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Genomic techniques commonly used for assessing distributions of microorganisms in the environment often
produce small sample sizes. We investigated artificial neural networks for analyzing the distributions of nitrite
reductase genes (nirS and nirK) and two sets of dissimilatory sulfite reductase genes (dsrAB1 and dsrAB2) in
small sample sets. Data reduction (to reduce the number of input parameters), cross-validation (to measure
the generalization error), weight decay (to adjust model parameters to reduce generalization error), and
importance analysis (to determine which variables had the most influence) were useful in developing and
interpreting neural network models that could be used to infer relationships between geochemistry and gene
distributions. A robust relationship was observed between geochemistry and the frequencies of genes that were
not closely related to known dissimilatory sulfite reductase genes (dsrAB2). Uranium and sulfate appeared to
be the most related to distribution of two groups of these unusual dsrAB-related genes. For the other three
groups, the distributions appeared to be related to pH, nickel, nonpurgeable organic carbon, and total organic
carbon. The models relating the geochemical parameters to the distributions of the nirS, nirK, and dsrAB1 genes
did not generalize as well as the models for dsrAB2. The data also illustrate the danger (generating a model that
has a high generalization error) of not using a validation approach in evaluating the meaningfulness of the fit
of linear or nonlinear models to such small sample sizes.

One of the goals of microbial ecology is to understand which
abiotic factors control the abundance and distribution of mi-
croorganisms in the environment. Environmental microbial
ecology is beginning to achieve this goal in a wide range of
habitats (6, 8, 30, 59) with the advent of molecular techniques
that allow a significant part of the indigenous populations to be
identified to some phylogenetic or functional level. For exam-
ple, microbial distributions and diversity have been examined
in relation to spatial factors (1), freshwater and ocean envi-
ronments (51), and soil type (48, 50). Distribution or diversity
has also been linked to dominant environmental characteristics
or seasonal variations (29, 43, 57, 63, 68). To identify the
critical factors that influence population distribution in com-
plex environments, sophisticated data analysis techniques are
needed to model the relationships between microbial distribu-
tions and environmental characteristics (14, 66).

Cloning and sequencing of functional genes from environ-
mental samples are powerful methods for investigating the
ecology of microorganisms. These techniques have advanced
our understanding of the types of microorganisms and degra-
dation capabilities found in various habitats (6, 12, 15, 43, 51).
However, relating the population data generated by these tech-
niques to environmental characteristics, such as geochemical

measurements, can be challenging. One problem is the small
sample size that is typical in these studies (66). The time and
difficulty of generating and characterizing clone libraries that
adequately cover the microbial populations often limit the
sample size. Another characteristic is the large number of
measurements for each sample. Finally, the underlying rela-
tionships between the microbial populations and their environ-
ment are often complex and nonlinear.

Various statistical and mathematical tools are available for
relating the distributions of microorganisms to environmental
characteristics. One powerful nonlinear approach that has
been used to analyze such data is artificial neural networks
(ANNs) (10, 17, 39, 45, 46, 50). ANNs are interconnected
layers of simple computational units that map the relationships
between predictor and target vectors. A computational unit
sums its inputs and computes its present state from a nonlinear
activation function based on this sum. Outputs from each layer
are passed onto the next layer via weights that can be opti-
mized to reflect the strength of the connection. Adjacent layers
are typically fully interconnected. Bishop (7), Haykin (25), and
Jain et al. (27) provide basic introductions to ANN theory.

ANN models are more general than linear methods. Hornik
et al. (26) have shown that with a sufficiently complex archi-
tecture, an ANN is capable of approximating any continuous
function. These approximations can be very precise if the train-
ing set is sufficiently large (64). ANNs are also more general
than other classes of nonlinear statistical methods, such as
general additive models, because the form of the nonlinear
function does not have to be specified. They can also general-
ize to new data sets and degrade gracefully in the presence of
noisy data. ANNs have demonstrated some of these potential
advantages when applied to microbial data in studies compar-
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ing linear methods with ANNs (10, 45). ANNs are becoming a
primary modeling tool in biotechnology (2).

