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The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in the
United State history and its impacts on marine ecosystems are largely unknown. Here, we showed
that the microbial community functional composition and structure were dramatically altered in a
deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and
anaerobic hydrocarbon degradation were highly enriched in the plume compared with outside the
plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep sea.
Various other microbial functional genes that are relevant to carbon, nitrogen, phosphorus, sulfur
and iron cycling, metal resistance and bacteriophage replication were also enriched in the plume.
Together, these results suggest that the indigenous marine microbial communities could have a
significant role in biodegradation of oil spills in deep-sea environments.
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Introduction

On 20 April 2010, a massive oil leak occurred in the
Gulf of Mexico’s Mississippi Canyon area at a depth
of 1544 m, releasing B4.9 million barrels of crude
oil into the deep ocean before the wellhead was
finally capped on 15 July 2010 (The Federal
Interagency Solutions Group, Oil Budget Calculator
Science and Engineering Team, November 2010).
Chemical dispersants, including COREXIT
EC9500A and COREXIT EC9527A, were used on
site at one of the highest rates in history to accelerate
oil dispersal. A deep-water oil plume was initially
detected at a depth of 1000–1200 m below the
surface (Camilli et al., 2010; Hazen et al., 2010;
Mascarelli, 2010a), but at last account (Mascarelli,
2010b) could no longer be detected, presumably as a
result of dispersion and microbial degradation
(OSAT, 2010). Significant environmental differences
in the deep sea of Gulf of Mexico from other historic
offshore oil spills present an urgent need to better

understand the fate and impacts of the oil on this
specific habitat (Kerr et al., 2010a,b).

In marine ecosystems, microorganisms are known
to have predominant roles in degradation of oil
contaminants (Head et al., 2003; Larter et al., 2003).
Therefore, it was expected that the indigenous
microbial communities would have a significant
role in degradation of the deep oil plume. This
hypothesis was supported by two recent studies that
explored the microbial and chemical properties of
samples collected from the deep oil plume (Camilli
et al., 2010; Hazen et al., 2010). Hazen et al. (2010)
used a combination of molecular, chemical and
physiological approaches to investigate the micro-
bial and chemical composition in the deep-sea
plume compared with uncontaminated water from
the same depth outside the plume. They demon-
strated that the oil depletion was due to a combina-
tion of mixing, dispersion and biodegradation by
microbes residing in the deep sea (Hazen et al.,
2010).

In this study, samples from the deep-sea plume,
oil-contaminated seawater (hereafter referred to as
‘oil plume’ in the following text) and non-plume
controls (seawater samples at same depth that were
not contaminated with oil) were analyzed with
a functional gene microarray, the GeoChip 4.0Received 3 March 2011; revised 6 June 2011; accepted 6 June 2011

Correspondence: J Zhou, Department of Botany and Microbiology,
Institute for Environmental Genomics, University of Oklahoma,
Norman, OK 73019, USA.
E-mail: jzhou@ou.edu

The ISME Journal (2011), 1–10
& 2011 International Society for Microbial Ecology All rights reserved 1751-7362/11

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2011.91
mailto:jzhou@ou.edu
http://www.nature.com/ismej


(Hazen et al., 2010), to address the following
questions: (i) How did the oil contamination affect
the marine microbial community functional compo-
sition and structure? (ii) How did different microbial
functional genes involved in key microbial pro-
cesses shift in response to the oil spill? (iii) Were
functional genes specific to hydrocarbon (HC)
degradation processes enriched in the oil plume?
Our results indicated that the oil spill dramatically
altered microbial community functional structure,
the marine microbial communities present were
metabolically diverse, and that these communities
were able to respond to the oil spill.

Materials and methods

The following is the summary of methods used in
this study. More detailed information is provided in
Supplementary Data A.

Sample description
Between 27 May and 2 June 2010, seawater samples
were collected from the Gulf of Mexico during two
monitoring cruises on the R/V Ocean Veritas and R/
V Brooks McCall (Supplementary Table S1) as
previously described (Hazen et al., 2010). Briefly,
two colored dissolved organic matter WETstar
fluorometers (WET Labs, Philomath, OR, USA) were
attached to a CTD sampling rosette (Sea-Bird
Electronics Inc., Bellevue, WA, USA) and used to
detect the presence of oil. The fluorometer results
were subsequently confirmed by laboratory HC
analysis. Niskin bottles attached to the CTD rosette
were used to capture water samples at various
depths with detected HCs. Eight samples (BM053,
BM054, BM057, BM058, BM064, OV201, OV401 and
OV501) from the MC252 dispersed oil plume, and
five samples (OV003, OV004, OV009, OV013 and
OV014) from non-plume at a depth of 1099–1219 m
were analyzed in this study.

To better define the geochemical properties of the
plume and non-plume samples, two sets of variables
were measured: (i) seawater variables (dissolved
oxygen, temperature, small particle counts, total
ammonia nitrogen, nitrite (NO2-N), total iron), ortho-
phosphate (PO4-P) and acridine orange direct count)
and (ii) oil composition variables (fluorometer
detection of oil, benzene, toluene, ethylbenzene,
isopropylbenzene, n-propylbenzene, 1,3,5-trimethy-
lbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene,
sec-butylbenzene, p-isopropyltoluene, n-butylben-
zene, naphthalene and o-xylene, m- and p-xylenes)
(Hazen et al., 2010).

DNA amplification and labeling
Approximately 100 ng of DNA that was previously
extracted from the samples (Hazen et al., 2010) was
amplified using a modification of the Templiphi
kit (GE Healthcare, Piscataway, NJ, USA). The

amplified DNA (2 mg) was then labeled with Cy3
using random primers and the Klenow fragment of
DNA polymerase I (Wu et al., 2006) and then
purified and dried in a SpeedVac (45 1C, 45 min;
ThermoSavant, Milford, MA, USA) before hybridi-
zation.

GeoChip 4.0 hybridization and data pre-processing
The GeoChip 4.0, containing 83 992 50-mer oligo-
nucleotide probes targeting 152 414 genes in 410
gene categories for different microbial functional
and biogeochemical processes, was synthesized by
NimbleGen (Madison, WI, USA). All hybridizations
were carried out at 42 1C with 40% formamide for
16 h on a MAUI hybridization station (BioMicro,
Salt Lake City, UT, USA). After hybridization, the
arrays were scanned (NimbleGen MS200, Madison,
WI, USA) at a laser power of 100%. Signal
intensities were measured based on scanned images,
and spots with signal-to-noise ratios lower than 2
were removed before statistical analysis as described
previously (He et al., 2010).

Statistical analysis
Pre-processed GeoChip data were further analyzed
with different statistical methods: (i) microbial
diversity index, the two-tailed t-test and response
ratio (Luo et al., 2006); (ii) hierarchical clustering for
microbial community structure and composition
(de Hoon et al., 2004); (iii) analysis of similarity,
permutational multivariate analysis of variance
using distance matrices and multiresponse permu-
tation procedure analysis of differences of microbial
communities (Anderson, 2001); (iv) canonical cor-
respondence analysis (CCA) for linking microbial
communities to environmental variables (Ramette
and Tiedje, 2007; Zhou et al., 2008); and (v) partial
CCA for co-variation analysis of wellhead distance
and environmental variables (variation partitioning
analysis). Details for all methods are provided in the
Supplementary Information.

