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ABSTRACT

Motivation: The increasing use of microarray technologies
is generating large amounts of data that must be processed
in order to extract useful and rational fundamental patterns
of gene expression. Hierarchical clustering technology is one
method used to analyze gene expression data, but traditional
hierarchical clustering algorithms suffer from several draw-
backs (e.g. fixed topology structure; mis-clustered data which
cannot be reevaluated). In this paper, we introduce a new hier-
archical clustering algorithm that overcomes some of these
drawbacks.

Result: We propose a new tree-structure self-organizing
neural network, called dynamically growing self-organizing
tree (DGSOT) algorithm for hierarchical clustering. The
DGSOT constructs a hierarchy from top to bottom by division.
At each hierarchical level, the DGSOT optimizes the number
of clusters, from which the proper hierarchical structure of the
underlying dataset can be found. In addition, we propose a hew
cluster validation criterion based on the geometric property of
the Voronoi partition of the dataset in order to find the proper
number of clusters at each hierarchical level. This criterion
uses the Minimum Spanning Tree (MST) concept of graph the-
ory and is computationally inexpensive for large datasets. A
K -level up distribution (KLD) mechanism, which increases the
scope of data distribution in the hierarchy construction, was
used to improve the clustering accuracy. The KLD mechanism
allows the data misclustered in the early stages to be reevalu-
ated at a later stage and increases the accuracy of the final
clustering result. The clustering result of the DGSOT is eas-
ily displayed as a dendrogram for visualization. Based on a
yeast cell cycle microarray expression dataset, we found that
our algorithm extracts gene expression patterns at different
levels. Furthermore, the biological functionality enrichment in

*To whom correspondence should be addressed.

the clusters is considerably high and the hierarchical structure
of the clusters is more reasonable.

Availability: DGSOT is available upon request from the
authors.

Contact: Ikhan@utdallas.edu

1 INTRODUCTION

In every living organism, the subsets of its gene expression
differ across types, stages and conditions. Given a specific
condition and stage, there are particular genes expressed.
M easuring these gene expression level sacross different stages
in different tissues or cells, or under different conditions, is
very important and useful to understand and interpret the
biological process. For a long time, biologists dreamed of
getting information about al genes in a genome and the
ability to study the complex interplay of al genes simultan-
eously. The emergence of the microarray technique provides
for the fulfillment of this dream. The microarray technique
enables the massively parallel measurement of gene expres-
sion of thousands genes simultaneously. There are many
potential applications for the microarray technique, such as
identification of genetic diseases, discovery of new drugs
and toxicology studies. The wide application of microar-
ray technologies now generates very large amounts of data.
As a result, there is an increasing need for technology that
can extract useful and rational fundamental patterns of gene
expression from the data. Clustering technology is one of
the most useful and popular methods for identifying these
patterns.

Generally, there are two classes of cluster algorithms, hier-
archical and non-hierarchical. Both have been successfully
used in the analysis of gene expression data. Hierarchical
agglomerative clustering (HAC) has been used to cluster
two spotted DNA microarray datasets (Eisen et al., 1998)
and to cluster central nervous system gene expression data
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from rats (Wen et al., 1998). Dopazo et al. (1997) pro-
posed a self-organizing tree algorithm for clustering gene
expression patterns. With regard to non-hierarchical cluster-
ing, many algorithms have been applied. Examples of this
approach include using (1) a self-organizing map (SOM)
to analyze the expression patterns of 6000 human genes
(Tamayo et al., 1999), (2) K-means to cluster 3000 yeast
gene microarray data (Tavazoie et al., 1999), (3) a graph-
theoretic algorithm to extract high probability gene structures
from gene expression data (Ben-Dor and Yakini, 1999),
(4) a heuristic two-step adaptive quality-based algorithm
(Smet et al., 2002) and (5) a clustering algorithm based
on probability models (Yeung et al., 2001). Both the hier-
archical and non-hierarchical algorithms attempt to find
groups of genes that exhibit highly similar expression. Com-
pared with non-hierarchical clustering, hierarchical clus-
tering can find different levels of similarity in the gene
expression data, and then detect trends and generalization
information.

Traditional HAC algorithm has several drawbacks (Tamayo
etal., 1999; Luoet al., 2003). Recently, anew self-organizing
neural network-based hierarchical clustering algorithm called
the self-organizing tree agorithm (SOTA) has been proposed
(Dopazo et al., 1997; Herrero et al., 2001). SOTA isbased on
the Kohonen's SOM (Kohonen, 1997) and Fritzke's growing
cell structures (Fritzke, 1994). The SOTA output is a binary
tree topological neural network. Compared with HAC, SOTA
usesaneura network mechanism and it isrobust to noise data.
However, asin HAC, itstopological structure also hasafixed
hierarchical topology, which can affect the final clustering
result.

Nearly al hierarchical clustering techniques that include
the tree structure have two short comings: (1) they do not
properly represent hierarchical relationships and (2) once the
data are assigned improperly to a given cluster it cannot later
be reevaluated and placed in another cluster.

In this paper, we propose a new hierarchical cluster-
ing algorithm: the dynamically growing self-organizing tree
(DGSOT) algorithm, which can overcome these shortcom-
ings. The DGSOT dynamically optimizes the number of
clusters at each hierarchical level with the cluster valida-
tion criteria during the tree construction process. Then the
hierarchy constructed by the DGSOT algorithm can prop-
erly represent the hierarchical structure of the underlying
dataset, which improves the accuracy of fina clustering
result. In addition, we also propose a K-level up distri-
bution (KLD) mechanism. The data improperly clustered
in early hierarchical clustering stages will have a chance
to be reevaluated during the later hierarchica growing
stages. Then the final cluster result will be more accur-
ate. The DGSOT algorithm combines with KLD mech-
anism constitutes demonstrable, qualitative improvement
over traditional solutions to the hierarchical clustering
problem.

