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Application of random matrix theory to microarray data for discovering functional gene modules
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We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles
follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and
removal of small values of the correlation coefficients results in a transition from the GOE statistics to the
Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression
network from a global network to a network of isolated modules.
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Understanding gene expression networks at system level
is a key issue in the post genome era [1-4]. The emerging
microarray technology [5,6] enables massive parallel mea-
surement of expressions of thousands of genes simulta-
neously. It has opened up great opportunities to unveil gene
expression networks at large scale. Currently, the inference
of gene expression networks from microarray profiles is
harmed by the dimensionality problem, namely, the number
of genes is much larger than available data points. It is es-
sential to develop powerful computational methods to extract
as much biological information as possible from microarray
data.

The random matrix theory (RMT), initially proposed by
Wigner and Dyson in the 1960s for studying the spectrum of
complex nuclei [7], is a powerful approach for the identifi-
cation and modeling of phase transitions and dynamics in
physical systems. It has been successfully used to study the
behaviors of complex systems, such as spectral properties of
large atoms [8], metal insulator transitions in disordered sys-
tems [9], spectra of quasiperiodic systems [10,11], chaotic
systems [12], brain responses [13], and the stock market
[14]. The RMT focuses on the study of statistical properties
of eigenvalue spacing between consecutive eigenvalues.
From the RMT, distribution of eigenvalue spacing of real and
symmetrical random matrices follows two universal laws de-
pending on the correlativity of eigenvalues. Strong correla-
tion of eigenvalues leads to statistics described by the Gauss-
ian orthogonal ensemble (GOE). On the other hand,
eigenvalue spacing distribution follows Poisson statistics if
there is no correlation between eigenvalues. A typical ex-
ample of the GOE distribution is a complete random matrix
with a random distribution of all matrix elements. The non-
zero off-diagonal elements in this matrix, which represent
mutual interactions between diagonal elements, induce
strong correlations of eigenvalues and thus the GOE statis-
tics. Differently, eigenvalue spacing distribution of a random
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matrix with nonzero values only for its diagonal (or block-
diagonal) parts follows the Poisson statistics, because eigen-
values of this system are not correlated due to the absence of
interaction between diagonal (or block-diagonal) parts. From
microarry data, gene coexpression correlation matrices
(CCMs) can be constructed. Because of the modularity of
gene coexpression networks, after successive removal of
lower values of correlation coefficients a CCM begins to
have nonzero elements only for its block-diagonal parts cor-
responding to gene modules. We expect from the RMT that
eigenvalue spacing distribution in the CCMs undergoes a
transition from the GOE statistics to Poisson statistics.

In this paper, we report our results of application of the
RMT to analysis of the CCMs of gene microarray profiles.
We have found that eigenvalue spacing distribution of the
CCMs of yeast gene microarray profiles is described by the
GOE statistics. Furthermore, removal of small values of the
correlation coefficients in the CCM results in a transition
from the GOE statistics to the Poisson statistics as well as
disassociation of the gene coexpression network from a glo-
bal network to a network of isolated modules. This transition
may provide a new objective approach for identification of
functional modules from microarray profiles [15].

We used the standard spectral unfolding technique in the
RMT to study the eigenvalue spacing statistics of the CCMs.
In general, the density of eigenvalues of a matrix varies with
its eigenvalue E; (i=1,2,3,...N), where N is the order of the
matrix. As a result, eigenvalue spacing distribution is a func-
tion of E; and thus system dependent. In order to observe
universal (system independent) eigenvalue fluctuations of
different types of matrices, the RMT requires spectral un-
folding to have a constant density of eigenvalues. To fulfill
this, one can replace E; by the unfolded spectrum e;, where
e;=N,,(E;) and N,, is the smoothed integrated density of
eigenvalues obtained by fitting the original integrated density
to a cubic spline or by local density average. With the un-
folded eigenvalues, one calculates the nearest neighbor spac-
ing distribution (NNSD) of eigenvalues, P(s), which is de-
fined as the probability density of unfolded eigenvalue
spacing s=e,,;—e¢,;. From the RMT, P(s) of the GOE statis-
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FIG. 1. (Color online) Nearest neighbor spacing distributions (symbols) of gene coexpression correlation matrices constructed from
microarray profiles of yeast mutants by different cut methods with cutoff value g. The solid green is the Wigner-Dyson distribution and the
dashed line is the Poisson distribution. (a) Method I: ¢=0 if |c| <g. (b) Method II: ¢=0 if ¢ <gq. (c) Method III: ¢=0 if ¢>—q.

tics closely follows the Wigner-Dyson distribution
1 2
Pgor(s) = 27 exp(— ms°/4).

In the case of Poisson statistics, P(s) is given by the Poisson
distribution

PPoisson(s) = eXP(— S) .

