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Application of random matrix theory to biological networks
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Abstract

We show that spectral fluctuation of interaction matrices of a yeast protein–protein interaction network and a yeast metabolic network follows
the description of the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). Furthermore, we demonstrate that while the global
biological networks evaluated belong to GOE, removal of interactions between constituents transitions the networks to systems of isolated modules
described by the Poisson distribution. Our results indicate that although biological networks are very different from other complex systems at the
molecular level, they display the same statistical properties at network scale. The transition point provides a new objective approach for the
identification of functional modules.
© 2006 Elsevier B.V. All rights reserved.

PACS: 05.45.-a; 87.10.+e

Keywords: Random matrix; Biological network; Cell; Protein; Gene
The cell is a complex system that contains numerous func-
tionally diverse elements, including protein, DNA, RNA and
small molecules. Understanding the fundamental principles and
behavioral properties of the cell as a system has become a key
research activity in the post-genomic era. Research on the topo-
logical properties of large scale networks of cell constituents
has shown that biological networks share some fundamental
topological properties, including scale-free, small-world, hi-
erarchical, modular [1] and self-similar [2] properties, with
other complex systems, such as the internet and social net-
works. Inspired by the electrical engineering paradigm, small
gene circuit descriptions combined with mathematical mod-
eling have been utilized to understand small subsystems of
cellular processes [3]. Unfortunately, the huge number of con-
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stituents and their complex relationships in the cell make the
mathematical modeling of large-scale biological systems chal-
lenging. It is of significant importance to understand the na-
ture of the structure and interactions of biological networks for
achieving quantitative description of their functions.

In this Letter, we use RMT to analyze the structure and in-
teractions of biological networks. RMT, initially proposed by
Wigner and Dyson in the 1960s for studying the spectrum of
complex nuclei [4], is a powerful approach for the identifica-
tion and modeling of phase transitions and dynamics in physical
systems. It has been successfully used to study the behaviors
of complex systems, such as spectral properties of large atoms
[5], metal insulator transitions in disordered systems [6], spec-
tra of quasiperiodic systems [7,8], chaotic systems [9], brain
responses [10], and the stock market [11]. One of the essential
statistical properties in the RMT is eigenvalue fluctuation. For
real and symmetrical random matrices that represent the time-
reversal invariant complex systems, the eigenvalue fluctuations
follow two universal laws depending on the correlation prop-
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erty of eigenvalues. Strong correlation of eigenvalues induced
by strong interactions of matrix components leads to eigen-
value fluctuations described by the GOE. On the other hand,
eigenvalue fluctuations for a random matrix with various de-
coupled components follow Poisson distribution due to absence
of correlation of large number of eigenvalues of different com-
ponents.

In this study we have found that the spectral fluctuation of a
yeast protein–protein interaction network and a yeast metabolic
network is described by the GOE statistics. Furthermore, we
demonstrate that while each of these global networks belong to
the GOE, removal of interactions between constituents identi-
fies a transitions in which the spectral fluctuation approximates
the Poisson statistics of RMT resulting in a decoupled network
composed of isolated modules. Such a transition provides a new
objective approach for the identification of functional modules
within global biological networks.

We used the standard spectral unfolding technique in our
study. In general, the density of eigenvalues of a matrix varies
with its eigenvalue Ei (i = 1,2,3, . . . ,N), where N is the order
of the matrix. In order to observe the universal eigenvalue fluc-
tuations of different matrices, random matrix theory requires
spectral unfolding to have a constant density of eigenvalues.
To fulfill this, one can replace Ei by the unfolded spectrum ei ,
where ei = Nav(Ei) and Nav is the smoothed integrated den-
sity of eigenvalues obtained by fitting the original integrated
density to a cubic spline or by local density average. With
the unfolded eigenvalues, We calculated the nearest neighbor
spacing distribution (NNSD) of eigenvalues, P(s), which is de-
fined as the probability density of unfolded eigenvalue spacing
s = ei+1 − ei . We know from RMT that P(s) for the GOE sta-
tistics closely follows the Wigner–Dyson distribution

PGOE(s) ≈ 1

2
πs exp

(−πs2/4
)
.

In the case of Poisson statistics, P(s) is given by the Poisson
distribution

PPoisson(s) = exp(−s).

One difference between the Wigner–Dyson and Poisson distri-
butions is their behavior at small values of s, where: PGOE(s →
0) = 0 and PPoisson(s → 0) = 1.