2 ALGORITHMS
2.1 Dynamically growing self-organizing tree
algorithm

The DGSOT isatree structure self-organizing neural network
designed to discover the proper hierarchical structure of the
underlying data. The DGSOT grows vertically and horizont-
ally. In each vertical growth, the DGSOT adds two children
to the leaf whose heterogeneity is greater than a threshold
and turnsit to anode. In each horizonta growth, the DGSOT
dynamically findsthe proper number of children (subclusters)
of thelowest level nodes. Each vertical growth stepisfollowed
by a horizontal growth step. This process continues until the
heterogeneity of all leavesislessthan athreshold Tr. During
vertical and horizontal growth, a learning process similar to
the SOTA isadopted. The pseudocode of DGSOT isshownin
Table 1. Figure 1 shows an example of the DGSOT algorithm
working. Initially thereisonly oneroot node (Fig. 1A). All the
input data are associated with the root and the reference vec-
tor of the root node isinitialized with the centroid of the data
(Table 1, lines2—6). When vertical growthisinvoked (Table1,
lines 9-19), two children are added to the root node. All input
data associated with the root node are distributed between
these children by employing alearning process (Fig. 1B). Fol-
lowing vertical growth, horizontal growthisinvoked (Table1,
lines21-36) to determinethe proper number of childrenfor the
root. In this example, three leaves are proper (Fig. 1C). After
this, the heterogeneities of theleavesare checked to determine
whether to expand to another level or not. The answer isyes
in this example, and a new vertical growth step is invoked.
Two children are added to the leaves (L1, L3) whose het-
erogeneity are greater than the threshold (Fig. 1D) and turn
them to nodes (N1, N3). All input data are distributed again
with the learning process and a new horizontal growth begins
(Fig. 1E). Thisprocess continues until the heterogeneity of all
the leaves (indicated by empty cyclein Fig. 1) islessthan the
threshold.

In DGSOT, each leaf represents a cluster that includes all
data associated with it. The reference vector of a leaf is the
centroid of all dataassociated withit. Therefore, all reference
vectors of the leavesform aVoronoi set of the original dataset
and each internal node represents a cluster that includes all
dataassociated withitsleaf descendants. Thereference vector
of aninternal node is the centroid of all data associated with
its leaf descendents. The internal nodes of each hierarchical
level also form a Voronoi set of the dataset with a different
resolution.

The time complexity algorithm of DGSOT is similar to
SOTA. Let d be the branch factor of the DGSOT. Then,
the height of the DGSOT will be log, M, where M is
the number of nodes in the hierarchy. For a full DGSOT
tree (each leaf node associated with one data), the M is
O(N) where N is the number of data. Let J be the aver-
age number of learning iterations for each learning process.
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Table 1. The DGSOT agorithm

1 /*Initialization*/

2 Create atree has only one root node.

3 Initialize the reference vector of the root node the centroid of the entire data
4 Associate all data with the root

5 Initialize the time parameter t to 1

6 Set the horizontal growing flag of the root to true

7 Do

8 /*Vertical Growing*/

9 For any leaf whose heterogeneity is greater than the threshold Tr

10 Changes the leaf to a node and create two descendent leaves.

11 Initialize the reference vector of the new leaves with the node's reference vector
12 Set the horizontal growing flag of the new leavesto true

13 /*Learning*/

14 Do

15 For each input data

16 Find winner (using KLD, see Section 2.3)

17 Update reference vectors of winner and its neighborhood

18 Increase time parameter, t= t+1.

19 While the relative error of the entire tree is less than error threshold Tg

20  [*Horizontal Growing*/

21 Do

22 For any lowest level node

23 If the horizontal growing stop rule is unsatisfied (see Section 2.1.3) and
24 the horizontal growing flag equal to true

25 Add achild leaf to this node

26 Else

27 Delete a child leaf from this node

28 Set the horizontal growing flag to false

29 /*Learning*/

30 Do

31 For each input data

32 Find winner (using KLD, see Section 2.3),

33 Update reference vectors of winner and its neighborhood
34 Increase the time parameter, t= t+1.

35 While therelative error of the entiretreeislessthan Tg

36 Whilethe horizontal growing flag of all lowest level node are false
37 While the heterogeneity of al leaf nodes are less than the threshold Tr (see Section 2.1.2)

Thus, the time complexity factor for building afull DGSOT
will be Oflog; N % (J * N +d * J = N)], where J « N
and d x J = N are due to the time complexity of ver-
tical growing and horizontal growing, respectively. Note
that both J and d are usualy a small value as compared
to N. Hence, we can treat J and d as constants, and
the complexity will be O(cN = log,;) =~ O(N = log; N).
The height of the DGSOT tree is controlled by the ver-
tical growing threshold, namely the heterogeneity threshold
of the leaf node. If only upper level patterns are needed
the heterogeneity threshold can be set to larger value and
the DGSOT can stop early stages. Then the height of the
DGSOT can aso be a constant and the time complexity of

DGSOT can be reduced to O(N), namely approximately
linear.

211 Learning process Similar to SOTA (Dopazo et al.,
1997), the learning process consists of a series of procedures
to distribute all the data to the leaves and update the reference
vectors in DGSOT. Each procedure is called a cycle. Each
cycle contains a series of epochs. Each epoch consists of a
presentation of all theinput dataand each presentation hastwo
steps, namely, finding the best matching node and updating
the reference vector. The input data are only compared with
the leaf nodes determined by the KLD mechanism to be the
best matching node, which is known as the winner. The leaf
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Fig. 1. Illustration of DGSOT agorithm.

node ¢ that has the minimum distance to the input data x is
the best match node (the winner).

¢t llx = nell = min{llx —n; |1}, D

After awinner ¢ is found, the reference vectors of the win-
ner and its neighborhood will be updated using the following
function:

Aw; = ¢(t) X (x — w;), 2

where ¢(t) isthe learning function:
@(t) = a x n(t), (©)

andn (¢) isthelearning ratefunction, « isthelearning constant
and r isthetime parameter. The convergence of the algorithm
depends on a proper choice of « and 7(z). At the beginning
of the learning function, »(z) should be close to 1; thereafter,
it decreases monotonically. One choice can be n(¢) = 1/t.

The neighborhood of the winner includes the winner, the
parent node of the winner, and the siblings of the winner that
areleaf (Fig. 2). Updating the reference vector of the siblings
isimportant so that data that are dissimilar to each other are
brought into adifferent subtree. The« of thewinner, theparent
node and the sibling nodes will have different values. Para-
meters ayy, om and as are used for the winner, the parent node
and the siblings, respectively. The order of the parametersis
set asayw > ag > am. Thisis different from the SOTA set-
ting, whichisay > am > as. In SOTA, an in-order traversal
strategy is used to determine the topological relationship in
the neighborhood. While in DGSOT, a post-order traversal
strategy is used to determine the topological relationship in
the neighborhood. In our opinion, only the non-equal o, and
ag are critical to partitioning the input dataset into different
leaves. Thegoal of updating the parent node’ sreference vector
isto make it more precisely represent al the data associated
with its children.

