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ABSTRACT

Motivation: Accumulating evidence suggests that biological systems

are composed of interacting, separable, functionalmodules. Identifying

these modules is essential to understand the organization of biological

systems.

Result: In this paper,we present a framework to identifymoduleswithin

biological networks. In this approach, the concept of degree is extended

from thesinglevertex to thesub-graph,anda formaldefinitionofmodule

in a network is used. A new agglomerative algorithm was developed to

identify modules from the network by combining the new module def-

inition with the relative edge order generated by the Girvan-Newman

(G-N) algorithm.A JAVAprogram,MoNet, was developed to implement

the algorithm. Applying MoNet to the yeast core protein interaction

network from the database of interacting proteins (DIP) identified

86 simple modules with sizes larger than three proteins. The modules

obtained are significantly enriched in proteins with related biological

process Gene Ontology terms. A comparison between the MoNet

modules and modules defined by Radicchi et al. (2004) indicates

that MoNet modules show stronger co-clustering of related genes

and are more robust to ties in betweenness values. Further, the

MoNet output retains the adjacent relationships between modules

and allows the construction of an interaction web of modules provid-

ing insight regarding the relationships between different functional

modules. Thus, MoNet provides an objective approach to understand

the organization and interactions of biological processes in cellular

systems.

Availability: MoNet is available upon request from the authors.

Contact: luofeng@cs.clemson.edu

Supplementary information: Supplementary Data are available at

Bioinformatics online.

1 INTRODUCTION

System level understanding of biological organization is a key

objective of the post-genomic era. Accumulating evidence suggests

that biological systems are composed of interacting modules of

individual components (Barabasi and Oltvai, 2004; Hartwell

et al., 1999; Ravasz et al., 2002; River and Galitski, 2003). With

the recent advance in high-throughput experimental technologies,

more and more large-scale biological networks are being defined.

Identifying the modular structure of these biological networks is

important to understand the organization and interaction of the

cellular processes they represent. Here, we present a new framework

for exploration of the modular organization in protein interaction

networks.

Previous studies of protein interaction networks have focused on

detecting highly connected protein clusters [e.g. Fig. 1B (1)] (Snel

et al., 2002; Spirin and Mirny, 2003; Wilhelm et al., 2003; Bader
and Hogue, 2003; Bu et al., 2003; Xiong et al., 2005; Chen and

Yuan, 2006). However, these approaches neglect many peripheral

proteins that connect to the core protein clusters with few links,

even though these peripheral proteins may represent true interac-

tions that have been experimentally verified. In addition, biologi-

cally meaningful protein modules that do not have highly connected

topologies are ignored by these approaches. Furthermore, protein

clusters detected by these approaches are usually isolated from each

other. Thus, it is not possible to obtain relationship among clusters.

Recently, clustering methods (Pereira-Leal et al., 2004; Arnau
et al., 2005) have been applied to protein interaction networks

to identify biological modules. Application of clustering analysis

to protein interaction networks usually involves transforming them

into weighted networks. Pereira-Leal et al. (2004) proposed an

approximate solution to weight a protein interaction based on the

number of experiments that support the interaction. River and

Galitski (2003) and Arnau et al. (2005) weighted the distance

between two proteins by the length of the shortest path between

them. However, this approach usually generates many identical

distances and leads to a ‘tie in proximity’ (MacCuish et al.,
2001) problem during hierarchical clustering. Arnau et al. applied
the hierarchical algorithm iteratively to eliminate the ‘tie in prox-

imity’ problem. However, repetitive hierarchical clustering may not

be computationally feasible for a large protein interaction networks

at a whole-genome level.

Alternative approach for identifying modules in networks is to

divide the network into sub-networks, and then to identify modules

based on their topology. Girvan and Newman (2002) proposed the

concept of edge betweenness, which is defined as the number of

shortest paths between all pairs of vertices that run through the edge.