This paper describes the use of ANN models to analyze
clone libraries for two sets of functional genes (dissimilatory
sulfite reductase and nitrite reductase genes) isolated at the
U.S. Department of Energy’s Natural and Accelerated Biore-
mediation Research (NABIR) Program field site in Oak
Ridge, Tenn. (55). Our general approach (Fig. 1) was to divide
the clone libraries into phylogenetic groups based on sequence
similarity and investigate whether the groups could be linked
to the geochemistry of the samples. This process began with a
reduction of the geochemical data by principal component
analysis. Next, linear and nonlinear ANN models were devel-
oped to relate the reduced geochemical data to the distribu-
tions of the clone groups. We examined weight decay and
leave-one-out cross-validation as methods for managing gen-
eralization error in the models. The influences of the geo-
chemical principal components on the final model predictions
were assessed using a normalized importance index that was
computed by measuring the proportional increase in data mis-
fit following effective removal of each principal component
from the model. The results were used to identify the geo-
chemical measurements that had the greatest influence on the
distributions of the clone groups. The critical need for assess-
ing generalization error and the utility of the weight decay
method in constructing predictive models are discussed.

MATERIALS AND METHODS

Sampling sites. One background and five contaminated wells were sampled at
the NABIR Field Research Center in Oak Ridge, Tenn. The contaminated
samples (FW-010, FW-005, FW-015, FW-003, and TPB-16) were taken at varying
distances from the former S-3 waste disposal ponds (Fig. 2), resulting in differ-
ent levels of contamination in the samples. The background sample, FW-300,
was from an uncontaminated area that has soil characteristics similar to those
originally found near the S-3 waste ponds. Geochemical parameters that were
measured include pH, dissolved oxygen (DO), total organic carbon (TOC), non-
purgeable organic carbon (NpOC), nitrate, nickel, technetium-99 (Tc-99), sul-
fate, and uranium. The geochemistry of the sampling sites has been well de-
scribed (66). In general, the contaminated sites have low pH, high nitrate, high
Tc-99, high sulfate, low DO, and variable NpOC.

Molecular methods. The extraction and purification of DNA, amplification of
nirS, nirK, and dsrAB genes, cloning, restriction fragment length polymorphism
(RFLP) analysis, and sequencing were done as described by Yan et al. (66).
Briefly, bacteria were harvested by centrifugation (10,000 � g, 4°C for 30 min),
and the biomass pellets were stored at �80°C until they were used for DNA
extraction. DNA was extracted as previously described (67), and the precipitated
DNA was further purified. The partial gene sequences were amplified in a 9700
Thermal Cycler (Perkin-Elmer, Wellesley, Mass.) with previously described
primer pairs (9, 28, 66) and reaction conditions (66). The PCR parameters were
selected to minimize artifacts as described by Qiu et al. (49). Cloning was done
using a pCR2.1 vector from a TA cloning kit, and competent Escherichia coli cells
were transformed according to the manufacturer’s (Invitrogen, Carlsbad, Calif.)
instructions. RFLP analysis of clone libraries was done as described by Yan et al.
(66). Briefly, inserts from picked colonies were amplified with the TA primers
specific for the pCR2.1 vector (TAF: 5�GCC GCC AGT GTG CTG GAA TT 3�
and TAR: 5�TAG ATG CAT GCT CGA GCG GC 3�). The inserts were visu-
alized on a 1.5% agarose gel, and PCR products of the correct size were digested
with 0.1 U of MspI and RsaI (Gibco-BRL, Carlsbad, Calif.) overnight at 37°C.
Digested fragments were separated by electrophoresis (7 V/cm, 4 h) in 3.5%
Metaphor agarose gels with 10 �l of 10-mg/liter ethidium bromide in 1� Tris-
borate-EDTA buffer. The RFLP patterns were visualized with UV radiation,
saved as TIFF images, and compared with Molecular Analyst version 1.6 soft-
ware (Bio-Rad Laboratories, Hercules, Calif.).

Unique nirS, nirK, and dsrAB clones from each site were selected for further
sequence analysis based on differences in their RFLP patterns. PCR products
were amplified (66), and DNA sequences were determined with a BigDye Ter-
minator kit (Applied Biosystems, Foster City, Calif.) and a 3700 DNA analyzer

FIG. 1. Data analysis strategy.