Leaf

L2 N3 N2 L2 N3

Vertical Growing Horizontal Growing

D E

Neighborhood

Fig. 2. Neighborhood of the winner in DGSOT.

The Error of the tree, which is defined as the summation of
the distance of each input data to the corresponding winner,
is used to monitor the convergence of the learning process. A
learning process has converged when the relative increase of
Error of the tree falls below a given threshold (Dopazo et al.,
1997),

Error;+1 — Error;

< ErrorThreshold, 7¢. 4
Error;

212 \Vertical growth In DGSOT, a non-greedy vertical
growing strategy is used. During vertical growth, any leaf
whose heterogeneity is greater than a threshold will change
itself to a node and create two descendent |leaves. The ref-
erence vectors of these leaves will be initialized by their
corresponding parent’s vectors. The vertical growth process
will continue until the heterogeneities of al leaves are less
than the threshold.

There are several ways to determine the heterogeneity of
a leaf. One is the variability (Herrero et al., 2001), which
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Add achild

Fig. 3. lllustration of horizontal growing in DGSOT.

is defined as the maximum distance among the input data
associated with the leaf node. The threshold of the variability
can be determined by sampling the original dataset. Another
simple way is to use the average distortion d of aleaf asits
heterogeneity. The average distortion d of aleaf isdefined as
the average distance between the leaf node and the input data
associated with the leaf:

'—Zd(T,’)’f” , ©

where D isthetotal number of input data assigned to the leaf
i,d(xj,n;) isthe distance between data j and the leaf i, and
n; isthe reference vector of the leaf i. For this approach, the
averageerror of eachleaf will besimilar. However, the number
of data associated with the leaves may vary alot. For all these
approaches, the DGSOT can easily stop at higher hierarchical
levels, which will save the computational cost.

2.1.3 Horizontal growth In each stage of horizontal
growth, the DGSOT tries to find an optima number of leaf
nodes (subclusters) of anode to represent the clustersin each
hierarchical level. Therefore, DGSOT adopts a dynamically
growing scheme in each horizontal growth stage. For each of
the lowest non-leaf nodes, a new child is added each time.
This process continues until a certain cluster validation cri-
terion (see Section 2.2) is satisfied. Oncethecluster validation
criterion is satisfied, the number of children is considered to
be optimized. For example, in Figure 3A, the non-leaf node
has three children. If the cluster validation criterion does not
match, anew child is added (Fig. 3B). Similarly, if the addi-
tion of anew child satisfiesthe cluster validation criterion, the
child is deleted and horizontal growth is stopped. After each
addition/deletion of anode, alearning processis performed.
The DGSOT hierarchical tree will be a multifurcating tree
due to the horizontal growth. We demonstrate that the hier-
archical structure of the neura network can affect the fina
clustering results by comparing DGSOT with SOTA. The
clustering validation criteria control the number of clusters
in each hierarchical level. The validity of multifurcating in
DGSOT is dependent on the validity of the clustering valid-
ation criteria. A proper cluster validation criterion will not

let the horizontal growth continue forever unless there is no
hierarchical structure in the dataset.

2.2 Cluster validation criterion for DGSOT

Determining the true number of clusters, aso known as the
cluster validation problem, isafundamental problemincluster
analysis. Many approaches to this problem have been pro-
posed recently (Tibshirani etal., 2001; Pal etal., 2001; Hardy,
1996; Cuevas et al., 2000; Rezaee et al., 1998). Two kinds
of indexes have been used to validate the clustering (Halkidi
etal., 2001, 2002): one based on relative criteriaand the other
based on external and internal criteria. Thefirst approachisto
choose the best result from a set of clustering results accord-
ing to a prespecified criterion. Although the computational
cost of the approach is light, human intervention is required
to find the best number of clusters. In addition, most of these
indexes need to be constructed off-line, and require manual
help to evaluate the result. The DGSOT algorithm tries to
find the proper number of clustersin each hierarchical level
automatically, which makesthefirst type of cluster validation
measures unsuitable for clustering validation in the DGSOT.
The second approach is based on statistical tests and
involves computation of both intercluster and intracluster
quality to determine the proper ‘true’ number of clusters.
The evaluation of the criteria can be compl eted automatically.
Thus, this kind of clustering validation criteria, e.g. average
silhouette (Rousseeuw, 1987; Viloet al., 2000), canbeusedin
DGSOT to control thehorizontal growth. Thevalue of average
silhouette lies between —1 and 1. If the average silhouette is
equal to 1 thecluster isvalid. In addition, if it islessthan O the
data in this cluster is on average closer to members of some
other clusters and this cluster is invalid. During horizontal
growth process, we can calculate the average silhouette for
each subcluster. If adding anew cluster leads the average sil-
houette of some clustersto belessthan O, then the new added
clusterisinvalid. Moreover, the proper number of clusterswill
be the number of clusters minus one. However, these types of
cluster validation criteria always have a high computational
cost. Asthe cluster validation criterionisused very heavily in
the DGSOT agorithm, the second type of cluster validation
criteriaare not suitable for DGSOT when it is used to cluster
alarge dataset. A successful and practical cluster validation
criteria used in DGSOT for large dataset must have modest
computational cost and can be easily evaluated automatically.
Here, we propose anew cluster validation criterion based on
the geometric characteristics of the clusters, in which only the
intercluster metric is used. The DGSOT isanearest centroid-
based clustering algorithm, which creates a Voronoi diagram
of the data space. The Voronoi diagram partitions a set S of
data D in dataspaceinto n regions(clusters) V (p), called the
Voronoi cell (Fig. 4). Each Voronoi cell is represented by a
centroid reference vector. If we let p be the centroid repres-
enting a region (cluster), al data within the region (cluster)
are closer to the centroid p of the region than to any other

2609



F.Luo et al.

mQ
O/)

1;‘ s

n

Fig. 4. Voronoi diagram of a 2D sample dataset. The black points represent centroids. The lines represent the MST among the centroids.
In A, the dataset is partitioned into three Voronoi cells. The MST of the centroid is‘even’. B isthe corresponding hierarchical structure of A.
In C, the dataset is partitioned into four Voronoi cells. The MST of the reference vector is not ‘ even’. One of the MST edgesis short. D isthe

corresponding hierarchical structure of C.