Results

Functional gene changes in response to oil spill
To assess the dynamic changes of microbial com-
munities in response to oil spill, microbial commu-
nity functional composition and structure were
analyzed using functional gene arrays (GeoChip
4.0). Significantly more functional genes (Po0.01)
were detected in the oil plume samples than in non-
plume control (Supplementary Table S2). The
overall microbial functional diversity was also
significantly (Po0.01) higher in the plume samples
based on Shannon–Weiner (H0) and Simpson’s (1/D)
indices. Consistent with geochemical ordination
patterns, hierarchical clustering analysis showed
that all plume samples were clustered together and
well separated from non-plume samples (Figure 1
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and Supplementary Figure S1), as also shown for the
microbial communities at a phylogenetic level
(Hazen et al., 2010). However, considerable varia-
bility in functional gene distribution was observed
among different samples and some functional genes
were common to all samples, although others were
unique to oil plume samples (Figure 1). For
example, Group 6, with 1439 or 20.14% of all genes
detected, largely involved in organic remedia-
tion, carbon degradation, denitrification, sulfate

reduction, metal resistance and stress response, was
generally detected in all samples. Groups 1, 2, 10
and 17, with 2.2%, 3.9%, 20.5% and 10.8% of all
genes detected, were mainly detected in the plume
samples (Figure 1). In addition, the microbial
community functional structure was significantly
(Po0.05) different between the plume and non-
plume samples as revealed by the three comple-
mentary non-parametric multivariate statistical
tests (analysis of similarity, permutational
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Figure 1 Hierarchical cluster analysis of all genes present in at least two out of the five samples. Results were generated in CLUSTER
and visualized using TREEVIEW. Red indicates signal intensities above background, whereas black indicates signal intensities below
background. Brighter red coloring indicates higher signal intensities. All oil plume samples clustered together and were well separated
from non-plume samples.
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multivariate analysis of variance using distance
matrices and multiresponse permutation procedure)
(Table 1).

Oil as a predominant factor shaping microbial
community functional structure
CCA was performed to determine the most signifi-
cant environmental variables shaping microbial
community structure. On the basis of variance in
inflation factors, seven variables were selected:
dissolved oxygen, temperature, total volatile HC,
total extractable petroleum HC, fluorometer detec-
tion of oil, phosphate and iron. The specified CCA
model was significant (P¼ 0.026). Of these, the total
volatile HC, extractable petroleum HC, fluorometer
detection of oil and dissolved oxygen were the most
significantly correlated with plume samples
(Figure 2). To separate the effects of seawater
geochemical variables, geographic distance and oil
composition on microbial community structure, a
CCA-based variation partitioning analysis (Ramette
and Tiedje, 2007; Zhou et al., 2008) was performed.
Seawater geochemical variables, oil composition
and wellhead distance showed a significant correla-
tion (P¼ 0.041) with the functional gene structure of
the community. Oil composition explained substan-
tially more variations (48.34%, P¼ 0.03) than sea-
water variables (21.76%, P¼ 0.017), whereas
distance independently explained 9.1% (P¼ 0.43)
of the observed variation (Figure 3). About 28% of
the community functional variation based on Geo-
Chip data remained unexplained by the above
selected variables, which is significantly lower than
those observed in other systems such as soils

(Ramette and Tiedje, 2007; Zhou et al., 2008). These
results indicate that oil contaminants could be a
dominant factor shaping microbial community
functional structure and potentially regulating
associated microbial functional processes.

Oil spill stimulated increase in functional genes for
HC degradation
A substantial number of genes involved in HC
degradation were detected in the oil plume samples
(Hazen et al., 2010), especially those involved in
degrading alkanes, alkynes and cycloalkanes, BTEX
and related aromatics, chlorinated aromatics,
heterocyclic aromatics, nitroaromatics, polycyclic
aromatics and aromatic carboxylic acids. For

Table 1 Significance of the effects of the oil spill on the overall
microbial community structure and geochemical pattern using
three statistical analyses

Method Geochemical parametersa Microbial community

Statistic P-value Statistic P-value

MRPPb 233.112 0.037 53.617 0.003
ANOSIMc 0.057 0.046 0.501 0.002
Adonisd 0.258 0.043 0.192 o0.001

Abbreviations: ANOSIM, analysis of similarity; MRPP, multi response
permutation procedure.
aGeochemical parameters included temperature, DO concentration,
fluorometer detection of oil, small particle concentrations, Fe, nitrate,
phosphate, benzene, toluene, naphthalene, ethylbenzene, isopropyl-
benzene, n-propylbenzene, 1,3,5-trimethylbenzene, tert-butylben-
zene, 1,2,4-trimethylbenzene, sec-butylbenzene, p-isopropyltoluene,
n-butylbenzene, total xylenes, total volatile HC and total petroleum
hydrocarbons—extractable (DRO).
bMultiple response permutation procedure, a nonparametric proce-
dure that does not depend on assumptions such as normally
distributed data or homogeneous variances, but rather depends on
the internal variability of the data.
cAnalysis of similarities.
dNon-parametric multivariate analysis of variance (MANOVA) with
the adonis function.
All three tests are non-parametric multivariate analyses based on
dissimilarities among samples.

Figure 2 CCA compares the GeoChip hybridization signal
intensities (symbols) and environmental variables (arrows).
Environmental variables were chosen based on significance
calculated from individual CCA results and variance inflation
factors (VIFs) calculated during CCA. The percentage of variation
explained by each axis is shown, and the relationship is
significant (P¼0.026).

Figure 3 Variation partitioning based on CCA for all functional
gene signal intensities. (a) General outline, (b) all functional
genes. A CCA-based VIF was performed to identify common sets
of oil composition and seawater variables important to the
microbial community structure. Oil composition variables in-
cluded fluorometer detection of oil, the concentration of total
volatile HCs, xylenes and petroleum HCs—extractable (DRO).
Seawater geochemical variables included temperature, dissolved
oxygen (DO), Fe and phosphate.
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example, gene alkB encoding alkane 1-monooxy-
genase, a key enzyme responsible for the initial
oxidation of inactivated alkanes, showed a signifi-
cantly (Po0.05) higher abundance, with 19–26
genes detected in the oil contaminated samples and
11–15 detected in the non-oil contaminated sam-
ples. The alkB genes derived from Rhodospirillum
centenum SW, Bdellovibrio bacteriovorus HD100,
Prauserella rugosa, Roseobacter sp. CCS2, Myco-
bacterium bovis AF2122/97, Bacillus sp. BTRH40,
Gordonia sp. Cg and Rhodococcus sp. RHA1
appeared to be dominant in all oil plume samples
(Supplementary Figure S2).

GeoChip analysis also detected many aerobic PAH
degradation genes from a variety of microorganisms
(Figure 4 and Supplementary Figure S3). PAH
degradation genes were more abundant in the plume
samples, while some were unique to the plume
samples. Although oxygen was still present in the
plume samples (Camilli et al., 2010; Hazen et al.,
2010), the gene bbs (beta-oxidation of benzylsucci-
nate) for anaerobic toluene degradation was also
enriched in plume samples. These bbs genes were
derived from putative E-phenylitaconyl-CoA
hydratase of Azoarcus sp. EbN1 and Thauera
aromatic, and benzylsuccinyl-CoA dehydrogenase
of Azoarcus sp. EbN1 (Figure 5).

Shifts of the genes involved in key biogeochemical
cycling processes
Carbon. Among the carbon cycling genes detected,
798 genes involved in the degradation of complex

carbon compounds, such as starch, hemicellulose,
cellulose, chitin, lignin and aromatics, showed
positive hybridization signals. Most of these genes
(for example, pulA, xylA, xynA, lip, limEH and
vanA) showed significantly (Po0.05) higher
abundance in plume than in non-plume samples
(Supplementary Figure S4). These types of genes
could also be important in degradation of various oil
components and their intermediates.