FIG. 2. Sample locations at the contaminated field site. The un-
contaminated sample was taken about 5 km to the west of this location.
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(Perkin-Elmer) according to the manufacturer’s instructions. The sequences
obtained were compared with nirS, nirK, and dsr sequences from GenBank,
translated into amino acid sequences, and aligned using techniques described by
Yan et al. (66). Phylogenetic and molecular evolutionary analyses were con-
ducted using MEGA version 2.1 (36), and phylogenetic trees were constructed
from distance matrices using the neighbor-joining method. Trees constructed
with maximum-likelihood methods were not significantly different.

Five gene groups within the nirS and nirK groups were defined based on
sequence similarity as described by Yan et al. (66). However, many of the dsrAB
clones appeared to be consistent with those found in a variety of environments
(16, 21, 61) but very different from those found in confirmed sulfate-reducing
groups. Since the function of these outlying sequences is in some doubt, we
divided the dsrAB clones into two subgroups for data analysis. The subgroup
designated dsrAB1 included those clones that appear to be most similar to known
sulfate reducers, such as Desulfosporosinus, Desulfococcus, and Desulfosarcina
(16). The subgroup designated dsrAB2 contained much more diversity and rep-
resented sequences that were relatively dissimilar to confirmed sulfate reducers.
The dsrAB1 subgroup contained four classes, and the dsrAB2 subgroup consisted
of five classes.

Data preparation. Relative to the small number of samples, the nine geo-
chemical analytes constituted a large set of potential predictors. Principal com-
ponents (PCs) analysis (PCA) was used to reduce the original geochemical
variables to a smaller set of predictors. Several investigators have recently em-
ployed PCA (5, 62) to orthogonally transform input variables for predictive ANN
analysis. The main advantage of this approach is that the complexity of the model
is substantially reduced without sacrificing much important information. On the
other hand, the PCs are surrogates for the original variables, and the relation-
ships among the original analytes and output variables (class frequencies) could
be obscured.

Since the distributions of the nitrate, sulfate, uranium, Tc-99, and nickel data
were skewed, they were transformed using the function log(x � 1) to approxi-
mately normalize the data prior to PCA. The first three PCs, which cumulatively
accounted for 92% of the total variance, were selected as inputs for subsequent
data analyses. The preprocessing step resulted in a reduction of the number of
inputs from nine to three.

Both the geochemical PCs (inputs) and gene group frequencies (outputs) were
normalized to values between 0 and 1 to maximize the performance of the
models (7). A sigmoid transformation {y � 1/[1 � exp(ax � b)]} was applied to
the geochemical PC scores because they were centered about zero but un-
bounded. Nonzero gene frequencies were normalized using the function y �
xb/(xb � a), which has a lower bound of zero and an upper bound of 1.

Model selection. Models were implemented using a combination of custom-
designed MATLAB functions (The MathWorks, Natick, Mass.) and the Netlab
(42) toolkit for MATLAB. A standard multilayer perceptron architecture with
three fully interconnected layers (input, hidden, and output) was employed. The
hyperbolic tangent transform was the nonlinear activation function in the hidden
layer, and the logistic function was selected as the nonlinear activation function
in the output layer. All of the ANNs were trained with the scaled conjugate
gradient algorithm. For comparison, the same MATLAB functions were used to
train a simpler class of generalized linear models (GLMs) on all of the data sets.
Each GLM was computed by employing only a single node in the hidden layer
with a linear activation function. This network computed a logistic function,
which is linear in the input variables with nonlinear output. GLMs offer a natural,
simpler alternative to ANNs for predictive modeling.

Overfitting is a concern when using ANNs to analyze small data sets such as
the one described here. We used weight decay, one of the most popular and
theoretically motivated methods, to improve the generalization performance of
ANNs by introducing a controlled amount of regularization to the objective
function (40). The form of the modified objective function was M(w) � ED(w) �
�EW(w), where the vector w includes both weights and unit biases. The term
ED(w) is the measure of model-data misfit. The additional term EW(w) limits the
model complexity by imposing a penalty on large weights, where large weights
are associated with more complex functions. The measure of model complexity
can take many forms (7), but the simplest and most frequently used formulation
is EW(w) � 0.5 �wi

2. The hyperparameter � is a positive constant that determines
the penalty for model complexity. Unit biases were needed to adapt to the output
range, so only the weights received a positive value for �.