centroid g:

Vip) =

Thus, the problem of finding the proper number of clusters
of adataset at a certain hierarchical level can be transformed
into the problem of finding the proper Voronoi partition of the
dataset in the hierarchical level. Figure 4 showstwo partitions
of atwo-dimensiona (2D) sample dataset and their corres-
ponding hierarchical structure. This 2D dataset contains four
clusters. Cluster 1isvery closeto cluster 2. In Figure 4A, the
data set is partitioned into three clusters—cluster 3, cluster 4
and a big cluster including clusters 2 and 1. The correspond-
ing hierarchical structureisshownin Figure4B. In Figure 4C,
the dataset is partitioned into four clusters—clusters 1, 2, 3
and 4. The corresponding hierarchical structure is shown in
Figure4D. In Figure 4A, two close clusters have been placed
at alow hierarchical level. From the hierarchical viewpoint,
the hierarchical structure shown in Figure 4B is more reason-
ablethanthat shownin Figure4D. At thefirst level, the proper
number of clusters of the dataset is 3.

By investigating the geometric propertiesof the Voronoi cell
in Figure 4 we can find some clue about the proper Voronoi
partition of the dataset at a certain hierarchical level. Let us
defineaweighted undirected graph G = (V, E). The vertices
of the graph G are the centroids of Voronoi cell V(p), and
theedge set E = {(pi, pj) | pi,pj € V(p) & i # j}. Note
that the weight of each edge (p;, p;) represents the distance
between two centroids. It can be the Euclidean distance, the
correlation coefficient or some other distance measure.

We use the Minimum Spanning Tree (MST) of the graph
G as acriterion to determine the proper partition of the data.
A spanning tree, T, of a weighted undirected graph G is a
minimal subgraph of G, which connectsall vertices. AMST is
the spanning tree with the smallest total weight. The M ST can
represent the binary relationship of verticesin the graph. The

{x € D|dist(x, p) < dist(x,q) Vq}. (6)

Cluster separation vs number of clusters
(CS threshold is 0.8)
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Fig. 5. The cluster separation versus the number of clusters for the
3000 yeast cell cycle gene microarray expression data.

MST has been applied to clustering (Xu et al., 2002; Gower
and Ross, 1969) and cluster validation (Pal et al., 2001), but in
all these applications, the MST is constructed on the original
dataset and used to test the intracluster quantity. Here, we
use the MST as a criterion to test the inter-cluster property.
For example, we construct the MST among the centroids in
Figure 5A and 5C. Inthe M ST of Figure4A, thelengths of the
edgesare similar, and inthe M ST of Figure 4C, the lengths of
the edges are not ‘even’. The edge between the centroids of
Clusters 1 and 2 is much shorter than other edges. Based on
thisobservation, we propose anew cluster validation criterion,
called Cluster separation (CS).

221 Cluster separation (CS The definition of CS
between clustersis given by the following:

cs= Lmn, %

Emax
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Fig. 6. The average silhouette of each cluster versus the number of clusters for the 3000 yeast cell cycle gene microarray expression data.

where Enax 1Sthe maximum length edgein the M ST of graph
G(V, E), whichrepresentstwo centroidsthat are at maximum
separation, and Epin isthe minimum length edge in the MST
of graph G(V, E), which represents two centroids that are
nearest to each other. Then, the CS represents the relative
separation of the centroids. The value of CS ranges from O
to 1. A low value of CS means that the two centroids are too
close to each other and the corresponding Voronoi partitionis
not valid. A high CS value means the Voronoi partition of the
data is even and valid. In practice, we predefine a threshold
to test the CS. If the CS is greater than the threshold, the
Voronoi partition of the dataset isvalid. Then, weincreasethe
number of clusters by 1 and test the CS again. This process
continues until the CS is smaller than the threshold. At that
point, the proper number of clusters will be the number of
clusters minus one. The CS criterion finds the proper binary
relationship among clusters in the data space and indicates a
proper Voronoi partition of the data space, namely, the proper
clustersin certain hierarchical level of the DGSOT. Thevalue
setting of the threshold for the CS will be practical and is
dependent onthe dataset. The higher thevalue of thethreshold
the smaller the number of clusters would be. Generaly, the
value of the threshold will be >0.8.

We tested the CS criterion on a 3000 yeast gene cell cycle
expression profiles dataset. For this dataset, we chose a CS
threshold of 0.8. A horizontal growth process was employed
to add acluster each time. Figure 5 showsthe CSvalue versus
the number of clustersin the first level hierarchy. The CSis
<0.8 when the number of clustersis7. Thus, the proper num-
ber of clustersfor thefirst hierarchical level of this dataset is
6. To evaluate the CS criterion, we al so cal cul ated the average
silhouette of each cluster asthe number of clustersincreases.
Figure 6 shows the average silhouette of each cluster versus
the number of clusters. The average silhouette of each cluster

is kept positive before the number of cluster 7 is added. After
the 7th cluster isaddeditsaveragesilhouetteis <0. Thismeans
the 7th cluster is not valid and only the first six clusters are
valid. Theproper number of theclustersinthefirst hierarchical
level of this dataset is therefore 6, which is the same number
found using the CS criterion. Thisdemonstratesthat the CSis
consistent with the classical average silhouette measure when
aproper threshold for CScriterionischosen. Furthermore, the
computational cost of CSismuch lighter because the number
of subclusters of each node is small. This makes the CS cri-
terion practical for the DGSOT agorithm when it is used for
clustering large dataset.

2.3 K-level up distribution

Self-organizing neural network based clustering is a type of
distortion-based competitive learning. The nearest neighbor
ruleisused to makethe clustering decision. In original SOTA,
data associated with the parent node are distributed between
its two children. If data are improperly clustered in the early
stages, these errors cannot be corrected in the later learning
process. For example, in Figure 7 there are two kinds of data,
namely, cluster x and cluster y. In the early clustering stage
(Fig. 7A), al datahave been partitioned into two clusters, and
each one is represented by a centroid. One Y is closer to the
upper centroid andisassigned to the cluster that containsall x.
When the self-organizing neural network expands to more
levels, this improperly clustered Y will not be reevaluated,
thus, the lower level nodes inherit the misclustered Y from
the early clustering stage (Fig. 7B), and the final clustering
result isinaccurate (Fig. 7D).