The difference between the Wigner-Dyson and Poisson dis-
tributions manifests in the regime of small s, where,
PGOE(SHO) =0 and PPoisson(SHO): 1.

Matrix elements in the coexpression correlation matrix
CCM for our RMT analysis are the standard Pearson corre-
lation coefficients of gene expressions between different
genes defined as

=M =M
c(é)’z',zf)’J'):l E (glk gi)(gjk gj),

Nk=1,N O-gi O-gj

where M g M 5 are the average gene expression of gene g;
and g g respectively, Oy, O are their corresponding standard
deviations, and N is the total number of experiments.

As examples, we studied two microarray expression pro-
files of yeast. The first one is the microarray expression data
of 287 yeast mutants [16]. We selected genes that have ex-
pressed in most mutant experiments for our study. As a re-
sult, there is a total of 6209 genes. The second profile is the
gene expression data of yeast cells response to environment
changes [17]. We selected 6090 genes that have expressed in
most experiments. Figures 1 and 2 show the NNSDs for the
yeast mutants and the yeast cells response, respectively
(curves with g=0). One can see that in both cases, the NNSD
is well described by the Wigner-Dyson distribution.

It has been widely believed that a cell system, like many
other engineering synthetic systems, is modular. Its cellular
functionality is performed by a collection of modules, which

are groups of physically or functionally linked genes. Given
a specific condition and stage, there are particular gene mod-
ules expressed in the cell. The expression patterns of genes
in the same functional module often exhibit higher similarity
in microarray experiments [2-4]. Therefore, the CCM of a
microarray profile consists of a strong correlation part, C,,
which corresponds to the correlation between genes in the
same module, and a weak correlation part, C,,, which corre-
sponds to the correlation between genes in different modules
or unexpressed isolated genes. To test the modularity of
genes, we gradually remove lower values of correlation co-
efficients. Three cut methods are investigated to keep signifi-
cant correlations: (1) ¢=0 if |c| <gq (method I); (2) ¢=0 if
¢ <g (method IT); and (3) ¢=0 if ¢>—q (method IIT); where
0<g <1 denotes the level of cutoff. Evidently, both positive
and negative significant correlations are retained in method I.
In methods II and III, only positive or negative significant
correlations are kept, respectively. The three different cut
methods allow us to study a series of CCMs with different
cutoff values.

We found that the NNSDs of the CCMs constructed from
microarray expression profiles of yeast using the tree cut
methods all exhibit sharp transitions from a Wiger-Dyson
distribution to a Poisson distribution, as the cutoff level ¢
increases. This transition behavior is clearly shown in Figs. 1
and 2. Transition points were obtained by the chi-square test,
which is a standard technique for goodness-of-fit test that
determines whether a set of sample data have been drawn
from a hypothetical solution. In our calculation, g corre-
sponds to the transition point when the chi-square test to
Poisson distribution is less than a critical value of confidence
level 99.999%. We found that the NNSDs of microarray pro-
files of yeast mutants are well described by the Poisson dis-
tribution as ¢=0.79, 0.76, 0.77 obtained by methods I, II,
and III, respectively. For microarray profiles of yeast cells
response to environmental changes, we found Poisson distri-
bution as ¢=0.89 by method I, ¢=0.88 by method II, and
q=0.86 by method III.
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FIG. 2. (Color online) Nearest neighbor spacing distributions (symbols) of gene coexpression correlation matrices constructed from
microarray profiles of yeast cells response to environment changes by different cut methods with cutoff value g. The solid line is the
Wigner-Dyson distribution and the dashed line is the Poisson distribution. (a) Method I: ¢=0 if |c| <g. (b) Method II: ¢=0 if c<gq.

(¢c) Method IIT: ¢=0 if ¢>—q.

To view the structural change of gene coexpression net-
works after the removal of weaker correlations, we con-
structed a series of gene coexpression networks from the
CCMs of both microarray profiles. The networks were visu-
alized using Biolayout [18], where each gene in a network is
a node and there is a link between two genes if the Pearson
correlation between their expressions is not O after removal
of small values of coexpression correlation coefficients. Fig-
ures 3 and 4 show yeast gene coexpression networks at dif-
ferent cutoff values. One can see from Figs 3 and 4 that the
networks described by the Poisson distribution are very dif-
ferent from the networks described by the GOE statistics.
Furthermore, the transition of the NNSD from the GOE dis-
tribution to the Poisson distribution is accompanied by the
disassociation of coexpression networks. Isolated modules
can be easily identified in Figs. 3 and 4 at the transition
points. Our detailed analysis showed that, for the microarray
profile of yeast mutants, the coexpression network at
q=0.79 obtained by method I has 39 modules with number
of genes ranging from 3 to 597; the coexpression network at
g=0.76 by method II has 41 modules with number of genes
ranging from 3 to 863; and the coexpression network at
q=0.77 by method III has 11 modules with number of genes
ranging from 3 to 526. For microarray profiles of the yeast
cells response, method I at g=0.89 generates 13 modules
with sizes ranging from 3 to 636; method II at g=0.88 gives
17 modules with sizes ranging from 3 to 510 genes; and
method III at g=0.86 generates 2 modules with 4 and 395
genes. We have also found that the modules obtained by
different cut methods have different structures, which is un-
derstandable because different cut methods emphasize differ-
ent types of correlations between genes. We found that struc-
tures of gene modules found in Figs. 3 and 4 are very
different from the remaining structures constructed from a
random matrix after the removal of small values of matrix
elements using the same cut methods. We believe that the