In this study, 9–14 mcrA genes encoding the
a subunit of methyl coenzyme M reductase and 5–8

Figure 4 The normalized signal intensity of the nahA genes (naphthalene 1,2-dioxygenase) for the initial oxidation of naphthalene. The
signal intensity for each sequence was the average of the total signal intensity from all the replicates. Gene number is the protein ID
number for each gene as listed in the GenBank database. All data are presented as mean±s.e. ***Po0.01, **Po0.05, *Po0.1.

Figure 5 The normalized signal intensity of bbs (b-oxidation of
benzylsuccinate) genes for anaerobic toluene degradation. The
signal intensity for each sequence was the average of the total
signal intensity from all the replicates. Gene number is the protein
ID number for each gene as listed in the GenBank database. All
data are presented as mean±s.e. ***Po0.01, **Po0.05, *Po0.1.
In total, seven probes were designed for bbs genes in GeoChip 4.0
and three probes were detected in the samples.
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pmoA genes for methane monooxygenase were
detected in the plume samples. Specifically, mcrA
genes from Methanococcus aeolicus Nankai-3,
Methanoculleus marisnigri JR1 and Methanocorpus-
culum labreanum Z were detected in all of the oil
plume samples, but most of them were from
uncultured microorganisms. Significantly (Po0.05)
higher signal intensities were observed for mcrA in
the plume than in the non-plume samples (Supple-
mentary Figure S5). However, no significant differ-
ences were found for pmoA and mmoX (particulate
methane monooxygenase) between plume and non-
plume samples.

Nitrogen. Petroleum generally contains about
0.1–2% nitrogen, and given the large quantities of
oil involved, it may act as an N pool in this
ecosystem. Interestingly, nasA (nitrate reductase)
and nir (nitrite reductase) for assimilatory N reduc-
tion, and gdh (glutamate dehydrogenase) for ammo-
nia assimilation exhibited significantly (Po0.05 or
0.01) higher signal intensities in plume samples
(Figure 6). The observed stimulation of N assimila-
tion processes could be due to an increase of
microbial biomass (Hazen et al., 2010). However,
no significant differences were observed for other
N-cycling genes, for example, nitrification, denitri-
fication and N fixation (Figure 6).

Sulfur. Sulfite reduction genes were highly abun-
dant in the deep-sea plume: 81–102 dsrA/B genes for
dissimilatory sulfite reductase, and 8–12 AprA
genes for dissimilatory adenosine-50-phosphosulfate
reductase were detected with significantly (Po0.05)
higher abundance in the plume than in non-plume
samples (Supplementary Figure S6). Microbial
populations similar to Alkalilimnicola ehrlichei
MLHE-1, Chlorobium ferrooxidans DSM 13031,
Clostridium leptum DSM 753, Desulfomicrobium
thermophilum, Pyrobaculum calidifontis JCM
11548, Thermodesulforhabdus norvegica, Magneto-
coccus sp. MC-1, Pyrobaculum aerophilum str. IM2,
Alkalilimnicola ehrlichei MLHE-1, Desulfohalobium
retbaense DSM 5692, sulfate-reducing bacterium
QLNR1 and Syntrophobacter fumaroxidans MPOB
were frequently detected in each sample, while most
of the genes detected were from uncultured micro-
organisms (for example, sulfate-reducing bacteria)
from various environments. The results suggest that
sulfate reduction could be enhanced when coupled
with HC degradation.

Phosphorus and iron reduction. As phosphorus is
often a limiting factor for oil bioremediation, it is
essential to understand phosphorus cycling in
marine ecosystems. Genes encoding exopolyphos-
phatase (ppx) for inorganic polyphosphate degrada-
tion and phytase for phytate degradation were
detected with significantly (Po0.01 and Po0.05,
respectively) increased abundance in plume sam-
ples (Supplementary Figure S7). These results

suggested that organic phosphorus release could be
stimulated by oil contamination. In addition, higher
(Po0.1) signal intensities for 61 detected cyto-
chrome c genes were observed in plume samples
(Supplementary Figure S8), suggesting that HC
degradation coupled with metal reduction could
occur in the deep water.

Metal resistance. A substantial number (917) of the
genes involved in resistance to various metals were
detected, many of which showed significantly
(Po0.05) increased abundance in plume samples
(Supplementary Figure S9). Genes encoding reduc-
tases for As (arsC) and Hg (mer), efflux transporters
for Cd (cadA), Cu, Co and Zn (czcA and czcD), Cr
(ChrA), Cu (copA), Hg (merT), Ag (silC) and Zn
(zntA), and the proteins involved in Te resistance
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the N cycle in oil plume. The signal intensity for each gene
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(a) gdh, encoding glutamate dehydrogenase, ureC, encoding
urease responsible for ammonification; (b) nasA, encoding nitrate
reductase, NiR, encoding nitrite reductase, responsible for
assimilatory N reduction; (c) nifH, encoding nitrogenase respon-
sible for N2 fixation; (d) narG encoding nitrate reductase, nirS and
nirK-D (with denitrification activity), encoding nitrite reductase;
nosZ, encoding nitrous oxide reductase, norB, encoding nitric
oxide reducatse, responsible for denitrification (e) napA, encod-
ing periplasmic nitrate reductase, nrfA, encoding c-type cyto-
chrome nitrite reducatse, responsible for dissimilatory N
reduction to ammonium; (f) hao, encoding hydroxylamine
oxidoreductase, and nirK-N encoding nitrite reductase for
nitrifiers (an indication of nitrification activity), responsible for
nitrification.
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(terC, terD and terZ) were more (Po0.05 or 0.01)
abundant in the plume samples.

Bacteriophages were also significantly stimulated
In total, 52 bacterial phage genes associated with
host recognition, lysis, replication and structure
were observed in all samples. The signal intensities
for many of the genes involved in replication were
significantly (Po0.05) higher in the plume than in
the non-plume samples (Figure 7), supporting the
suggestion by Head et al. (2006) that bacteriophages
could be an important factor for intrinsic bioreme-
diation of HCs.

Discussion

The Deepwater Horizon oil spill in the Gulf of
Mexico was one of the worst environmental disas-
ters in the United State history. The impact of an oil
spill of such an unprecedented magnitude and
depth on marine ecosystems is largely unknown.
Using the GeoChip-based high-throughput micro-
array technology, we showed that diverse microbial
functional groups (a group of genes involved in
certain functional processes), including those
important to HC degradation, carbon metabolism,
methanogenesis, nitrogen assimilation, sulfate re-
duction, phosphorus release, metal resistance and
bacteriophage replication, were more highly repre-
sented in the oil plume samples than in non-plume
samples from the same depth. Also, the changes
in community functional structure were highly
correlated to the changes in geochemistry, with
oil being the predominant factor shaping the func-
tional composition and structure of the microbial

communities. Our results support the phylogeny-
based study by Hazen et al. (2010) that the deep-
sea marine microbial communities underwent a
dynamic change in response to the oil spill and
associated geochemical changes. Our results are also
consistent with previous studies of oil spill and
petroleum contamination (Harayama et al., 2004;
Head et al., 2006; Bordenave et al., 2007), which
showed that microorganisms able to utilize HCs
became dominant in oil-contaminated sites. Such
functional gene information is useful for assessing
the impacts of oil spills and should facilitate the
design of appropriate strategies and approaches to
deal with petroleum contamination.

The clean-up of the deep-sea oil plume will
primarily depend on the indigenous microbes
present in this environment, as current technology
does not allow removing the dispersed oil and gas at
such great depths. One of the critical environmental
questions is whether microorganisms for degrading
various HCs exist in the community and whether
they respond to oil spill. Our GeoChip results
indicated that many functional genes/populations
involved in both aerobic and anaerobic degradation
of various oil components are detected and/or
enriched in the oil plume, indicating that the
indigenous HC-degrading populations are capable
of responding to the oil spill. For example, alkB for
alkanes, Xamo for alkene, genes bco, ohbAB,
GCoADH and pimF for benzoate, genes mdlA, mdlB
and mdlC for mandelate, and genes Apc and catB for
BTEX metabolic pathway exhibited a significantly
(Po0.05) higher abundance in the oil plume than in
the non-oil plume. The changes in relative abun-
dance of these genes/populations were significantly
correlated with the concentrations of various oil
contaminants in the samples (Hazen et al., 2010).