To improve the cluster result, we propose a new distribu-
tion approach called KLD (Khan and Luo, 2002). Recently,
Herrero et al. (2003) also employed similar mechanism in
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Fig. 7. Comparison of conventiona distribution and KLD distribution on sample data. B is the conventiona distribution and D is the
corresponding clustering result. C isthe KLD distribution and E is the corresponding clustering result.

their publicly available version of SOTA. For the KLD, data
associated with a parent node will be distributed among its
children leaves and also among its neighboring leaves. The
following isthe KLD strategy:

e For a selected node, its K-level up ancestor node is
determined.

o The subtree rooted by the ancestor node is determined.

e Data associated with the selected node is distributed
among all leaves of the subtree.

For example, Figure 8 shows the scope of K = 1. First, the
data associated with node M are distributed among the newly
created leaves. For K = 1, the immediate ancestor of M
is determined to be A. The data associated with node M are
distributed among leavesB, C, D and E of the subtreerooted by
A. For each data, the winning leaf will be determined among
B, C, D and E using Equation (1). Note that if K = 0, data
of M will be distributed between leaves B and C. This latter
approach is identical to the conventional approach. Fig. 7C
showsthat with the KL D scheme, the misclustered y will have
the opportunity to be reevaluated when the self-organizing
neural network expands to the next level (Fig. 7C), which
makesthefinal clustering result (leaf level) accurate (Fig. 7E).
By applying to three benchmark datasets, we show that the
KLD mechanism improves the clustering result of DGSOT
greatly (Luo et al., 2003). The value of K is dependent on
each dataset. The KLD does not change the time complexity

One level up distribution scope

Fig. 8. Onelevel up distribution scope (K = 1).

of the DGSOT because it only multiplies a constant, namely
2K to the original time.

3 RESULTS

3.1 Yeast cell cycledata

We applied the DGSOT to the yeast gene cell cycle gene
expression profiles published by Cho et al. (1998). They used
Affymetrix oligonucleotide microarraysto test the expression
of more than 6000 genes of yeast Saccharomyces cerevisiae.
The gene expressions of yeast cell were examined in 17 time
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pointsat 10 minintervals, which covered over two cell cycles.
In our analysis, we used 15 time points; the 90 and 100 min
points were excluded due to the less efficient labeling of the
mMRNA during theoriginal chip hybridizations(Tavazoieetal.,
1999). The data were preprocessed as described by Tavazoie
et al. (1999). First, we normalized the data to have unit
variance and zero mean (Z-score normalization). Second, we
selected 3000 genes with the most relative variation (standard
variance over the mean) in expression level across 15 time
points for our clustering. The parameters of DGSOT are
shown in our Supplement Table 1. The Euclidean distance
was used to calculate the similarity in DGSOT.

3.2 Clustering results

The results of clustering are shown in Figure 9. Figure 9B
is the full DGSOT tree. The 3000 gene expression profiles
were first clustered into six high-level clusters (Supplement
Figure 1A). Figure 9C is an enlarged picture of part of the
tree that is indicated by a red bar in Figure 9B. At the tree
leaf of Figure 9C, the name and function categories of agene
associated with the leaf of the DGSOT tree are shown. Sup-
plement Figure 1B—G shows 25, second-level subclusters of
the 6 highest-level clusters, respectively. The number of the
subcluster is the number of its upper level cluster plus adigit
to indicate the sequence. For example, cluster 1 has two sub-
clusters denoted by 11 and 12, respectively. The subclusters
(Supplement Figures 1B, C and E) of clusters 1, 2 and 4 show
the same patterns as their upper level clusters. However, the
subclusters (Supplement Figs 1D, F and G) of cluster 4 show
different patterns.

3.2.1 Enrichment of functionality categories in subclusters
We tested the functional significance in 25, second level
subclusters. The functional categories of yeast open reading
frames (ORFs) were downl oaded from the yeast genome data-
base of MIPS (Mewes et al., 2000). For each subcluster we
calculated a P-value, which is the probability of observing
the frequency of genes in a particular functional category in
a certain cluster, using the cumulative hypergeometric prob-
ability distribution (Tavazoie et al., 1999). We compared the
functionality enrichment of these 25 clusters with the res-
ults obtained by Tavazoie et al. (1999). As shown in the
Supplement Table 2, all seven clustersfound by Tavazoieet al.
matched a corresponding cluster in our analysis. The degree
of enrichment in the clusters identified by DGSOT is higher
than or equal to the result using the K -means algorithm and
there were more functionality enrichment clusters identified
by the DGSOT. For example, cluster 21 is enriched in ‘cell
rescue, defense and virulence' function genes; cluster 63 is
enriched in ‘transcription’ function genes. In the supplement
Figure 2, we show 43 of the most enriched functionality cat-
egories in these 25 subclusters. Some functional categories
dominate in a few specific clusters. For example, categories

‘ribosome biogenesis' and ‘ cytoplasm’ genes possess signi-
ficant enrichment in clusters 11 and 12. Note that many genes
belong to both categories. The category ‘ DNA synthesis and
replication’ dominatesin cluster 41.

3.3 Comparison with SOTA

The DGSOT was compared with the SOTA algorithm by sub-
mitting the normalized 3000 yeast gene cell cycle microarray
expression profilestothe SOTA website (Herrero et al ., 2003).
The parameters of the SOTA were set the same as for the
DGSOT with the exception that the learning rate of the par-
ent node was set to 0.05. The normal Euclidean distance was
chosen for SOTA. Figure 9A shows the whole hierarchical
tree redrawn from the SOTA result (because the output tree of
SOTA istoo large to show). Figure 10 shows the hierarchical
structure when both DGSOT and SOTA have 25 leaf nodes.
In Figure 10, the number in the SOTA tree is the number of
nodes assigned by SOTA in the order of tree growth. Each 25
leaf nodesrepresentsaVoronoi partition of theoriginal dataset
by DGOST and SOTA, respectively. Table 2 summarizes the
comparison of SOTA and DGSOT intermsof thefunctionality
enrichment inthe 25 clusters. The clustering result of DGSOT
isstatistically more significant (higher P-value) than the clus-
tering result of SOTA. Furthermore, the proper hierarchical
structure of the DGSOT makes the clustering result more
reasonable for large clusters. For example, the ‘ribosomal
proteins’ and ‘organization of cytoplasm’ functional clusters
enrich in nodes 39 and 26 using SOTA. However, nodes 39
and 26 belong to two different first level branches (Fig. 10).
In contrast, the same functionality enriches in the nodes 11
and 12 using DGSOT, which have the same parent in the first
level (Fig. 10).