Edges between modules tend to have more shortest paths running�To whom correspondence should be addressed.
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through them than do edges inside modules, and thus have higher

betweenness values. The deletion of edges with high betweenness

can separate the network, while keeping the modular structure in the

network intact. By gradually removing the edge with the highest

betweenness value, Girvan-Newman proposed a divisive algorithm

(G-N algorithm) to construct a tree to find community structures in

an unweighted and undirected network. As the original G-N algo-

rithm does not include a clear definition of module, it does not

formally determine which parts of the tree are modules. Radicchi

et al. (2004) combined the G-N division process with two new

module definitions and gave a new self-contained algorithm to

identify modules from a network. However, their module definitions

do not capture some topologies that appear in natural module (see

detail in section 2). Newman (2004) and Guimera and Amaral

(2005) very recently proposed global optimization algorithms

to partition the network into modules. Each of these algorithms

requires complete information about the whole network. However,

as many of the currently available biological networks derived from

high-throughput experimentation are incomplete, global optimi-

zation algorithms may not be applicable for existing biological

networks.

In this paper, we extend the concept of degree from vertices to

sub-graphs and propose a new formal definition of a module in a

network. By combining this new module definition with the relative

edge order generated by the G-N algorithm, we proposed a new

agglomerative algorithm to identify modules in the network. This

approach has been implemented in a JAVA-based application

termed MoNet.

2 DEFINITION OF MODULE

Several module definitions based on different criteria have been

proposed (Wasserman and Faust, 1994; Newman, 2004; Radicchi

et al., 2004). Generally, a module in a network is a sub-network

that has more internal edges than external edges. Figure 1A show a

sample network containing three modules that have very different

topologies, and yet each appears to be a module, intuitively. A

module definition must be able to capture these topological

distinctions.

A protein interaction network can be described by a graph G ¼
(V, E), where the set V of vertices represents proteins and the set E

of edges represents interaction between proteins. In the context of

this paper, the graph is synonymous with the network. In graph

theory, the degree of a vertex, namely number of edges connected

to it, has been commonly used to quantify the connectivity of the

vertex. Radicchi et al. (2004) modified the degree definition of

vertices in an undirected graph and proposed two module defini-

tions: strong modules and weak modules. They defined the indegree

of a vertex in an undirected graph as the number of edges connecting

it to other vertices in the same module and the outdegree of a vertex

in an undirected graph as the number of edges connecting it to the

vertices that do not belong to the same module. For a strong module,

each vertex in the module has higher indegree than outdegree. For a

weak module, the sum of indegree value of all vertices in the sub-

graph is greater than the sum of outdegree values of all vertices.

However, these definitions limit the types of module topologies. For

example, the determination of the strong module can be strongly

influenced by the degree of a single vertex. As shown in Figure 1A,

all three sub-graphs are not strong modules because each sub-graph

has at least one vertex that does not have more indegree edges than

outdegree edges. Only one strong module, Module 2 in Figure 1B,

can be identified by removing the highly connected peripheral node

from the Module 1 in Figure 1A. On the other hand, in the weak

module definition, the edges inside a sub-graph have been counted

multiple times. Even if a sub-graph has the same number of external

edges as internal edges, or even more external edges than internal

edges, it may still be considered to be a weak module due to this

duplication in counting (e.g. Module 3 in Fig. 1B).

To overcome these limitations, we have extended the concept

of degree from the individual vertex to the sub-graph in order to

characterize the connectivity of a sub-graph within a graph:

DEFINITION 1. Given a graph G, let U be a sub-graph of G
(U � G). The number of edges within U is defined as the indegree
of U, ind(U). The number of edges that connect U to the remaining
part of G (G-U) is defined as the outdegree of U, outd(U).

Fig. 1. Sample network topologies. (A) A sample network including three

different topological modules (1–3), which are intuitively separated by the

gray circles. (B) Modules identified from this sample network using

previously described approaches: (1) highly connected networks; (2) strong

modules (Radicchi et al., 2004); (3) weak modules (Radicchi et al., 2004).

(C) An example of a sub-network that would be defined as a strong module,

which is not a MoNet module.
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DEFINITION 2. The modularity M of a sub-graph U in a given
graph G is defined as the ratio of its indegree, ind(U), and
outdegree, outd(U):

MU ¼ indðUÞ=outdðUÞ

This modularity definition will let us easily define whether a

sub-graph is a module:

DEFINITION 3. Given a graph G, a sub-graph U � G is a module
if MBU > 1.