Figure 7 The normalized signal intensity of the replication genes for bacteriophage. The signal intensity for each sequence was the
average of the total signal intensity from all the replicates. Gene number is the protein ID number for each gene as listed in the GenBank
database. All data are presented as mean±s.e. ***Po0.01, **Po0.05, *Po0.1.
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Especially, several genes for PAH degradation were
enriched in the oil plume samples, which could be
important in determining the long-term effects of the
oil spill on the marine ecosystems. Also, consistent
with phylogenetic gene distribution obtained using
a phylogenetic microarray ‘PhyloChip’ (Hazen et al.,
2010), functional genes representative of the order
Oceanospirillales appeared to have significantly
higher (Po0.01) abundance in the plume samples
than in non-plume samples, although the domi-
nance of the Oceanospirillum population consum-
ing the oil in the plume was based on clone library
and sequence analysis of 16S rRNA genes (Hazen
et al., 2010). GeoChip was not originally designed to
link the detection of functional genes to the
existence of related microbial population and it
contains 567 functional genes derived from the
order Oceanospirillales, with 25 genes detected in
this study. In addition, a large number of metal
resistance genes were enriched in plume samples,
which are usually linked to organic degradation
genes, for example, on plasmids (Parales and
Haddock, 2004; Kunapuli et al., 2007). Our GeoChip
results demonstrated that there is a great potential
for intrinsic bioremediation of oil contamination in
the deep-sea environment.

Anaerobic HC degradation associated with sulfate
reduction, denitrification and methanogenesis has
long been considered the prevailing mechanism for
petroleum biodegradation in the deep subsurface
(Head et al., 2003; Aitken et al., 2004; Kniemeyer
et al., 2007; Jones et al., 2008). Recent investigations
have demonstrated that several classes of petroleum
HCs, including alkanes (So et al., 2003), mono- and
polycyclic aromatic compounds (Meckenstock et al.,
2000; Widdel and Rabus, 2001), and short-chain HCs
(Kniemeyer et al., 2007), can be degraded anaerobi-
cally under nitrate-, iron- or sulfate-reducing condi-
tions, or under methanogenic conditions (Harayama
et al., 2004; Jones et al., 2008). Indeed, a substantial
number of dsrA/B genes for sulfate reduction, mcrA
genes for methanogenesis, narG, nirS, nirK and nosZ
responsible for denitrification and populations for
metal reduction were detected in this study. Also,
dsrA/B and mcrA genes showed significantly
(Po0.05 or 0.01) higher abundance in the plume
than in the non-plume samples. In addition, bbs
genes for the strict anaerobic toluene degradation
were detected and enriched in the plume samples. It
is possible that anaerobic HC degradation could
have most likely occured through microaggregate
formation as reported in Hazen et al. (2010).

Hydrocarbon degradation is generally limited by
nutrient availability, which can be improved by
nutrient recycling through phage-mediated biomass
turnover (Jiang et al., 1998; Head et al., 2006; Paul,
2008). As significant biomass increase was observed
(Hazen et al., 2010) in the plume samples, bacter-
iophages could have critical roles in HC degrada-
tion. Approximately 43% of marine bacterial
isolates have been found to contain prophages (Jiang

et al., 1998; Paul, 2008), which are induced by
various environmental contaminants, such as fuel
oil (Cochran et al., 1998). The oil spill may stimulate
the growth of pathogenic bacteria in marine envi-
ronments and many pathogens are capable of
efficiently degrading HCs (Rojo and Martı́nez,
2010). The research on phages has been heavily
slanted to those that affect human-related activities,
health/medical and industry. As no target genes for
Oceanospirillum phages were designed on GeoChip
4.0, the Oceanospirillum phages were not detected.
Genes for both iron uptake (iro) and adherence (pap
and pilin) were significantly (Po0.01 or 0.05)
enriched in the plume samples. The increase in
the abundance of microorganisms capable of produ-
cing siderophores, highly specific iron-chelating
compounds, may facilitate microbial acquisition of
iron, a limiting nutrient in marine systems (Barbeau
et al., 2001a, b), thereby potentially increasing HC
degradation.

A substantial quantity of methane gas was
released together with the oil (The Federal Inter-
agency Solutions Group, Oil Budget Calculator
Science and Engineering Team, November 2010;
Kessler et al., 2011), which may result in more
methane in the oil plume ecosystem and have the
potential to greatly impact methane metabolism.
GeoChip targets three key genes/enzymes involved
in methane metabolism, with mcrA encoding
methyl coenzyme M reductase for methanogenesis
and two enzymes/genes (methane monooxygenase/
mmoX and particulate methane monooxygenase/
pmoA) for methanotrophy (He et al., 2010). In this
study, pmoA and mmoX genes for aerobic methane
oxidation did not show a statistically significant
change though their abundance was higher in plume
samples than in non-plume samples. There are two
possible explanations for this: one is that the aerobic
methane oxidation was inhibited owing to the
presence of easier to degrade alkanes in the deep
sea, and the other is that the methane gas was moved
up to the surface more directly and did not
accumulate in the deep oil plume. Also, unlike
propane, methane may form gas hydrates at the deep
plume temperature and pressure, making it unavail-
able to microorganisms (Valentine et al., 2010).
However, significantly (Po0.05) higher signal in-
tensities were observed for mcrA in the plume than
non-plume samples, indicating that those enriched
mcrA genes derived from methanogens likely link to
HC degradation rather than plume methane release
(Harayama et al., 2004; Jones et al., 2008). Enzymes
or genes involved in anaerobic methane oxidation,
however, remain unclear; thus, we could not detect
this functional process.

In this study, many functional genes were
detected in the uncontaminated samples that were
not detected in the contaminated samples (Supple-
mentary Table S3 and Supplementary Figure S10).
These results suggest that oil spills can select
against those populations containing these genes,
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or that specific members of the community have a
selective advantage if they are capable of HC
degradation and these grow to represent a greater
proportion of the functional gene repertoire.

In conclusion, our results indicate that a variety of
HC-degrading functional genes were enriched in
response to oil contamination and associated envir-
onmental changes. Our results also imply that there
is a great potential for in situ bioremediation of oil
contaminants in the deep-seawater ecosystem, and
such oil-degrading populations and associated
microbial communities may have a significant role
in determining the ultimate fates and consequences
of the spilled oil. However, to further understand
and evaluate the potential impacts of this unprece-
dented oil spill on the marine ecosystem structure
and function, it is essential to launch an integrated
and comprehensive monitoring program to track the
dynamics and adaptive responses of microbial
communities together with other physical and
chemical analysis of tracing oil contaminants and
their products.
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A.  MATERIALS AND METHODS 1 
 2 
1. Sample Collection 3 