We examined the effect of weight decay on generalization performance by
plotting values of � versus the corresponding validation error ED. If an ANN is
overfitting, the validation ED typically begins at a relatively high value, gradually
decreases to a minimum, and then starts to increase again as � increases. For a
large � value, ED converges to a value that corresponds to the performance
obtained by the simplest possible model, i.e., prediction of the mean output.

Thus, the plot defines a smooth path from a complex ANN to the simplest model.
The minimum of the weight decay function identifies the value of � that produces
the lowest generalization error. For this study, the values of � selected for nirS,
nirK, dsrAB1, and dsrAB2 were 1.0, 0.35, 1.0, and 0.001, respectively.

K-fold cross-validation is a well-established method of using an entire data set
for both training and testing (7, 54, 58). We performed onefold, also known as
leave-one-out, cross-validation in which one sample was withheld from training
and used to test the model fitted to the remaining data. This procedure was
repeated six times, each time withholding a different sample for testing. The final
ANN models selected were those that possessed the smallest generalization error
over a wide range of values for �. The final architectures (input � hidden �
output nodes) selected for each data set were 3 � 4 � 4 for dsrAB1, 3 � 4 � 5
for dsrAB2, 3 � 3 � 5 for nirS, and 3 � 3 � 5 for nirK.

Importance analysis. It is critical to assess the relative importance or salience
of each input variable with respect to the model predictions. We used an impor-
tance index that is based on a sensitivity concept proposed by Moody (41). His
approach evaluated the change in training error that occurs when an input is
effectively removed from the network. The most unbiased method of removing
the influence of an input is to substitute its mean value (computed over the entire
data set) in each sample. The sensitivity index is the average change in the mean
squared error (MSE) that occurs after removing the input’s influence and with-
out retraining the network. Instead of measuring the difference, we computed the
ratio of corrected MSE to MSE and normalized the ratio such that the impor-
tance indices sum to unity over all input variables. The resulting index describes
the importance of the specified input variable relative to that of the other input
variables.

RESULTS

Data reduction. The principal component analysis reduced
the initial geochemical data set from nine measured parame-
ters to three PCs that cumulatively accounted for 92% of the
variability in the original data. The first component (PC1) ac-
counted for most of the variability (60%), with the second
(PC2) and third (PC3) components explaining less variance (22
and 9%, respectively). Variables that loaded heavily on the first
component were nitrate, pH, Tc-99, nickel, and NpOC (Fig. 3).
None of these variables loaded heavily on the other compo-
nents. TOC loaded to a lesser degree (0.728) on PC1, and all
others loaded at values between �0.55 and 0.55 (Fig. 3). Vari-
ables that loaded particularly heavily on the second component
included uranium (�0.940) and sulfate (�0.765). Only dis-
solved oxygen (�0.819) loaded heavily on the third compo-
nent (Fig. 3).

Model results and validation. The ANN models were always
equal to or better than the GLMs in predicting the nirS, nirK,
dsrAB1, and dsrAB2 frequencies in the entire data set (Table 1).
Both the ANN and GLM (Table 1) were able to predict the
dsrAB2 frequencies with a higher explained variance (EV) than
the other classes. The ANN method was also able to fit nirS
and dsrAB1 frequencies with EV values greater than 95% and
nirK frequencies with EV values greater than 85%. The addi-
tional parameters and flexibility of the ANN appeared to per-
mit a better fit of the geochemical PCs to the gene frequencies.
However, examination of the validation data indicated poten-
tial overfitting problems.