Amore general version of the module definition could be MU > S,

S � 1. However, it is difficult to determine a general best value of

S, which may vary according to different networks. Here, we just

choose 1 as it is the smallest value that satisfies the general under-

standing of modules in a network. To further distinguish different

levels of modules in the network, we define the complex module and

the simple module as following:

DEFINITION 4. A sub-graph module is a complex module if it can
be separated into at least two modules by removing edges inside it
using the G-N algorithm. Otherwise, it is a simple module.

Although this module definition is simple, it directly captures

the general understanding of the module concept. Similar to the

approach of Radicchi et al. (2004), this definition is based on the

relationship between insider links and outsider links, rather than

relying on insider links only (Spirin and Mirny, 2003). This module

definition is stricter than the weak definition of Radicchi et al.
A sub-graph being module by this definition is also a weak module.

However, there is no relationship between this module definition

and the strong definition of Radicchi et al. Figure 1C shows an

example of a sub-graph that would be a strong module, but is not a

module based on this new definition. Furthermore, this new defini-

tion, based on the connectivity of sub-graphs, makes it possible

to define the adjacency relationship between modules:

DEFINITION 5.Given two modules U, V�G,U and V are adjacent
if U\V¼g and there are edges in G directly connecting vertices
in U and V.

3 ALGORITHM

In this section, a new agglomerative algorithm is presented to identi-

fy simple modules within a protein interaction network, which has

been implemented in a JAVA application, MoNet. The theoretical

foundations for this algorithm are as follows.

THEOREM 1. Given two modules U, V � G, If U, V are adjacent,
the sub-graph W ¼ U [ V is also a module.

The proof of Theorem 1 is straightforward. And from the

definition of complex module and simple module:

COROLLARY 1. The separation of a simple module into two sub-
graphs using the G-N algorithm can at most generate one module.

Theorem 1 suggests that merging two adjacent modules will

generate a complex module. Corollary 1 implies that a simple

module can be created by either merging two non-modules or by

merging a module and a non-module.

Similar to conventional agglomerative algorithms, our agglom-

erative algorithm initially puts each vertex into a singleton

sub-graph. All of these singleton sub-graphs have no internal

edge and at least one external edge. Then, the sub-graphs are gradu-

ally merged to find the simple modules in the network. There are

two important characteristics of our agglomerative algorithm—the

occurrence of merging and the order of merging.

Based on the above theorems, only two kinds of mergence are

allowed: the mergence between two non-modules; and the mer-

gence between a non-module and a module. As a key goal of

this approach is to identify simple modules within the network,

the mergence between two modules is prevented. Note that the

network itself as a whole is a module by Definition 4. If the network

is a complex module, the agglomerative algorithm should generate

all simple modules inside the network. On the other hand, if the

network itself is a simple module, the agglomerative algorithm

will finally recover the whole network.

As mentioned above, the order of edge deletion based on the

betweenness value in the G-N algorithm reflects the relative rela-

tionship between edges inside modules and edges between modules

in the network. The later the edge is deleted (i.e. the lower the

betweenness value), the more likely it is an edge inside a module.

In MoNet, the edge deletion order generated by the G-N algorithm

is reversed and used as the merging order in the agglomerative

algorithm. By gradually adding edges to the sub-graphs in the

reverse order of deletion by the G-N algorithm, MoNet assembles

the singleton sub-graphs into simple modules. This merging scheme

distinguishes different levels of modules, and generates simple

modules as large as possible without merging with more loosely

related sub-graphs.

The agglomerative algorithm implemented in MoNet is summa-

rized as follows:

(1) The G-N algorithm is run on the network and the order of

edge deletion is obtained.

(a) The betweenness scores for each edge in the network are

calculated.

(b) The edge with the highest betweenness is identified and

removed from the network.

(c) Step 1 is repeated until no edges remain in the network.

(2) An edge list is created in the reverse order of edge deletion

in Step 1.

(3) The agglomerative algorithm is initialized by setting each

vertex as a singleton sub-graph with no edges. All singleton

sub-graphs are labeled as mergable.

(4) An edge is removed from the top of the edge list.

(5) If the edge connects vertices in the same sub-graph, it is

added to the sub-graph.