Water samples were collected from the Gulf of Mexico during two monitoring 4 

cruises from May 27-June 2 aboard the R/V Ocean Veritas and R/V Brooks McCall. 5 

The cruises were conducted as part of the monitoring effort to assess the effect of 6 

subsea dispersant use during the MC252 oil leak 7 

(http://www.epa.gov/bpspill/dispersants.html#directives). A colored dissolved organic 8 

matter (CDOM) WETstar fluorometer (WET Labs, Philomath, OR) was attached to a 9 

CTD sampling rosette (Sea-Bird Electronics Inc., Bellevue, WA) and used to detect 10 

the presence of oil. Fluorometer results were subsequently confirmed by laboratory 11 

hydrocarbon analysis. Eight samples (BM053, BM054, BM057, BM058, BM064, 12 

OV201, OV401 and OV501) from the MC252 dispersed oil plume, and five samples 13 

(OV003, OV004, OV009, OV013, OV014) from non-plume at depth of 1099-1219m 14 

were analyzed using GeoChip 4.0 (Hazen et al., 2010) (Table S2).  15 

Niskin bottles attached to the CTD rosette were used to capture water samples at 16 

various depths where hydrocarbons were detected. From each sample 800-2000 mL of 17 

water were filtered through sterile filter units containing 47 mm diameter 18 

polyethylsulfone membranes with 0.22 m pore size (MO BIO Laboratories, Inc., 19 

Carlsbad, CA) and then immediately frozen and stored at -20°C for the remainder of 20 

the cruise. Filters were shipped on dry ice during transportation and stored at -80°C 21 

until DNA extraction. 22 

100 mL of water was syringe-filtered and injected into evacuated 25 mL serum 23 

bottles capped with thick butyl rubber stoppers to determine hydrocarbon 24 

concentrations and stable isotopes. 100 mL of water was frozen in 125 mL HDPE 25 

bottles for nutrient analyses. For AODC 36 mL water was preserved in 4% 26 

formaldehyde (final concentration). 27 

2. Geochemical parameter analysis 28 

The dispersed oil droplet size distribution was measured using a laser in situ 29 

scattering and transmissometry (LISST-100X, Sequoia Scientific, Seattle, WA) 30 

following the same procedure used for previous crude oil dispersion experiments (Li 31 

et al., 2007) 32 



3 
 

Total ammonia nitrogen (TAN) was quantified using the TL-2800 ammonia 1 

analyzer made by Timberline Instruments (Boulder, CO) (Carlson et al., 1990). Nitrite 2 

(NO2-N) was measured colormetrically using SM 4500-NO2-N. Total Iron (Tot Fe) 3 

was measured using a reaction with phenanthroline according to SM 3500-Fe B. 4 

Ortho-phosphate (PO4-P) was quantified on unfiltered samples by the ascorbic acid 5 

method adapted from SM 4500-P-E (APHA, 2005). 6 

To determine hydrocarbon concentrations derived from the presence of oil in the 7 

samples, 200 µL of chloroform was added to the neutral lipid extract which was then 8 

vortexed followed by a 30 sec sonication. The extract was analyzed on an Agilent 9 

GC/FID and peaks were identified by GC/MS. Quantification was accomplished by 10 

comparison to a known hexadecane standard. 11 

Volatile aromatic hydrocarbons were measured using USEPA methods 12 

5030/8260b using an Agilent 6890 GC with 5973 mass spectrometer detector. Initial 13 

oven temperature 10℃, initial time 3.00 min, ramp 8 ℃/min to 188℃, then 16℃/min 14 

to 220℃, hold for 9.00 min. Split ratio 25:1. Restek Rtx-VMS capillary column, 60 m 15 

length by 250 μm diameter, 1.40 μm film. Scan 50 to 550 m/z. 16 

Samples for direct counts were preserved with 4% formaldehyde and stored at 17 

4°C. 1 to 10 ml sample were filtered through a 0.2 µm pore size black polycarbonate 18 

membrane (Whatman International Ltd., Piscataway, NJ) supported by a vacuum 19 

filtration sampling manifold (Millipore Corp., Billerica, MA). Filtered cells were 20 

stained with 25 mg/ml acridine orange for 2 min in the dark. Unbound acridine orange 21 

was filtered through the membrane with 10 ml filter sterilized 1X PBS (Sigma Aldrich 22 

Corp., St. Louis, MI) and the rinsed membrane was mounted on a slide for 23 

microscopy. Cells were imaged with a FITC filter on a Zeiss Axioskop (Carl Zeiss, 24 

Inc., Germany) (Francisco et al., 1973). 25 

3. DNA Extraction 26 

Filters were extracted using a modified Miller method (Miller et al., 1999). One 27 

quarter of each filter was cut into small pieces and placed in a Lysing Marix E tube 28 

(MP Biomedicals, Solon, OH). 300 µL of Miller phosphate buffer and 300µL of 29 

Miller SDS lysis buffer were added and mixed. 600 µL phenol: chloroform: isoamyl 30 

alcohol (25:24:1) was then added, and the tubes were bead-beat at 5.5m/s for 45sec in 31 

a FastPrep instrument. The tubes were spun at 16,000× g for 5 min at 4°C. 540 µL of 32 



4 
 

supernatant was transferred to a 2 mL tube and an equal volume of chloroform was 1 

added. Tubes were mixed and then spun at 10,000 ×g for 5 min, 400 µL aqueous 2 

phase was transferred to another tube and 2 volumes of Solution S3 (MoBio, 3 

Carlsbad, CA) was added and mixed by inversion. The rest of the clean-up procedures 4 

followed the instructions in the MoBio Soil DNA extraction kit. Samples were 5 

recovered in 60µL Solution S5 and stored at -20°C.  6 

4. GeoChip-based functional gene array hybridization 7 

For assessing the impacts of oil plume on microbial community functional structure, 8 

DNA extracted from the oil plume and non-plume was used for functional gene array 9 

hybridization. Aliquots of DNA (4 µL) were amplified with the Templiphi kit (GE 10 

Healthcare; Piscataway, NJ) using WCAG (whole community genome amplification) 11 

(Wu et al., 2006) with modifications to increase DNA yield and minimize bias. All 12 

samples yielded between 2.8-3.3 µg amplified DNA. The amplified DNA (2 µg) was 13 

then labeled with Cy-3 using random primers and the Klenow fragment of DNA 14 

polymerase I (Wu et al., 2006). Labeled DNA was then dried in a SpeedVac (45°C, 15 

45 min; ThermoSavant). 16 

Dried DNA was rehydrated with 2.68 µL sample tracking control (NimbleGen, 17 

Madison, WI, USA) to confirm sample identity. The samples were incubated at 50°C 18 

for 5 min, vortexed for 30 sec, and then centrifuged to collect all liquid at the bottom 19 

of the tube. Hybridization buffer (7.32 µL), containing 40% formamide, 25% SSC, 20 

1% SDS, 2% Cy5-labeled common oligo reference standard (CORS) target, and 21 

2.38% Cy3-labeled alignment oligo (NimbleGen) and 2.8% Cy5-labeled common 22 

oligonucleotide reference standard (CORS) target (Liang et al.,. 2009) for data 23 

normalization, was then added to the samples, vortexed to mix, spun down, incubated 24 

at 95 °C for 5 min, and then maintained at 42°C until ready for hybridization. CORS 25 

probes were placed randomly throughout the array and are used for signal 26 

normalization (Liang et al., 2010). 27 

GeoChip 4.0 is a new generation of functional gene array (He et al., 2010a, He et 28 

al., 2007), which contained 83,992 50-mer oligonucleotide probes targeting 152,414 29 

genes in 410 gene categories for different microbial functional and biogeochemical 30 

processes including carbon, nitrogen, phosphorus, and sulfur cycling, energy 31 

processing, metal resistance and reduction, organic contaminant degradation, stress 32 

responses, antibiotic resistance, and bacteriophages. GeoChip 4.0 is synthesized by 33 
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NimbleGen in their 12-plex format (i.e., 12 arrays per slide). An HX12 mixer 1 

(NimbleGen) was placed onto the array using NimbleGen’s Precision Mixer 2 

Alignment Tool (PMAT), and then the array is preheated to 42°C on a Hybridization 3 