Addition of weight decay to the ANN and GLM was de-
signed to reduce generalization error at the expense of in-
creased training error, and it was evident that the magnitude of
the weight decay term did have a substantial influence on the
training and generalization error (Fig. 4). Two patterns were
observed when examining changes in ED for training and gen-
eralization with increasing levels of weight decay. When weight
decay was added to the models for dsrAB2, the minimum train-

VOL. 70, 2004 GENE DIVERSITY AND ANNs 6527



ing error was observed at a low value of � (10�3). For nirK,
nirS, and dsrAB1, the validation ED decreased monotonically as
� increased with an accompanying increase in the training
error.

Cross-validation, based on the leave-one-out method, indi-
cated that with weight decay the dsrAB2 ANN model was the
most general since it had the lowest validation mean squared
error (Table 2). The validation error was also small for the
dsrAB2 GLM (Table 2). For all other gene groups, the valida-
tion errors of both the ANN model and the GLM were much
larger (Table 2). Although the EV was quite high for the nirS
and dsrAB1 ANN models (Table 1), the validation errors were
also quite high (Table 2) due to a poor fit of predicted to
observed gene frequencies in the validation data (e.g., for
dsrAB1 [Fig. 5b]). Although the ANNs were able to better fit
the nirS, nirK, and dsrAB1 data than the GLMs, the validity of
both model types was questionable for these genes given the
high validation error. For dsrAB2 the relationships between

geochemical PCs and the gene class frequencies appeared to
be more robust since the validation error was low.

Importance analysis. The validation results did not lend
confidence to the models produced for dsrAB1, nirS, and nirK.
Due to this poor performance, an importance or sensitivity
analysis was not done for these gene groups. The importance
analysis for dsrAB2 indicated that the first two PCs were much
more important than the third (Fig. 6). Overall, PC2 was the
most important (mean importance index over all gene classes
� 47.4%), while PC1 was close to it in importance (42.9%) and
PC3 was much less important (9.68%). These results suggested
that the different classes of dsrAB2 were responding to different
geochemical site characteristics. The A, D, and E classes re-
sponded most to PC1, and for the A and E classes, PC2 also
had moderate importance. The B and C classes responded
more to PC2. PC3 was the least important in predicting the five
classes (Fig. 6).

The loadings on the PCs indicated the important geochemi-
cal parameters for the different gene classes. For example,
nitrate, pH, Tc-99, nickel, and NpOC loaded heavily on PC1
(Fig. 3) and hence were linked to changes in dsrAB2 gene
classes A, D, and E. Uranium and sulfate loaded heavily on
PC2 and were most strongly linked to changes in gene classes
C and D. However, there was a lesser but fairly high sensitivity
of gene classes A and E to the second component. Because
none of the distributions of the gene classes were highly sen-
sitive to the third component (PC3), it appears that the one
geochemical variable that loaded heavily on this component
(dissolved oxygen) did not have a large influence on any of the
gene class distributions in these samples.

The highest importance value observed was PC1 for class D
in dsrAB2 (Fig. 6), and it appeared that the influence of PC1 on
this class was monotonic (Fig. 7). The highest frequency for
class D was found at the stations with the lowest values for PC1
(e.g., FW-300), and the frequency in class D generally de-
creased with increasing values of PC1 (Fig. 7). The highest
level of class D was associated with low nitrate, nickel, Tc-99,
and NpOC (positive loadings on PC1) and high pH (negative
loading on PC1). Class D frequencies also decreased with
decreasing values of PC2 (Fig. 7), thus indicating that the class
was associated with low sulfate and uranium. The importance
of PC3 for this group was extremely small (Fig. 6).

Near-monotonic relationships with PC1 and PC2 were also
seen for classes A and E (Fig. 7). For class A, the importance
values indicated that both PC1 and PC2 were meaningful (Fig.
6). The largest frequency of class A was seen at the maximum
values of PC1 (i.e., low pH, high nitrate, high nickel, high
TOC) and PC2 (i.e., low sulfate and uranium). The frequency
generally dropped with decreasing values for PC1 and PC2.

FIG. 3. Loadings of the geochemical variables on (a) PC1 and PC2
and (b) PC1 and PC3. The loading measures the correlation between
the PC and the variable.