(6) If the edge connects vertices in two different sub-graphs:

(a) If both sub-graphs are mergable, the two sub-graphs are

evaluated based on the module definition.

(i) The edge is retained if merging occurs:

� between two non-modules, or

� between a non-module and a module

(ii) Otherwise, the two sub-graphs are set as non-mergable.

(b) If one of the sub-graphs is non-mergable, the other

sub-graph is set as non-mergable.
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(7) Repeat steps 4–7 until no edges are left in the edge list.

The computational complexity of the MoNet algorithm is

M2N + M � O(M2N), where M2N is the time complexity for

the calculation of edge betweenness; M is the number of edges

and N is the number of vertices.

4 EXPERIMENTS AND RESULTS

4.1 Identification of modules from yeast protein

interaction network

The yeast core protein interaction network downloaded from the

DIP database (version ScereCR20041003) (Xenarios et al., 2002)
was generated by filtering the large high-throughput protein

interaction data using two different computational methods—the

Expression Profile Reliability Index and the Paralogous Verification

Method—to improve reliability of the interaction data (Deane et al.,
2002). After removal of all self-connecting links, this final core

protein interaction network included 2609 yeast proteins and

6355 interactions, and consists of a single large component network

of 2440 interconnected proteins (6241 links) and 65 small compo-

nents with sizes no more than 7 interconnected proteins. We applied

MoNet to analyze the large component of the yeast core protein

interaction network.

MoNet identified 86 simple modules with size larger than three

from the large component of the yeast core protein interaction

network (see Supplementary Table 1). The largest module has

201 proteins. All 86 simple modules together include 1651 of the

2440 proteins in the large component. Supplementary Figure 1.

shows all 86 MoNet modules. The topologies of modules are

diverse, including linear, star, highly connected and others.

4.1.1 Evaluation of MoNet modules using Gene Ontology To

gain insights on the shared underlying biological processes of

the modules, we utilize Gene Ontology annotations. We first cap-

tured the annotation of each protein in the network using Gene

Ontology downloaded from the Saccharomyces Genome Database

(SGD) (Cherry et al., 1998). Manual inspection of the annotations

showed that most modules appeared to be enriched for proteins

related to similar biological processes (Supplementary Table 1).

For example, all 14 proteins in module 34 are related to vacuolar

acidification, including 10 components of the hydrogen-

translocating V-type ATPase complex; all 12 proteins of module

40 belong to the anaphase-promoting complex.

To further substantiate the biological significance of MoNet mod-

ules, we quantified GO biological process term co-occurrences

using the SGD GO Term Finder (Hong et al., http://www.

yeastgenome.org/). The results show that most modules (only

one exception) demonstrate statistical over-representation of GO

terms beyond what would be expected by chance (see Supplemen-

tary Table 2). The GO Term Finder calculates a P-value that reflects
the probability of observing the co-occurrence of proteins with a

given GO annotation in a certain module by chance based on a

binomial distribution. The lower the P-value of a GO term, the more

statistically significant a module is enriched in the GO term. The

lowest P-values of GO term of the 86 modules range from 2.81E-2

to 5.87E-69 with an average 2.978E-17. In this multiple compar-

isons test for each module, the P-value cutoff, namely the alpha

level, is chosen by dividing 0.05 (5% chance of committing a Type I

error) by the number of hypotheses that were tested in the module.

As a result, only Module #77 does not have a significant GO term

co-clustering. The frequencies of GO terms, which are defined as

the percentage of proteins in the module annotated with indicated

GO term out of the total number of proteins in that module, range

from 5.7 to 100% in 86 modules with an average 63.07%. The

modules with lower GO term frequency usually have a star topol-

ogy, which appear to represent interconnections among related bio-

logical processes.

4.1.2 Robustness of MoNet modules In comparison with shortest

path approaches, ‘tie in proximity’ in betweenness values calculated

using G-N algorithm are relative rare. For the yeast core protein

interaction network, there are 2978020 distances based on all short-

est paths that range from 1 to 13. Clearly there are a lot of identical

distances between vertices. Furthermore, two connected proteins

will have the same distance, 1, no matter if they are in the same

module or different modules. Distances based on shortest paths thus

cannot distinguish these differences, which strongly affects the

results of clustering algorithms based simply on the distance scores.

