaerobacter species. However, fur-
ther studies are necessary to delineate the
respective roles of the various bacteria in
thermophilic Fe(III) reduction.

The discovery of these forms of ther-
mophilic Fe(III)-reducing bacteria de-
scribed above has broad implications re-
garding the evolution of Fe(III)-reducing
microorganisms and biogenic contribu-
tions to paleomagnetism. A wide phyloge-
netic distribution of Fe(III)-reducing bac-
teria, including mesophilic and thermo-
philic species, could reflect the early evo-
lution of Fe(III) respiration because early
evolved characteristics tend to be con-
served among widely distributed descen-
dants (17). Furthermore, the existence of
thermophilic Fe(III)-reducing bacteria in
geologically isolated, millions-of-years-old
thermal regimes suggests that thermophily
may be an ancestral feature associated
with Fe(III)-reduction. The ability of mi-
croorganisms to produce magnetic iron ox-
ides from amorphous Fe(III) oxyhydroxide
at high temperatures expands the biotope
boundary for microbial Fe(III)-reducing
activities. This capability also supports the
theory that biogenic magnetism may have
occurred in Archaean banded iron forma-
tions that formed at high temperatures
(55° to 76°C) (18).

The discovery of thermophilic Fe(III)-
reducing bacteria on Earth may also have
implications for studying exobiology on,
for example, Mars: the recent finding of
putative biogenic magnetite in an ancient
martian meteorite (19) raises the possibil-
ity that Fe(III)-reducing microorganisms
evolved not only on Earth but also else-
where. Early Mars and early Earth might
have exhibited similar hydrothermal ac-
tivities compatible with life (20). Thus,
thermophily may have been a common
feature of the early evolved forms of
Fe(III)-reducing bacteria.
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Altered Neural Cell Fates and Medulloblastoma
in Mouse patched Mutants

Lisa V. Goodrich, Ljiljana Milenković, Kay M. Higgins,
Matthew P. Scott*

The PATCHED (PTC) gene encodes a Sonic hedgehog (Shh) receptor and a tumor
suppressor protein that is defective in basal cell nevus syndrome (BCNS). Functions of
PTC were investigated by inactivating the mouse gene. Mice homozygous for the ptc
mutation died during embryogenesis and were found to have open and overgrown neural
tubes. Two Shh target genes, ptc itself and Gli, were derepressed in the ectoderm and
mesoderm but not in the endoderm. Shh targets that are, under normal conditions,
transcribed ventrally were aberrantly expressed in dorsal and lateral neural tube cells.
Thus Ptc appears to be essential for repression of genes that are locally activated by Shh.
Mice heterozygous for the ptc mutation were larger than normal, and a subset of them
developed hindlimb defects or cerebellar medulloblastomas, abnormalities also seen in
BCNS patients.

The human PTC gene is a tumor suppres-
sor and developmental regulator (1).
Some patients with BCNS have germline
mutations in PTC and are at increased
risk for developmental defects such as
spina bifida and craniofacial abnormali-
ties, basal cell carcinoma of the skin, and
brain tumors (2). PTC mutations also oc-
cur in sporadic basal cell carcinomas (1),
which generally have both copies of PTC
inactivated.

In the fruit fly Drosophila, Ptc is a key
component of the Hedgehog (Hh) signaling
pathway, which controls cell fate determi-
nation during development (3). Hh pro-
tein, secreted from localized regions, antag-
onizes the actions of its apparent receptor,
Ptc, in nearby cells (4). In the absence of a
Hh signal, Ptc represses transcription of
multiple target genes, including ptc itself,
wingless (a Wnt gene), and the transforming

growth factor b–related gene decapentaplegic.
In flies, ptc mutations cause derepression of
target genes, cell fate changes, and exces-
sive growth in some tissues (5). Hh induces
a high level of ptc transcription by inhibit-
ing the function of Ptc protein, so paradox-
ically an abundance of ptc transcript is an
indicator of a low level of Ptc function.
Vertebrate ptc expression is also regulated
by Hh proteins (6), which can bind directly
to Ptc (7).

The role of the Hh-Ptc pathway in skin
cancer has been established by BCNS
studies and with a mouse model (8), but
less is known about the brain tumors as-
sociated with BCNS. About 3% of BCNS
patients develop medulloblastomas (9),
cerebellar tumors that usually arise in
young children and have a mortality rate
of ;50% (10). ptc mutations have been
detected in sporadic medulloblastomas
(11), but this tumor type is rare and there
are few clear animal models (12), so much
remains to be learned about its origins and
biology.

To study the roles of ptc in development
and in tumorigenesis, we constructed mice
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