Station (MAUI, BioMicro Systems, Salt Lake City, UT, USA) for at least 5 min. 4 

Samples (6.8 µL) were then loaded onto the array surface and hybridized 5 

approximately 16 h with mixing.  6 

After hybridization, the arrays were scanned with a laser power of 100% and 7 

100% PMT (photomultiplier tube) (MS 200 Microarray Scanner, NimbleGen). Low 8 

quality spots were removed prior to statistical analysis as described previously (He et 9 

al., 2010b). Spots were scored as positive if the signal-to-noise ratio (SNR) was >2.0 10 

and the CV of the background was <0.8. Genes that were detected in only one sample 11 

were removed.  12 

5. Statistical analysis 13 

All GeoChip 4.0 hybridization data are available at the Institute for 14 

Environmental Genomics, University of Oklahoma (http://ieg.ou.edu/). Pre-processed 15 

data were then used for further analysis. Hierarchical clustering was performed with 16 

CLUSTER 3.0 using uncentered correlations and the complete average linkage for 17 

both genes and samples, and trees were visualized in TREEVIEW (de Hoon et al., 18 

2004). Functional gene diversity was calculated using Simpson’s 1/D, 19 

Shannon-Weiner's H’ and evenness. The effects of oil-plume on functional microbial 20 

communities were analyzed by two-tailed t-test or response ratio (RR) using the 21 

formula described by Luo et al., (2006). Based on the standard error, the 95% 22 

confident interval for each response variable was obtained and the statistical 23 

difference between the oil-plume and non-plume was estimated. For t-test and the 24 

response ratio analysis, the total abundance of each gene category or family was 25 

simply the sum of the normalized intensity for the gene category or family. 26 

In this study, three different non-parametric analyses for multivariate data were 27 

used to examine whether oil plume has significant effects on deep sea microbial 28 

communities: analysis of similarity (anosim) analysis of similarities (ANOSIM) 29 

(Clarke, 1993), non-parametric multivariate analysis of variance (adonis) using 30 

distance matrices (Anderson, 2001), and multi-response permutation procedure 31 

(MRPP). All three methods are based on dissimilarities among samples and their rank 32 

http://ieg.ou.edu/
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order in different ways to calculate test statistics, and the Monte Carlo permutation is 1 

used to test the significance of statistics.  2 

Multivariate statistical analyses of GeoChip data including canonical 3 

correspondence analysis (CCA) for linking microbial communities to environmental 4 

variables (Zhou et al., 2008), partial CCA for co-variation analysis of wellhead 5 

distance and environmental variables (variation partitioning analysis, VPA) were 6 

performed. Selection for CCA modeling was conducted by an iterative procedure of 7 

eliminating redundant environmental variable based on variance inflation factor 8 

(VIF). All the analyses were performed by the vegan package in R 2.9.1 (R 9 

Development Core Team, 2006).  10 

11 
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B. SUPPORTING TABLES 1 
 2 
Table S1. Dispersed MC252 plume and control parameters at 1099-1219 m. 3 

Parameters with significant differences are highlighted (Student’s T-test) (Hazen et 4 

al., 2010). 5 

 Plume Non-plume T-test 

  mean (s.d.) mean (s.d.) p-value 

Physical-Chemical    

Fluorescence (mg/m3) 24.2 (18.2) 5.9 (0.5) 0.018 

Phosphate (µg/L) 39.8 (6.7) 40.7 (4.3) 0.781 

Ammonia-N (µg/L) 23.6 (5.3) 20.8 (2.9) 0.347 

Nitrate-N (µg/L) 277 (80) 359 (99) 0.003 

d13C DIC -0.57 (0.06) -0.46 (0.14) 0.174 

Total iron (µg/L) 47.9(2.2) 46.5(6.6) 0.702 

Oil composition    

Fluorometer detection of oil (mg/m3) 22.95(12.87) 5.98(0.21) 0.018 

Benzene (µg/L) 47.12 (25.96) 0.38 (0.19) 0.004 

Toluene (µg/L) 99 (55.63) 0.54 (0.25) 0.004 

Isopropylbenzene (µg/L) 3.42 (1.39) 1.37 (0.31) 0.012 

n-Propylbenzene (µg/L) 4.4 (2.96) 0.50 (0.31) 0.019 

tert-Butylbenzene (µg/L) 1.52 (0.79) 0.42 (0.18) 0.025 

1,2,4-Trimethylbenzene (µg/L) 29.56 (16.80) 0.72 (0.16) 0.005 

n-Butylbenzene (µg/L) 1.32 (0.37) 0.71 (0.39) 0.033 

Naphthalene (µg/L) 13.52 (8.12) 0.88 (0.82) 0.008 

Total Xylenes (µg/L) 113.28 

(64.05) 

0.93 (0.77) 0.004 

octadecane (ppb) 4.2 (2.4) 0.13 (0.18) <0.001 

n-docosane (ppb) 4.7 (2.7) 0.12 (0.17) <0.001 

Total volatile aromatic hydrocarbons1 139 (179) 0.5 (1.8) <0.001 

Total Petroleum Hydrocarbons - 

extractable (DRO) 

6.4 (5.08) 0.45 (0.21) 0.032 

Biological    

Bacteria density (Log(AODC)) 4.59 (0.63) 4.01 (0.11) 0.030 

1
Benzene, toluene, ethylbenzene, isopropylbenzene, n-propylbenzene, 6 

1,3,5-trimethylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene, 7 
p-isopropyltoluene, n-butylbenzene, naphthalene, o-xylene, m,p-xylenes.8 
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Table S2. The sampling site, the number of genes detected, and diversity indices of 1 

contaminated and control samples. 2 

 Sample 

name 

Depth 

(m) 
Latitude Longitude 

Distance
a
 

(km) 

Gene 

No. (S) 

Shannon 

(H’) 

Simpson 

(1/D) 
SimpsonE 

Oil 

plume 

BM053 1219 28.735145 -88.381937 1.65 4460 8.21 2899.83 0.65 

BM054 1194 28.732133 -88.376850 1.32 4110 8.13 2740.43 0.67 

BM057 1174 28.705093 -88.401650 5.14 4834 8.30 3346.35 0.69 

BM058 1179 28.672323 -88.435935 10.08 5004 8.36 3624.74 0.72 

BM064 1099 28.683393 -88.448712 10.18 4973 8.33 3415.09 0.69 

OV201 1207 28.732011 -88.376789 1.33 4334 8.16 2696.70 0.62 

OV401 1181 28.732011 -88.376789 1.33 4789 8.27 3087.63 0.64 

OV501 1100 28.730275 -88.416872 5.09 4156 8.13 2676.41 0.64 

 Average 

(SE) 

1169 

(16) 
  

4.52 

(1.35) 

4583 

(128) 

8.24 

(0.03) 

3060.90 

(129.19) 

0.67 

(0.01) 

Control OV003  1020 28.666022 -88.756806 39.01 3535 7.98 2369.19 0.67 

OV004 1100 28.676717 -88.362856 6.90 3428 7.98 2451.70 0.72 

OV009 1100 28.740994 -88.168814 19.18 3598 8.01 2486.86 0.69 

OV013 1100 28.801976 -88.391856 7.48 3323 7.95 2415.92 0.73 

OV014 1100 28.770928 -88.392046 4.41 3556 7.99 2399.98 0.67 

 Average 

(SE) 

1084 

(16) 
  

18.14 

(6.72) 

3488 

(50) 

7.98 

(0.01) 

2424.73 

(20.45) 

0.70 

(0.01) 

p valueb     0.09 <0.01 <0.01 <0.01 0.16 
a
: Distance from the wellhead; 

b
: p values from the Student’s t-test between the oil plume and 3 

the non-plume (control) samples.4 
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Table S3. All sequences present in non-plume samples but absent in plume samples. 1 