We applied the random matrix theory to two biological net-
works of yeast. The first network is the core protein interaction
network of yeast obtained from the DIP [12] database (version
ScereCR20041003) generated from the filtering of large high-
throughput protein interaction data using two different com-
putational methods [13]. After removal of all self-connecting
links, the final protein interaction network includes 2609 yeast
proteins and 6355 interactions. The second network is the yeast
metabolic network constructed by Jeong et al. [14] from the
data in the WIT database [15]. After removal of redundant links,
the final metabolic network has 1511 chemical substrate and in-
termediate states and 3807 interactions. The original metabolic
network is a directed network. To make the metabolism network
symmetric for RMT study, we changed the directed network to
Fig. 1. The NNSDs of yeast biological networks. Smooth and dashed black lines
are the GOE distribution and the Poisson distribution, respectively. (a) Yeast
core protein–protein interaction networks with different number of removed
links (m): 0 (navy), 800 (blue), 1200 (cyan), and 1230 (red). (b) Metabolic
networks with different number of removed links (m): 0 (navy), 400 (blue),
700 (cyan), and 770 (red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

an undirected network by replacing all directed links in the net-
work with undirected links.

In our RMT analysis, the two biological networks are repre-
sented by two real symmetric matrices. The dimension of each
matrix is the number of constituents in the network. The ele-
ments in the matrices are set to 1 if there is a direct interaction
between the constituents; otherwise, the elements are set to 0.
We calculated the NNSD of these two matrices for RMT analy-
sis by direct diagonalization of the matrix. Fig. 1 shows the
NNSDs of these two networks. One can see that the NNSDs
of the protein interaction network are well described by the
Wigner–Dyson distribution. The NNSDs of the metabolism net-
work are also very close to the Wigner–Dyson distribution, es-
pecially in the region representing small values of s. The slight
deviation may be due to the incomplete nature of the defined
network.

Biological networks have modular structures with more in-
teractions between elements inside the same module and fewer
interactions between different modules [16–18]. Girvan and
Newman [19] proposed the concept of edge (or link) between-
ness for describing the modular structure of a complex network,
which is defined as the number of shortest connection paths be-
tween all pairs of network vertices that run through the edge.
Edges between different modules tend to have more shortest-
paths running through them compared with the edges inside
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Fig. 2. Graph view of the yeast biological networks. (a) The original yeast core protein interaction network. (b) The yeast core protein interaction network with 1230
links removed. (c) The original yeast metabolic network. (d) The yeast metabolic network with 770 links removed. The graphs were produced using Biolayout [20].
any modules, and thus have higher betweenness values. Grad-
ual deletion of edges with higher betweenness can separate the
network while keeping its modules intact. The Girvan and New-
man algorithm [19] for identifying modules in a network can
be simply stated as follows: (1) calculation of the betweenness
for all edges in the network; (2) removal of the edge with the
highest betweenness; (3) recalculation of betweennesses for all
edges affected by the removal; and (4) repetition of removal
until no edges remain. To test the modularity of these two
networks, we gradually removed the interaction links between
the constituents in the two yeast networks using the Girvan–
Newman algorithm and calculated the NNSDs of the remaining
networks. A transition of NNSD from a Wiger–Dyson distri-
bution to a Poisson distribution was clearly observed in both
cases (Fig. 1). We used the chi-squared test to determine the
transition point. For the DIP yeast core protein interaction net-
work, chi-squared testing showed that NNSD follows a Poisson
distribution after removal of 1230 links. The remaining protein–
protein interaction network contains 107 modules with sizes
ranging from 2 to 778 proteins. For the yeast metabolic net-
work, NNSD follows a Poisson distribution after removal of
770 links and the remaining network has 17 modules with sizes
ranging from 4 to 602 chemical substrates and proteins.

These biological networks can be easily transformed to
graphs by representing each element in the network as a ver-
tex and each link as an edge in the graph. Figs. 2(a) and (c)
show graph views of the original DIP yeast core protein inter-
action network and the yeast metabolic network, respectively.
Figs. 2(b) and (d) illustrate the corresponding networks after
removal of links at the transition point. One can see from Fig. 2
that the networks described by the Poisson distribution are very
different from the original networks described by the GOE sta-
tistics. Isolated modules can be easily identified in Figs. 2(b)
and (d).

To summarize, we have provided evidence that global bio-
logical networks, as represented by the yeast protein–protein
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interaction and metabolic networks studied here, belong to the
GOE. However, by successive removal of interactions between
constituents of the network, a global biological network transi-
tions into a system of isolated modules described the Poisson
statistic. The transition from a GOE statistic to a Poisson sta-
tistic may open a new avenue for objective identification of
functional modules inside global networks.
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