TABLE 1. Percent variance explained in the entire data set by
GLM and ANN models with and without weight decay

Method Weight
decay

Variance (%) for indicated gene group

nirS nirK dsrAB1 dsrAB2

GLM No 41.45 57.46 66.55 95.02
ANN No 97.41 86.93 99.99 99.82
GLM Yes 16.67 21.87 16.67 94.97
ANN Yes 16.67 25.62 16.67 99.66
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The distribution of class E was somewhat different, with the
highest frequencies found at low values of PC1 and high values
of PC2 (Fig. 7). The frequency of class E generally decreased
as both PC1 and PC2 decreased.

Apparent nonlinear relationships were observed between
the geochemistry and the frequencies of classes B and C (Fig.
7). The highest importance values for PC2 were found for
these classes (Fig. 6). The frequencies of these two groups
appeared to peak at intermediate levels of PC2 and decreased
at lower and higher values. The two classes differed in that PC1
was more important than PC2 for class B, but for class C PC2
was more important. Class C was the only case for which PC2
was more important than PC1. The frequencies of the two
classes differed primarily at FW-300, where class B was high
and class C was relatively low (Fig. 7).

DISCUSSION

Model results. Of the four gene groups examined in this
study, only the frequencies of the dsrAB2 classes could be
linked to geochemical parameters. The negative results for
dsrAB1, nirS, and nirK could have been due to noise in the
small samples overwhelming the statistical signals. Another
more general problem was that gene transfer could obscure the
relationships between functional groupings of bacteria and en-
vironmental characteristics. For example, multiple transfers of
dsrAB genes are believed to have occurred (33), and similar

nirK or nirS genes have been observed in distinctly different
microorganisms (66). In addition, the diversity of the genes
within the functional group may play a role. On a purely tech-
nical basis, the failure to observe environment-gene class re-
lationships may be partially due to weaknesses in the training
method used to find a global (or at least very good) minimum.
We used a local search technique because it was more tractable
when combined with cross-validation, which is computationally
intensive.

Only the first two geochemical PCs were important in pre-

FIG. 4. Mean squared training error (ED MSE) for GLM and ANN models using all and validation data for increasing (left to right) levels of
weight decay (�) for the (a) nirS, (b) nirK, (c) dsrAB1, and (d) dsrAB2 gene groups. A solid line denotes a GLM, a dashed line indicates an ANN
model, the filled circles represent all data, and the open circles indicate validation data.

TABLE 2. MSE of GLM and ANN models using entire and
validation data sets with and without weight decay

for nirS, nirK, dsrAB1, and dsrAB2

Method Weight
decay Data set

MSEa for indicated gene group

nirS nirK dsrAB1 dsrAB2

GLM No Entire 0.0848 0.0641 0.0460 0.0067
Validation 0.4855 0.4055 0.3496 0.0994

ANN No Entire 0.0038 0.0197 	0.0001 0.0002
Validation 0.3646 0.3270 0.3613 0.0956

GLM Yes Entire 0.1206 0.1178 0.1145 0.0068
Validation 0.1737 0.1790 0.1649 0.0982

ANN Yes Entire 0.1206 0.1787 0.1145 0.0004
Validation 0.1737 0.1787 0.1649 0.0757

aMSE is the mean of the squared differences between the observed and
predicted transformed gene group frequencies.
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dicting the frequency of different classes of dsrAB2. The load-
ings on PC1 indicated that pH, Tc-99, nitrate, nickel, and NpOC
were important in predicting the gene frequencies for classes
A, B, D, and E. However, uranium and sulfate were more
important in predicting the frequencies for class C. Interest-
ingly, Chang et al. (14) found that uranium had an influence on
one dominant cluster of dsr genes at a uranium mill tailings
site. Examination of the loadings of the original geochemical
parameters (Fig. 3) indicated that only DO loaded heavily on
PC3. Thus, it appears that the DO concentration had little
influence on the gene frequencies.