Gene ID Gene/enzyme Gene category Sub-category Organism 

50236433 B_lactamase 
Antibiotic 

resistance 
Beta-lactamases Ralstonia pickettii 

241463126 Tet 
Antibiotic 

resistance 
Other 

Allochromatium vinosum DSM 

180 

170140550 MFS_antibiotic 
Antibiotic 

resistance 
Transporter Burkholderia graminis C4D1M 

148259577 MFS_antibiotic 
Antibiotic 

resistance 
Transporter Acidiphilium cryptum JF-5 

133738122 MFS_antibiotic 
Antibiotic 

resistance 
Transporter Herminiimonas arsenicoxydans 

219869375 SMR_antibiotics 
Antibiotic 

resistance 
Transporter 

Desulfovibrio desulfuricans 

subsp. desulfuricans str. ATCC 

27774 

254449746 AceA Carbon cycling Carbon degradation (Others) Octadecabacter antarcticus 238 

145569035 AceB Carbon cycling Carbon degradation (Others ) Pseudomonas stutzeri A1501 

262031871 acetylglucosaminidase Carbon cycling Carbon degradation (Chitin) Vibrio cholerae CT 5369-93 

170742400 amyA Carbon cycling Carbon degradation (Starch) Methylobacterium sp. 4-46 

145250957 endoglucanase Carbon cycling Carbon degradation (Cellulose) Aspergillus niger 

242222987 glx Carbon cycling Carbon degradation (Lignin) Postia placenta Mad-698-R 

119525483 nplT Carbon cycling Carbon degradation (Starch) Thermofilum pendens Hrk 5 

218564086 phenol_oxidase Carbon cycling Carbon degradation (Lignin) Uncultured fungus 

19171198 phenol_oxidase Carbon cycling Carbon degradation (Lignin) 
Gaeumannomyces graminis var. 

tritici 

10184710 vdh Carbon cycling Carbon degradation (Aromatics) Pseudomonas sp. HR199 

116098389 xylanase Carbon cycling 
Carbon degradation 

(Hemicellulose) 
Lactobacillus brevis ATCC 367 

89351430 pcc Carbon cycling Carbon fixation Xanthobacter autotrophicus Py2 

221082971 pcc Carbon cycling Carbon fixation Variovorax paradoxus S110 

196243766 ArsC 
Metal 

Resistance 
As Cyanothece sp. PCC 8802 

148654633 CadA 
Metal 

Resistance 
Cd  Roseiflexus sp. RS-1 

187725787 CadA 
Metal 

Resistance 
Cd Ralstonia pickettii 12J 

90336192 CadA 
Metal 

Resistance 
Cd Aurantimonas sp. SI85-9A1 

134093787 czcA 
Metal 

Resistance 
Cd, Co, Zn Herminiimonas arsenicoxydans 

67985836 czcD 
Metal 

Resistance 
Cd, Co, Zn 

Kineococcus radiotolerans 

SRS30216 

14025262 ChrA 
Metal 

Resistance 
Ce Mesorhizobium loti MAFF303099 

188029622 CopA 
Metal 

Resistance 
Cu Erwinia tasmaniensis Et1/99 

77385595 CopA 
Metal 

Resistance 
Cu Pseudomonas fluorescens PfO-1 

193213306 CopA 
Metal 

Resistance 
Cu 

Chlorobaculum parvum NCIB 

8327 

52080381 TehB 
Metal 

Resistance 
Te 

Bacillus licheniformis ATCC 

14580 

254430241 arsM 
Metal 

Resistance 
As Cyanobium sp. PCC 7001 

194359405 merF 
Metal 

Resistance 
As Pseudomonas aeruginosa 

113941017 ureC Nitrogen Ammonification 
Herpetosiphon aurantiacus 

ATCC 23779 
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76056949 narG Nitrogen Denitrification Uncultured bacterium 

119391563 narG Nitrogen Denitrification Uncultured bacterium 

73763054 nirK Nitrogen Denitrification Uncultured bacterium 

32895106 nirS Nitrogen Denitrification Uncultured bacterium 

74038362 nirS Nitrogen Denitrification Uncultured bacterium 

77378473 nirS Nitrogen Denitrification Uncultured bacterium 

24421301 nirS Nitrogen Denitrification Uncultured bacterium 

116698891 nrfA Nitrogen Dissimilatory N reduction 
Syntrophobacter fumaroxidans 

MPOB 

197334514 nrfA Nitrogen Dissimilatory N reduction Vibrio fischeri MJ11 

62149162 nifH Nitrogen Nitrogen fixation Uncultured bacterium 

62529086 nifH Nitrogen Nitrogen fixation Gamma Proteobacterium BAL286 

121716444 BpH 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Aspergillus clavatus NRRL 1 

1685013 bphA 
Organic 

Remediation 
Aromatics (Polycyclic aromatics)  

209535597 Catechol 
Organic 

Remediation 
Aromatics (Other aromatics) 

Rhizobium leguminosarum bv. 

trifolii WSM2304 

78221781 Catechol 
Organic 

Remediation 
Aromatics (Other aromatics) Geobacter metallireducens GS-15 

133948800 Catechol 
Organic 

Remediation 
Aromatics (Other aromatics) Uncultured bacterium 

170740754 hmgA 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Methylobacterium sp. 4-46 

126705740 hmgC 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 

Rhodobacterales bacterium 

HTCC2150 

148251653 mdlA 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Bradyrhizobium sp. BTAi1 

111611144 mdlC 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 

Verminephrobacter eiseniae 

EF01-2 

169242378 nagG 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Mycobacterium abscessus 

160899137 nagI 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Delftia acidovorans SPH-1 

170735912 nitA 
Organic 

Remediation 
Aromatics (Other aromatics) Burkholderia cenocepacia MC0-3 

182678157 nmoA 
Organic 

Remediation 
Aromatics (Nitroaromatics) 

Beijerinckia indica subsp. indica 

ATCC 9039 

126436248 pimF 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Mycobacterium sp. JLS 

163259205 pimF 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 
Bordetella petrii 

50122001 pimF 
Organic 

Remediation 

Aromatics (Aromatic carboxylic 

acid) 

Pectobacterium atrosepticum 

SCRI1043 

145216180 tfdA 
Organic 

Remediation 
Aromatics (Chlorinated aromatics) 

Mycobacterium gilvum 

PYR-GCK 

113524845 tfdA 
Organic 

Remediation 
Aromatics (Chlorinated aromatics) Ralstonia eutropha H16 

126236581 xylJ 
Organic 

Remediation 

Aromatics (BTEX and related 

aromatics) 
Mycobacterium sp. JLS 

148978109 atzB 
Organic 

Remediation 
Herbicides related compound Vibrionales bacterium SWAT-3 

28851229 atzB 
Organic 

Remediation 
Herbicides related compound 

Pseudomonas syringae pv. tomato 

str. DC3000 

186472614 phn 
Organic 

Remediation 
Herbicides related compound Burkholderia phymatum STM815 

170061235 cpnA 
Organic 

Remediation 
Other Hydrocarbons Culex quinquefasciatus 

71556174 nitro 
Organic 

Remediation 
Others 

Pseudomonas syringae pv. 

phaseolicola 1448A 



11 
 

66046416 linB 
Organic 

Remediation 
Pesticides related compound 

Pseudomonas syringae pv. 