4 DISCUSSION AND CONCLUSIONS

The rapid development of microarray technology provides us
with aprocessing and global view of the gene expression bey-
ondthat of anindividual gene. Clustering algorithmsenableus
to detect agroup of genesexpressed in different tissuesor cells
over different developmental stages. The fixed topology of
the traditional tree-structure based self-organizing neural net-
work will affect the accuracy of the final clustering result. In
this paper, we introduced a new tree-structure self-organizing
neural network, called DGSOT, for hierarchical clustering.
The DGSOT algorithm combines the horizontal growth and
vertical growth to construct amutlifurcating hierarchical tree
from top to bottom to cluster the data. In each vertical
growth, the hierarchical tree expand one more hierarchical
level. In addition, in each hierarchical level the DGSOT
employs a horizontal growth step to optimize the number of
the subclusters. If the number or the size of the clusters and
subclusters of the dataset are not even, e.g. there is a very
large cluster in dataset such as the ‘ribosomal proteins and
‘organization of cytoplasm’ functional clusters of yeast gene,
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WPL142C UNCLASEHF\ED PROTEINS |

YMR11BC EN Y | fermentation | PROTEIN SYNTHESIS | ribosome hiogenesig | translation |

YOR369C PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YLROGZC UNCLASSIFIED PROTEINS |

YMLOG3W PROTEIN SYNTHESIS | ribosome bmgenesls \ SUBCELLULAR LOCALISATION | cvtoplasm |

YLR16TW PROTEIN SYNTHESIS | ribosome biogen:

YMR116C ENERGY | fermentation | PROTEIN SYNTHESISl ribosome bmgemes\sl translation |

WMRZ51W-A CELL RESCUE, DEFENSE AND VIRULENCE | stress response |

YOR1BTC PROTEIN SYNTHESIS | ribosome hiogenesis | SUECELLULAR LOCALISATION | cytoplasm |

YKROQ4C PROTEIN SYNTHESIS | ribosome hiogenesis |

YKL153W UNCLASSIFIED PROTEINS |

YPL143ww PROTEIM SYNTHESIS | ribosome hingenesis | SUBCELLULAR LOCALISATION | cvtoplasm |

YLR441C PROTEIN SYNTHESIS | ribosome hiogenesis | CELL FATE | cell differentiation |

YRL152C METABOLISM | C-compaound and carbohydrate metabalism |

YPRO44C UNCLASSIFIED PROTEINS |

YOR167C PROTEIN BYMTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasim |

YLRAUEC FROTEIN SYNTHESIS | rihosome hiogenesis | SUBCELLULAR LOCALISATION | cvtoplasm |
GL102C UNCLASSIFIED PROTEINS |

VMLEIZAW PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YJR123We PROTEIN SYNTHESIS | ribosome hingenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YKROA7W PROTEIM SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YKRO94C PROTEIN SYNTHESIS | ribosome hiogenesis |

YLR287C-A PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YLRO48WW PROTEIN SYNTHESIS | ribosome hiogenesis |

YLR325C PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytaplasm |

YPR102C PROTEIM SYMTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YLRO28C PROTEIN SYNTHESIS | rinosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YML302C PROTEIN SYNTHESIS | rinosome biogenesis | SUBCELLULAR LOCALISATION | cyvloplasm |

YOLO40C PROTEIN SYNTHESIS | rinosome biogenesis | SUBCELLULAR LOCALISATION | cyloplasm |

YPR102C PROTEIN SYNTHESIS | ribosome hingenesis | SUBCELLULAR LOCALISATION | cytoplasm |

YLR441C PROTEIN SYNTHESIS | ribosome hiogenesis | CELL FATE | cell differentiation |

YMRZ30W PROTEIN SYNTHESIS | ribosome biogenesis | SUECELLUU—\R LOCALISATION | cvionlasm |

YRLOGOC METABOLIEM | C-compaound and carbohwdrate metabalism |

YLROTSW CELL CYCLE AND DNAPROGESSING | cell cycle | mitotic cell cycle and cell cycle control |

YJIL188C UMCLASSIFIED PROTEING

YMR143W PROTEIN SYNTHESIS | ribhosome biogenesis | SUBCELLULAR LOCALISATION | cvioplasm |

YELO34WW ME ISM | nucleotide metabolism | polynucleotide degradation | PROTEIN SYNTHESIS |
YKL180WW PROTEIN 5YI ribosome hingenesis | S LOCALISATION | cytoplasm |
2 PRO g HESIS | ribnsome hiogenesis | SU CALISATI | cvioplasm |

YLO0EWY PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YML301C PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cyloplasm |
YLR340W PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YLR185W PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
¥LR249W PROTEIN SYNTHESIS | translation | COMTROL OF CELLULAR ORGAMNIZATION | cellwall |
YJRO0SC METABOLISM | C-compaound and carbohydrate metabalism |

YOR234C PROTEIN SYNTHESIS | ribosome biogenesis |

YERT17W PROTEIN SYNTHESIS | ribosome hingenesis | SUBCELLULAR LOCALISATION | cytoplasim |
¥YMLO26C PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cyvloplasm |
YOR234C PROTEIN SYNTHESIS | ribosome biogenesis |

YLR344%W PROTEIN SYNTHESIS | rmosome hiogenesis | SUBCELLULAR LOCALISATION | cvtoplasm |
YLR4GTVW UNCLASSIFIED PROTEINS |