On the other hand, the betweenness scores of 6241 edges of yeast

core protein interaction network range from 2 to 82869.09, which

implies that identical edge betweenness scores are much more lim-

ited. In fact, the largest number of identical betweenness values is

669. Because MoNet picks an edge from the edges with the same

betweeness values at random, different runs may yield different

order of edge deletion lists and thus result in different modules.

However, it is important to point out that edges inside a module will

have higher chance to tie in betweenness values than edges between

modules. A robust module definition should generate modules that

are rarely affected by the tie in betweenness problem following

different runs.

To determine the effect of ties, we have run MoNet on the largest

component of yeast core protein interaction network 10 times.

For each pair of proteins in the modules, the fraction of times

that they are assembled in the same modules can be used to evaluate

the robustness of the results to the effects of ties in betweenness. In

Supplementary Figure 2, the fraction of times that proteins are

grouped in the same modules for the all of the, 10 largest and

50 smallest modules obtained by 10 runs is plotted. As shown,

the MoNet modules are consistent and robust; most of these repro-

ducibility values in MoNet modules are equal to 1 (purple boxes in

Supplementary Figure 2). 97.65% proteins belong to the same mod-

ules in each of the 10 runs. The coefficients of variation (standard

deviation over mean) of the number of nodes, the number of edges

and the number of modules (size larger than 3) are only 0.0036,

0.0017 and 0.0056, respectively. These results suggest that the

module definition used in the MoNet algorithm is robust to ties in

betweenness for the identification of functional modules in this

biological network.

4.2 Comparison with Radicchi’s module definitions

To test the effectiveness of this new module definition in compari-

son with other approaches, we applied the same agglomerative

algorithm using the weak and strong module definitions proposed

by Radicchi et al. (2004) to the same large component of yeast core

protein interaction network. A total of 30 strong modules with

size larger than 3 were obtained. The largest strong module has

22 proteins. In total, the 30 strong modules include only 252 of the

F.Luo et al.
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2440 large component proteins. At the same time, 155 weak mod-

ules with size larger than 3 were identified. The largest weak module

has 75 proteins. There are a total of 1986 proteins in all 155 weak

modules. Thirty-eight of the 155 weak modules are identical to

simple MoNet modules; 75 weak modules have corresponding

MoNet simple modules (see detail in next paragraph); and 42 mod-

ules are obtained using the weak definition only. Similarly, we used

the SGD GO Term Finder to quantify GO term over-representation

testing strong and weak modules. All 30 strong modules showed

significant co-occurrence of specific GO terms. However, the aver-

age of the lowest P-values of GO terms for the 30 strong modules

is 3.37E-15, which is higher than the average of the lowest P-values
for the 86 simple modules obtained by MoNet (2.98E-17).

Three weak modules did not show significant GO terms co-

occurrence. The average of the lowest P-values of GO terms for

the 155 weak modules is 3.82E-13, and is again higher than of the

average of the 86 MoNet simple modules. The average of the lowest

P-values of 113 weak modules that have corresponding or identical

MoNet simple modules is 1.02E-14, while the average of 42 mod-

ules obtained using the weak definition only is 6.62E-9. The fre-

quency of the lowest P-values of GO term of the 30 strong modules

ranges from 29% to 100%, with an average of 82%. The frequency

of GO term with lowest P-values of 155 weak modules ranges from

7% to 100%, with an average of 62.72%. The average frequency of

MoNet modules is lower than strong modules, and slightly higher

than weak modules.

Figure 2A shows the distribution of the lowest P-values of GO
terms for modules with sizes larger than 3 obtained by the different

module definition methods, grouped into different P-values bins.