syringae B728a 

81251090 gyrB other category Phylogenetic marker Nitrosovibrio sp. FJI82 

196257859 gyrB other category Phylogenetic marker Cyanothece sp. PCC 7822 

163743742 gyrB other category Phylogenetic marker Phaeobacter gallaeciensis 2.10 

198251727 gyrB other category Phylogenetic marker Octadecabacter antarcticus 307 

28270519 ppk Phosphorus Phosphorus utilization Lactobacillus plantarum WCFS1 

198253442 ppx Phosphorus Phosphorus utilization Octadecabacter antarcticus 307 

223986236 bglH Stress Glucose limitation 
Holdemania filiformis DSM 

12042 

254475115 grpE Stress Heat shock Ruegeria sp. R11 

162285320 hrcA Stress Heat shock Hoeflea phototrophica DFL-43 

89094999 glnA Stress Nitrogen limitation Oceanospirillum sp. MED92 

256357221 glnA Stress Nitrogen limitation 
Catenulispora acidiphila DSM 

44928 

238794434 proV Stress Osmotic stress Yersinia intermedia ATCC 29909 

163858141 narH Stress Oxygen limitation Bordetella petrii DSM 12804 

259169062 narH Stress Oxygen limitation Lactobacillus antri DSM 16041 

124266896 narI Stress Oxygen limitation Methylibium petroleiphilum PM1 

126618476 ahpC Stress Oxygen stress Cyanothece sp. CCY0110 

88799477 ahpF Stress Oxygen stress Reinekea sp. MED297 

91796201 fnr Stress Oxygen stress 
Chromohalobacter salexigens 

DSM 3043 

120324818 fnr Stress Oxygen stress Marinobacter aquaeolei VT8 

169757354 oxyR Stress Oxygen stress Pseudomonas putida W619 

260665486 phoB Stress Phosphate limitation Lactobacillus jensenii SJ-7A-US 

225569383 phoB Stress Phosphate limitation 
Clostridium hylemonae DSM 

15053 

239906660 pstB Stress Phosphate limitation Desulfovibrio magneticus RS-1 

184192106 pstS Stress Phosphate limitation Burkholderia phymatum STM815 

149926943 sigma_24 Stress Sigma factors Limnobacter sp. MED105 

229474868 sigma_24 Stress Sigma factors 
Planctomyces limnophilus DSM 

3776 

239977836 sigma_24 Stress Sigma factors Streptomyces albus J1074 

221737130 sigma_32 Stress Sigma factors Agrobacterium vitis S4 

261855188 sigma_32 Stress Sigma factors Halothiobacillus neapolitanus c2 

157804763 AprA Sulfur Other Thiothrix sp. 12730 

109452455 dsrA Sulfur Sulfite reductase 
Uncultured sulfate-reducing 

bacterium 

28974732 dsrB Sulfur Sulfite reductase Uncultured bacterium 

229512091 iro virulence  Vibrio cholerae B33 

86751345 iro virulence  
Rhodopseudomonas palustris 

HaA2 

163802506 pilin virulence  Vibrio sp. AND4 

283102101 srt virulence  Bifidobacterium dentium Bd1 

 1 
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C. SUPPORTING FIGURES 1 
 2 

 3 

Fig S1. Ordination plot produced from principal-component analysis (PCA) of 4 
geochemical data for all the monitoring samples. The overall geochemical pattern was 5 
considerably different between the oil plume and non-plume samples. The 6 
geochemical parameters used for PCA include: temperature, DO concentration, 7 
fluorometer detection of oil, small particle concentrations, Fe, nitrate, phosphate, 8 
benzene, toluene, naphthalene, ethylbenzene, isopropylbenzene, n-propylbenzene, 9 
1,3,5-trimethylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene, 10 
p-isopropyltoluene, n-butylbenzene, total xylenes, total volatile HC, and total 11 
petroleum hydrocarbons - extractable (DRO). 12 

13 
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 1 
 2 
Fig. S2 Hierarchical cluster analysis of alkB gene, encoding alkane 3 
1-monooxygenase. All genes were used for cluster analysis. Results were generated in 4 
CLUSTER and visualized using TREEVIEW. Red indicates signal intensities above 5 
background while black indicates signal intensities below background. Brighter red 6 
coloring indicates higher signal intensities.7 
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 1 
Fig. S3 The normalized signal intensity of the arhA (PAH dioxygenase) genes. The 2 
signal intensity for each sequence was the average of the total signal intensity from all 3 
the replicates. Gene number is the protein ID number for each gene as listed in the 4 
GenBank database. All data are presented as mean ± SE. ***p<0.01, **p<0.05, 5 
*p<0.1.  6 

7 
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 1 
Fig. S4 The normalized signal intensity of the detected key genes involved in carbon 2 
degradation. The signal intensity for each function gene was the average of the total 3 
signal intensity from all the replicates. All data are presented as mean ± SE. **p<0.01, 4 
*p<0.05. Many genes involved in carbon degradation (e.g., starch, cellulose, 5 
hemicelluloses, lignin, chitin, and aromatics) showed greater abundance in plume, 6 
including those encoding glucoamylase, and pullulanase (pulA) for starch, xylose 7 
isomerase (xylA), xylanase (xynA) and arabinofuranosidase (ara_fungi) for 8 
hemicellulose, cellobiase and exoglucanse for cellulose, endochitinase for chitin, 9 
lignin peroxidase and ligninase (lip) for lignin, limonene-1,2-epoxide hydrolase 10 
(limEH) and vanillate monooxygenase (vanA) for other C compounds (e.g., 11 
aromatics). 12 

13 
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 1 

Fig. S5 The normalized signal intensity of the detected genes involved in methane 2 
metabolism. The signal intensity for each function gene was the average of the total 3 
signal intensity from all the replicates. All data are presented as mean ± SE. *p<0.05. 4 
mcrA, alpha subunit of methyl coenzyme M reductase; mmoX, particulate methane 5 
monooxygenase; pmoA, methane monooxygenase.  6 

7 
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 1 
Fig. S6 The normalized signal intensity of the detected genes involved in sulfur 2 
cycling. The signal intensity for each function gene was the average of the total signal 3 
intensity from all the replicates. All data are presented as mean ± SE. **p<0.01, 4 
*p<0.05. APS_AprA encoding dissimilatory adenosine-5'-phosphosulfate (APS)

 5 
reductase and dsrA/B encoding dissimilatory sulfite reductase responsible for sulfur 6 
reduction were significantly increased in oil plume. 7 

8 
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 1 

Fig. S7 The normalized signal intensity of the detected genes involved in phosphorus 2 
cycling. The signal intensity for each function gene was the average of the total signal 3 
intensity from all the replicates. All data are presented as mean ± SE. **p<0.01, 4 
*p<0.05. Phytase, responsible for phytate degradation; ppk, ATP-polyP 5 
phosphotransferase responsible for polyP biosynthesis; ppx, encoding 6 
exopolyphosphatase for inorganic polyphosphate degradation. The abundance of 7 
phytase and ppx genes was significantly increased suggesting an increased release of 8 
phosphorus from inorganic polyphosphate and phytate degradation may occur in the 9 
plume.10 
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 1 
 2 
Fig. S8 The normalized signal intensity of the cytochrome genes. The signal intensity for each sequence was the average of the total signal 3 
intensity from all the replicates. Gene number is the protein ID number for each gene as listed in the GenBank database. All data are presented as 4 
mean ± SE. ***p<0.01, **p<0.05, *p<0.1. 5 
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 1 

Fig. S9 The normalized signal intensity of the detected key genes involved in metal 2 
resistance. The signal intensity for each function gene was the average of the total 3 
signal intensity from all the replicates. All data are presented as mean ± SE. **p<0.01, 4 
*p<0.05. 5 
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 1 

 2 

Fig. S10 The sequences present in five replicates of control (non-plume) samples but 3 
absent in oil plume samples. The signal intensity for each sequence was the average of 4 
the total signal intensity from all the replicates. All data are presented as mean ± SE. 5 
Gene number is the protein ID number for each gene as listed in the GenBank 6 
database. 7 

8 
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