gene modules obtained by using the RMT are functional
modules and we are now experimentally evaluating their bio-
logical functionalities [15].

To clearly show that the gene coexpression networks re-
vealed by the RMT from the microarray coexpression data
indeed are of a biological origin different from structures

FIG. 3. (Color online) Coexpression networks constructed from
microarray profiles of yeast mutants by different cut methods with
cutoff value ¢. Lines represent correlations between genes. (a)
Method I: ¢=0 if |c| <g. (b) Method II: ¢=0 if c<g. (c) Method
II: ¢=0 if ¢>—q.
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FIG. 4. (Color online) Coexpression networks constructed from
microarray profiles of yeast cells response to environment change
by different cut methods with cutoff value ¢. Lines represent corre-
lations between genes. (a) Method I: ¢=0 if |c| <g. (b) Method II:
¢=0 if ¢<gq. (¢) Method III: ¢=0 if ¢>—q.

constructed from a random matrix, we studied network prop-
erties of two types of random correlation matrices using the
RMT. The first one is a completely random correlation ma-
trix constructed by assigning its elements with random val-
ues distributed within an interval [—1,1]. The second one is
the column shuffled microarray correlation matrix, where the
expression values of a each gene of a yeast cell response to
environment changes are randomly shuffled many times (100
times in this paper) before constructing its corresponding
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FIG. 5. (Color online) Nearest neighbor spacing distributions
(symbols) of random correlation matrices at different cutoff level g
constructed from (a) a 2000 X 2000 completely random matrix and
(b) shuffled microarray profiles of yeast cells response to environ-
ment changes. The solid line is the Wigner-Dyson distribution and
the dashed line is the Poisson distribution.

FIG. 6. (Color online) Networks at different cutoff level g con-
structed from (a) a completely random matrix and (b) shuffled mi-
croarray profiles of yeast cells response to environment changes.
Lines represent correlations between genes.

correlation matrix. Small values of matrix elements in these
two matrices are then removed by using cut method I to
construct CCMs and networks at a different cutoff levels. We
found that NNSDs of these randomized CCMs also exhibit
transitions from a Wiger-Dyson distribution to a Poisson dis-
tribution, as shown in Fig. 5. The critical cutoff value for the
completely random correlation matrix is ¢=0.999 97. Our
detailed analysis showed that the critical cutoff value in-
creases as the matrix dimension increases. For the shuffled
microarray profiles of the yeast cells response to environ-
mental changes, we found a Poisson distribution as
q=0.34. Figure 6 illustrates the gene networks constructed
from these two random correlation matrices at a different
cutoff value. Notably, the networks obtained from the ran-
dom correlation matrices are very different from the coex-
pression networks constructed from the original microarray
profiles, even though they are all described by the Poisson
distribution. Comparing with large highly connected clusters
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(hundreds of genes) in the coexpression network, the net-
work of the completely random matrix at g=0.999 97 only
has isolated small clusters of a few nodes (2-3); the network
of the shuffled microarray profiles at g=0.34 only has small
chainlike or treelike small clusters with size from 3 to 15
nodes. We searched the gene ontology (GO) concurrence of
these clusters using the GO term finder [19] of the Saccha-
romyces Genome Database. No significant GO term exists
for all top 20 large clusters, indicating that the clusters ob-
tained from the shuffled microarray profiles are not biologi-
cally meaningful.

In summary, we have provided evidence that genome-
wide gene coexpression, as represented by the CCMs of mi-
croarray profiles studied here, is described by the GOE sta-
tistics of the RMT. However, the successive removal of small
correlations in the CCM leads to a transition from the GOE
statistics to the Poisson statistics. Our results indicate that
although biological systems are very different from complex
physical systems [20], they follow the same universal
Wigner distribution and the Poisson distribution. The transi-

PHYSICAL REVIEW E 73, 031924 (2006)

tion we found may open a new avenue for the identification
of functional modules from microarray profiles. Different
from existing clustering methods, cutoffs or thresholds used
for separating genes in our approach is determined self-
consistently by the transition given by the random matrix
theory.
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