There are fewer high P-value modules and more low P-value mod-

ules obtained byMoNet than in the weak module and strong module

groups. Supplementary Table 3 lists corresponding relationship

between 113 weak modules and 86 MoNet modules. There are

two types of cases in which a MoNet module is defined as corre-

sponding to a weak module. In the first type, one weak module may

include one MoNet module. Because the weak module definition

is looser than the MoNet module definition, a sub-graph that is

a MoNet module can be merged with more non-module sub-graphs

and still be a weak module. For example, 35 of 45 proteins inMoNet

Module #8 belong to ‘rRNA processing’ (lowest P-value GO term)

with a P-value of 1.87E-48. On the other hand, the corresponding

weak module 3 contains 57 proteins, whose lowest P-value GO term

is still ‘rRNA processing’ (38 out of 57 proteins), but now with a

P-value of 3.85E-48. In the second case, one MoNet module may

include several weak modules. Because sub-graphs that are weak

modules are not necessarily MoNet modules, the agglomerative

algorithm will continue the merging process until the formation

of a MoNet simple module. For example, 14 of 16 proteins in

MoNet Module #28 belong to GO term ‘protein biosynthesis’

with a P-value of 3.3E-12. This MoNet module corresponds to

two weak modules #75 and #79. Each of these two weak modules

has 8 proteins, 7 of them belonging to ‘protein biosynthesis’, with

P-values of 1.33E-6 for each. For the lowest P-values of GO term

for each weak module, Supplementary Table 3 lists the P-value of
that GO term in the corresponding MoNet modules. There are only

two MoNet modules that do not have corresponding weak modules.

Figure 2B plots the lowest P-values of each weak module against

the lowest P-values of the corresponding MoNet modules. In this

plot, most of points lie below the y ¼ x line, indicating that most

of the MoNet modules have lower P-values than the corresponding

weak modules. This comparison suggests that using the over-

representation of GO terms as a measurement for biological impli-

cations, our module definition outperforms the weak or strong

module definition of Radicchi et al. (2004).
Because the coverage of proteins identified based on our module

definition is less than those based on weak module definition, it is

important to evaluate whether this loss is compensated by other

gains. Unless we have a complete knowledge of each module, it is,

however, difficult to establish a gold standard for determination the

gain. We proposed to evaluate the significant of modules based on

their confidence level. The loss of coverage by MoNet may not be

important if only the less confidence modules are lost. We applied

the classification scores developed d by of Qi et al. (2006) as an

independent criterion to evaluate significance of the MoNet

modules and weak modules. Qi et al. (2006) used the support vector
machine to classification all possible Yeast protein–protein inter-

action (PPI) based on 162 features. A PPI with higher classification

score will have higher likelihood of being a true positive interaction.

A B

Fig. 2. A comparison of GO term clustering in modules using different definitions. (A) A comparison of the distribution of lowest P-value GO terms of modules

with size larger than 3 obtained using different module definitions, grouped in different P-value bins. (B) P-values of modules obtained based on the definition

implemented in MoNet plotted against the P-values of the corresponding weak modules composed of similar protein sets. The diagonal line is a plot of y ¼ x.
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After establishing a score threshold, Qi et al. provided scores for top
26205 PPIs. In our case, the score of a PPI was set to 0 if its score is

not provided by Qi et al. We then used the average of classification

scores of all PPIs inside a module as the confidence score of the

module. A module with higher score will have higher likelihood

of being a true biological module. The average confidence scores

of MoNet modules, weak modules with and without corresponding

MoNet modules are 0.249345, 0.241069 and 0.173791, respec-

tively. Two tails T test of the confidence scores of MoNet modules

vs. those of weak modules with corresponding MoNet modules was

0.74353. In contrast, two tails T test of confidence scores of MoNet

modules versus those of weak modules without corresponding

MoNet modules was 0.010714; two tails T test of confidence scores

of weak modules with corresponding MoNet modules versus those

of weak modules without corresponding MoNet modules was

0.019869. These results suggested that there is a significant differ-

ence between the confidence level of MoNet modules and those

of the weak modules without corresponding MoNet modules. The

sub-graphs that do not follow our module definition are actually

less significant than those following our module definition. These

results implied that our module definition can identify modules

with higher confident level; and the loss of proteins (1651 versus

1986) in MoNet modules is appropriate.