YMRZ02W METAEOLISMl \mlu ratly acid and isoprenoid metabalism |

YMRZ30W PROTEIN 5 | ribnsame hiogenesis | SUBCELLULAR LOCALISATION | cytaplasm |
YEROT4W PROTEIN SVNTHES\Sl ribosome hingenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YLR333C PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cyloplasm |
YLR3IETW PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YJR145C PROTEIN SYMTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
Y¥OL127W PROTEIM SYNTHESIS | rihosome biogenesis | SUBCELLULAR LOCALISATION| cytoplasm |
YLRIG7TW PROTEIM SYNTHESIS | rihosome biggenesis | SUBCELLULAR LOCALISATION | evtoplasm |
YML339C CELL CYCLE AMD DNA PROGCESSING | DNA pracessing | DMNA recambination and DNA repair|
YHLOBTW PROTEIN SYNTHESIS | ribnsome hiogenesis | SUBCELLULAR LOCALISATION | cytaplasm |
YJRO94WW-A PROTEIN SYNTHESIS | rihosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
¥YMLO73C PROTEIN SYNTHESIS | rinosome biogenesis | SUBCELLULAR LOCALISATION | cyvloplasm |
YKL180W PROTEIN SVNTHES\Sl ribosome hingenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YLR190VY METABOLISM | C-compound and carbohydrate metabaolism |

YLR355C METABOLISM | amino acid metabolism | amino acid biosynthesis |

YOR30AC UNCLASSIFIED PROTEINS |

YGR214W PROTEIN SYNTHESIS | ribosome biogenesis |

YER131W PROTEIM SYNTHESIS | ribhosome biogenesis |

1

YLR175W CELL CYCLE AND DNA PROCESSING | cell cycle | mitotic cell cycle and cell cycle control |
YBR213W METABOLISM | amino acid metabolism | amino acid biosynthesis |

YMLOSEC METABOLISM | nucleotide | purine ribonucleotid I

YFLO18C METABOLISM | amino acid metabaolism | amino acid hiosynthesis | ENERGY

YBLOBYC PROTEIM SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YHLOD1W FROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YARO20C CELL UE, DEFENSE AND VIRULEMNCE | stress response |

YLR194C UNCLASSIFIED PROTEINS |

YERDSEC-A PROTEIMN SYNTHESIS | ribasome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |

TARDDZAC

YER130WW CELL CYCLE AND DMNA PROCESSING | DMA processing | DNA recombination and DNA repair |
YLR279W UNCLASSIFIED PROTEINS |

YHRO41C TRANSCRIPTION | mRNA transcription | mRMNA swnthesis | aeneral transcription activities |
YELOG1W CELLULAR TRANSPORT AND TRANSPORT MECHANISMS | wacuolar transport |

YMROZ2¢W PROTEIN FATE ifolding, modification, destination) | protein miodification |

YMROT1W METABOLISM | C-compound and carbohydrate metabalism |

YER102vW PROTEIM SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
¥OR309C UNCLASSIFIED PROTEINS |

YCROS1W UNCLASSIFIED PROTEINS |

YELOGEWY METABOLISM | nucleotide metabalism | purine ribonuclectide metabolism |

YBR263WW METABOLISM | _nucleotide metabolism | purine ribonuclectide metabalism |

YBRO48WY PROTEIN SYNTHESIS | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cvtaplasm |
¥BL113C UMCLASSIFIED PROTEING

YOLO4TW CELL CYCLE AND DNA PROCESSING | cell cycle | mitotic cell cycle and cell cycle control |
YORZ54C PROTEIN FATE (fnldmg modification, destination) |

YALOBBC UNCLASSIFIED PROTEINS |

YALDAZW CELLULAR TRANSFORT AND TRANSPORT MECHANISMS |

YOR293W PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cvioplasm |
YPRO43WW PROTEIN SYNTHESIZ | ribosome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YORZ33W PROTEIN SYNTHESIS | ribosome hiogenesis | SUECELLUU—\R LOCALISATIONl cytoplasm |
YMR230W PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLUI LOCALISATION | cytoplasm |
YOR312C PROTEIN SYNTHESIS | ribosome hiogenesis | SUECELLULAR LOCALISATION | cytoplasm |
YPLO37C METABOLISM | C-compound and carbohydrate metabalism |

YER102vW PROTEIM SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YER117wWW PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cvtoplasm |
YLRO48YW PROTEIN SYNTHESIS | ribosome biogenesis | |

YGR214W PROTEIN SYNTHESIS | ribosome biogenesis |

YMLO9EC PROTEIMN SYNTHESIS | ribasome hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YLR293C TRAMSCRIPTION | RNAtranspart | CELLULAR TRANSPORT AND TRANSPORT MECHANISMS |
YHLOD1W PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YMRZ217W METABOLISM | nucleotide metabolism | purine ribonuclectide metabolism |

YGER214W PROTEIN SYNTHESIS | ribosome biogenesis |

YOR327C PROTEIN FATE (folding, modification, destination) | protein targeting, sorting and translocation |
YLR192C TRAMSCRIPTION | mRNAtranscnm\on\ mRMNA synthesis | transcriptional contral |

YPLOAOC PROTEIM SYNTHESIS| ribosome bingenesis | SUBCEL ULAR LOCALISATION | cytoplasm |
YPL188Wy PROTEIN SYNTHESIS | ribosome hingenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YPR20M UNMCLASSIFIED PROTEIMS |

YOR292% PROTEIN SYNTHESIS | ribasame hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
Y¥ML133C UNCLASSIFIED PROTEIN:
YGR118W PROTEIM BYNTHESIS | ribosame hiogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
YLLOBGEC UNCLASSIFIED PROTEIN:
¥LLOBFC UNCLASSIFIED PROTEINS |

¥JIL225C UNMCLASSIFIED PROTEINS |

WPL283C UMCLASSIFIED PROTEIMNS |

YLR448W PROTEIN SYNTHESIS | ribosome biogenesis | SUBCELLULAR LOCALISATION | cytoplasm |
Y¥DL221W UNCLASSIFIED PROTEINS |

YELOTTC UNCLASSIFIED PROTEING |

YFLO39C

i
YPR2ZO03W UNCLASSIFIED PROTEING |
YIL177C UNCLASSIFIED PROTEINS |
YFLO39CM

!