To further compare the coverage of proteins in the same biologi-

cal process, we examed the coverage of two biological process GO

terms—‘mRNA metabolism’ and ‘Golgi vesicle transport’, which

are relatively far away from each other in the GO tree (Supplemen-

tary Figure 5), in the MoNet modules and weak modules. Supple-

mentary Tables 4 and 5 list both MoNet and weak modules that are

significant in these two GO terms. For ‘mRNAmetabolism’, MoNet

modules cover 105 proteins comparing to 101 proteins covered by

weak modules. There are no weak modules without corresponding

MoNet module. For ‘Golgi vesicle transport’, MoNet modules

cover only 71 proteins compared to 81 proteins covered by weak

modules. This is because that there are two weak modules (totally

13 out of 21 proteins) that do not have corresponding MoNet mod-

ules. In summary, the coverage of proteins byMonet and Radicchi’s

modules for these two biological processes is very similar. As there

are 42 weak modules that do not have corresponding MoNet

modules, it is not surprising that the coverage of protein in weak

modules will be higher. However, the trade off in increase coverage

is offset by the increase in false positive cluster membership as

judged by the increase in co-clustering P-values.
To test the robustness of weak and strong modules, we assembled

the strong and weak modules using the edge deletion list generated

by 10 MoNet runs used before. Supplementary Figure 3 plots the

fractions of times proteins are grouped in the same modules in all

10 largest and 50 smallest weak modules in 10 runs. Supplementary

Figure 4 plots the fractions of times that proteins are grouped in

the same modules in the 10 largest strong modules in 10 runs,

respectively. As shown, the weak and strong modules that are

generated following multiple runs are less consistent than those

generated with the MoNet modules definition. Only 91.92% pro-

teins belong to the same weak modules and 74.44% proteins belong

to the same strong modules in 10 runs. Furthermore, the fractions

of proteins in many modules are not close to 1. In comparison with

result of MoNet modules in Supplementary Figure 2, the weak

and strong modules are more dramatically affected by the tie in

betweenness value and are less consistent between multiple runs.

The coefficients of variation of the number of nodes, the number of

edges and the number of modules (size larger than 3) in weak

modules are 4.28, 7.12, 1.96 times greater than those of MoNet

modules. The coefficients of variation of the number of nodes, the

number of edges and the number of modules (size larger than 3) in

strong modules are 11.03, 22, 5.07 times greater than those of

MoNet modules. This observation thus suggests that weak and

strong module definitions are not as robust to the tie in betweenness

issue as the MoNet module definition when using the G-N algorithm

to separate the network.

4.3 Interconnection between modules

In order to gain insight into how the modules obtained by MoNet

relate to each other within the cellular system, we assembled an

interconnection network of the 86 MoNet modules from the large

component of the yeast core protein interaction network. The

network of modules was constructed as follows: for each adjacent

module pair, the edge that is deleted last by the G-N algorithm was

selected from all the edges that connect two modules to represent

the link between two modules. A total of 82 of 86 modules are

connected to each other. The network of modules obtained is highly

connected, which suggests that a yeast cell is a complex web of

highly interconnected functional modules. To facilitate discussion,

we show the 30 modules with lowest P-values in Figure 3. The

width and grayscale of edges reflects the order of the deletion in the

G-N algorithm, which also represent relative relationships among

modules (Fig. 3). The wider and darker the line is, the later the edge

it represents is deleted by the G-N algorithm, which implies closer

relationships between the modules that are linked together. Among

these links, some of them are known to be functionally close. For

example, two ribosome biogenesis modules (#4, #8) connect to an

mRNA catabolism module (#35) with very heavy and wide links.

Other links connect modules that are functionally related. For

example, the nucleocytoplasmic transport module (Module #1)

serves as a hub connecting the protein biogenesis modules, RNA

metabolism and vesicle-mediated transport modules. Finally, some

of these connections are novel and currently unknown from the

available experimental data. In summary, although these relative

relationships between modules are based on the structural informa-

tion in the network (edge betweenness scores), many of them appear

to reflect true biological interconnected functionality.

Furthermore, to gain insights into the relationship among mod-

ules in the same biological process, we sampled two large GO

categories, ‘mRNA metabolism’ and ‘Golgi vesicle transport’, and

assembled a network for each of these two GO categories. As shown

in Supplementary Figures 6, 5 of 8 modules in ‘Golgi vesicle trans-

port’ are highly significant in over-representation of the GO term

and are also highly connected together. Similarly, 4 of 5 modules

that are highly significant in over-representing ‘mRNAmetabolism’

are also highly connected together.

5 CONCLUSION AND DISCUSSION

Identifying separable modules within biological systems is essential

for the understanding of the high-level organization of the cell. In

this study, we extended the concept of degree from the vertex to the

sub-graph and proposed a new formal definition of module within

a network based on the degree definition of the sub-graph. A new

agglomerative algorithm was designed to assemble simple modules
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from protein interaction networks, using the relative order of edges

based on the betweenness values generated by the G-N algorithm

as the merging order. Our new approach is based solely on the

topological characteristics of the network, without transformation

of the network into a weighted graph.

Although the choice of S ¼ 1 in our module definition is simple,

it captures the general understanding of a module and of module

topologies. Moderately increasing S will lead to the identification

of tighter modules with lower average P-values. However, the

modules identified with higher S have similar confidence levels.

For example, two tails T test of the confident scores of original

MoNet modules versus those of modules identified by MoNet based

upon module definition with S ¼ 2 is 0.874908. On the other hand,

larger value of S may lead to the merging of large modules in

the agglomerative algorithm. In the extreme case, the agglomerative

algorithm will ultimately identify the whole network as one module,

which has all inside links and no outside links. Supplementary

Figure 7 shows how the number of proteins in the largest module

changes with different S values. The number has a jump when

S� 1; keeps stable in the range 1� S < 2 and increase dramatically

after S > 2.

Application of MoNet to the large component of DIP yeast core

protein interaction network generated 86 modules significantly

enriched for functional Gene Ontology terms. Comparison with

the weak and strong module definitions of Radicchi et al. (2004)
showed that the P-values of MoNet modules obtained are in

general lower, while maintaining similar frequencies of proteins.

Tests showed that the MoNet modules have significantly higher

confidence levels than sub-graphs that do not follow our module

definition. Furthermore, the membership of MoNet modules are

shown to be more robust than the weak and strong modules

following multiple runs and are only slightly affected by the tie

in betweenness value.

Another advantage of the MoNet approach is that it facilitates the

description of the network of modules, allowing for the construction

of a network of adjacent modules. Furthermore, the relative order

of linking edges between adjacent modules by the G-N algorithm

captures the relative relationship between the modules—the later

the linking edge is deleted by the G-N algorithm, the closer the

adjacent modules are linked together. Evaluation of the module

connections suggests that the relative interactions between MoNet

modules may represent actual links between biological pathways.

Although the yeast protein interaction network used in this study

has been filtered by two computation algorithms, there may still be

false positive interactions in the dataset, which would be treated

equally with true positive interactions by MoNet. This may be one

of the reasons that some of the modules produced by MoNet contain

proteins associated with different biological processes. Another

limitation of MoNet is the dependency on the G-N algorithm.

Computation by the G-N is resource intensive. In addition, the

performance of the G-N algorithm is dependent on the completeness

of the network organization to generate the order of edges. Even

though the agglomerative assembly portion of MoNet identifies

modules locally, the incompleteness of the protein interaction

data may still affect the final membership of the resulting modules

because of the global characteristics of G-N algorithm.

Fig. 3. Interaction network of modules. A section of the interconnected module network with 30 functional modules that have the lowest P-values of most

significant GO term in each module. Each node denotes a module. Each edge denotes a connection between twomodules.Width and gray scale of edges reflects

the order of deletion in the G-N algorithm. The wider and darker the line is, the later the edge it represents is deleted by the G-N algorithm, which implies closer

relationships between the modules that are linked together. Modules (nodes) are assigned to biological process categories by summarizing the GO annotation of

their constituent proteins. The graph was produced using Pajeck (Batagelj and Mrvar, http://vlado.fmf.uni-lj.si/pub/networks/pajek/).
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In conclusion, the approach for modular decomposition of protein

interaction networks implemented in MoNet provides an objective

approach to the understanding of the organization and interactions

of biological processes. With the increasing amount of protein

interaction data available and the development of high-throughput

approaches for defining genetic interaction networks (e.g. Basso

et al., 2005), MoNet may facilitate the construction of a more com-

plete view of the composition and interconnection of functional

modules and the understanding of the organization of the whole

cellular system.
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