Fig. 9. Hierarchical clustering tree of 3000 yeast cell cycle gene microarray expression data constructed by SOTA and DGSOT. (A)
The whole tree of SOTA. (B) The whole tree of DGSOT. (C) An enlarged picture represents part of the DGSOT tree that isindicated by the
red bar.
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Table 2. Biological validation of the 25 nodes corresponding in DGSOT and SOTA

Cluster number Number of ORFs MIPS functional category ORFswithin P-value (— logyg)
functional category
DGSOT SOTA DGSOT SOTA DGSOT SOTA DGSOT SOTA
11 39 250 184 Ribosomal proteins 122 50 124 32
Organization of cytoplasm 141 67 87 25
Translation 10 6 4 2
12 26 182 142 Ribosomal proteins 29 49 12 37
Organization of cytoplasm 43 64 9 30
21 162 Cell rescue, defense and virulence 18 4
Stress response 13 3
23 44 162 276 C-compound and carbohydrate 25 36 4 4
metabolism
C-compound and carbohydrate 18 25 4 4
utilization
Stress response 12 15 3 2
25 72 C-compound and carbohydrate 15 4
metabolism
31 25 110 128 Cell cycle and DNA processing 22 26 3 4
Céll cycle 18 22 3 4
Mitotic cell cycle and cell cycle control 14 15 3 2
Fungal cell differentiation 11 17 2 3
Budding, cell polarity and filament 8 8 2 2
formation
32 47 110 93 Amino acid metabolism 18 12 8 4
Amino acid biosynthesis 11 8 5 4
Nitrogen and sulfur metabolism 9 6 6 3
Nitrogen and sulfur utilization 6 4 4 3
mRNA transcription 15 18 2 3
mRNA synthesis 14 17 2 4
Transcriptional control 14 17 3 5
41 38 208 205 Deoxyribonucl eotide metabolism 5 2 5 1
Cell cycle and DNA processing 70 51 21 10
DNA processing 37 25 14 6
DNA synthesis and replication 25 17 16 8
DNA recombination and DNA repair 18 13 6 3
Cell cycle 41 33 9 5
Mitotic cell cycle and Cell cycle 36 28 9 5
control
Budding, cell polarity and filament 15 10 3 15
formation
Fungal cell differentiation 21 21 2 2
Nucleus 48 39 5 3
Centrosome 6 5 3 3
43 45 132 148 Cell cycle and DNA processing 22 34 2 6
Mitotic cell cycle and cell cycle control 18 21 4 4
Cell cycle checkpoints 6 7 5 6
Centrosome 6 5 4 3
51 29 127 218 Mitochondrion 24 32 7 6
Energy 15 23 4 5
52 133 Amino acid metabolism 14 4
55 30 110 124 Respiration 9 7 5 3
Mitochondrion 26 23 9 6
63 35 94 108 Transcription 26 24 5 3
rRNA transcription 10 9 5 4
tRNA transcription 8 5 5 2
Nucleus 23 24 3 3
Centrosome 7 5
64 40 70 88 Splicing 6 4 3 1

The genesin each cluster have been mapped to the functional category of MIPS database. Only significantly enriched functional categories are shown.
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Fig. 10. The hierarchical structure of SOTA (A) and DGSOT (B)
when each has 25 |eaves. (The number inthe SOTA treeisthe number
of thenodeassigned by SOTA intheorder of treegrowth. Thenumber
in the DGSOT tree is the label of its upper level cluster plus a digit
to indicate the sequence.)

the combination of horizontal growth and vertical growth let
the DGSOT algorithm to find the proper hierarchical struc-
ture of the underlying dataset, then get more reasonable final
clustering result.

In DOSOT, each node in the hierarchy represents the
centroid of all data associated with its leaf descendants. The
pattern kept by a node can be treated as the integration
of patterns kept by lower-level nodes. The upper-level pat-
tern may not be the same as the lower-level patterns if the
data associated with the subtree are diverse. The difference
between the upper-level pattern and the lower-level patterns
may also be used to determine the growth of the hierarchy.

In addition, based on the observation that the edges of
MST among the centroids of clusters are even for a valid-
ated clustering in a certain hierarchical level, we developed
anew cluster validation criterion for finding the proper num-
ber of clusters during the hierarchical clustering of DGSOT
algorithm. The new cluster validation criterion is based on
the geometric property of the Voronoi partition of the dataset.
Thiscriterion usesthe M ST concept from graph theory to find

a proper Voronoi partition of the dataset. The new criterion
uses the centroid of each cluster to calculate the intercluster
properties, which is computationally inexpensive for large
datasets.

The harmonization of the vertical growth and the hori-
zontal growth is important in the DGSOT agorithm to find
the proper structure of the underlying dataset. The balance of
thevertical growth and horizontal growth is controlled by the
clustering validation criterion, which determines the number
of horizontal growth. Therefore, the cluster validation cri-
terion is critical in the DGSOT agorithm. In DGSOT, the
cluster validation criterion is used to determine the proper
number of clusters in each hierarchical level rather than in
the whole dataset. For dataset containing even number of
clusters along with even size, a proper cluster validation cri-
terion must not alow the horizontal growthto continueforever
without thevertical growth. Ontheother hand, for dataset con-
taining uneven number or uneven size of clusters, a proper
cluster validation criterion must be able to detect that uneven
behavior and find the best representation in each hierarch-
ical level. The CS criterion we present exactly fulfills this
requirement.

To improve the clustering accuracy we proposed a KLD
mechanism. TheKL D schemeincreasesthescopeinhierarchy
for data distribution, which will give the data misclustered
a an early stage a chance to be reevaluated. The DGSOT
algorithm combined with KLD mechanism overcomes the
drawbacks of the traditional neural tree based on hierarchical
clustering agorithms.

Like the SOTA, the DGSOT algorithm can be terminated
at any hierarchical stage by setting different vertical grow-
ing stop threshold. This will save computation time when
the user only needs the main pattern of a large dataset.
The clustering result of the DGSOT is easily displayed as a
dendrogram for visualization. For large datasets, the DGSOT
algorithm can display high level main patterns of the data-
set only if visualization of the whole hierarchical structureis
difficult.

We applied the DGSOT agorithm to cluster 3000 yeast
gene cell cycle microarray expression data. We compared the
clustering results of DGSOT and SOTA when both have 25
clusters. For these low-level resolution clustering results, we
observed that the DGSOT, with the multi-partition strategy,
can successfully establish the hierarchical structure of these
data, and then get more reasonable results than obtained by
SOTA, which is a pure bipartitions method. This is more
drasticif the structure and substructure of the data containsan
uneven number of clustersand subclustersor containsdramat-
ically different size of clusters and subclusters. Furthermore,
the biological functionality enrichment in the clustering res-
ult of DGSOT isconsiderably higher than the clustering result
of SOTA and the K -means. We believe that DGSOT can bea
robust and accurate framework for the study of patternsamong
large sets of gene microarray expression data.
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