We found that cross-validation and weight decay were useful
methods for measuring and increasing the generalizability of
the ANN models. Due to the importance of the weight decay
hyperparameter, we used a systematic method to assist in se-

lection of �. The goal was to find a region of weight decay
values that minimized generalization error. For dsrAB2 this
minimal region was observed when the weight decay hyperpa-
rameter was relatively small and had not resulted in a notice-
able increase in training error (Fig. 4). For the other clone
groups there was little improvement in the generalization error
until the training error had increased substantially. The gen-
eralization error did not reach a minimum until the weight
decay parameter was so high that the result was equivalent to
guessing the mean for each sample and not using the geo-
chemical data in the prediction at all. Thus, it appeared that
the inferred relationships between the geochemical parameters
and the dsrAB2 frequencies were much more robust than those
for the other gene groups.

FIG. 5. Observed and predicted gene frequencies for (left column) training and (right column) validation of dsrAB1 with (a and b) ANN, (c
and d) dsrAB2 with ANN, and (e and f) dsrAB2 with GLM with weight decay.
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Modeling strategy. Modeling can help identify what envi-
ronmental parameters control microbial community structure
(17, 22, 34, 39, 44). However, if there are a large number of
model parameters and a small sample size, a model can often
be fit to the data even in the absence of truly meaningful
relationships (19). This overfitting problem has been implicitly
or explicitly recognized for environmental questions (18) and
addressed by using techniques such as cross-validation to test
for the generality of the model (39). Almeida (2) points out
that some ANN packages can succeed in relating two sets of
random numbers, thus indicating the importance of cross-val-
idation. The modeling strategy should include techniques for
assessing and addressing overfitting.

Overfitting is a potential problem in the application of
ANNs, other parameterized predictive models, and classifiers
such as GLMs to analysis of clone libraries and expression data
(18, 31). A data set from a typical study might contain a few to
a few dozen samples and a much greater number of measure-
ments per sample. An ANN trained to predict distributions of
clones from environmental measurements could possess nu-
merous parameters (weights and biases) that must be esti-
mated from the data. Since the number of parameters can
greatly exceed the number of samples, the ANN is often able
to provide a close fit to the data, even though the data contain
measurement errors. The ANN attempts to fit all of the data’s
features, including the measurement error. The “true” model,
on the other hand, is assumed to be a smooth function that
describes a simpler relationship among variables but ignores
the measurement error in the data. The result of overfitting is
that the ANN generalizes poorly to new data that were not
contained in the training set.

A useful approach for addressing overfitting is to reduce the
number of inputs in the model by using a technique such as
principal component analysis (57). In this study, we reduced
nine geochemical characteristics to three principal components
which still accounted for most of the variability in the original
measurements (91%). An alternative approach is to use a
technique that eliminates the variables that contribute the least
either before (11) or after (50) specifying the final model.

However, this approach is not as powerful as a data reduction
technique, such as principal component analysis.

An important concern is the potential for generating models
that may not generalize well (i.e., have a large generalization
error). Weight decay is one method for addressing this prob-
lem. With weight decay, an additional term is added to the
error function that is proportional to the sizes of the weights
associated with each factor entering the models. Early stopping
is a popular alternative to weight decay that is often employed
when the number of parameters/number of samples ratio is
significantly greater than unity (3, 20, 47, 54, 60). Early stop-
ping is a nonconvergent technique that terminates training
before the ANN is finished fitting the training data. Sarle (53)
performed computer simulations which showed that early stop-
ping can improve generalization. However, several investiga-
tors have noted problems with this technique (13, 56). In ad-
dition, examination of early stopping results with these small
data sets (data not shown) showed that the optimal stopping
point is highly sensitive to the variability in the validation set.
Thus, we chose to focus this analysis on weight decay.

There is always the possibility that a model fits the training
data well but is useless when applied to a new data set. Thus,
a tool that allows for an assessment of the ability to generalize
the model is necessary. A straightforward way to estimate
generalization error is to test the model with a subset of data
that was excluded from training (39, 50). If the percentage
withheld is too high, not enough data remain for training. Too
low a percentage can result in a validation set that does not
resemble the entire data set if a few outliers are included by
chance or if the subset contains only data in a narrow range.
Some simulation studies suggest that the test set should be in
the range of 5 to 25% of the total number of samples. Exam-
ples within most of this range (e.g., 10 to 25%) can be found in
the application of ANNs to microbial data (35, 44, 46).

Cross-validation is a method that uses the entire data set for
both training and testing (23). For example, suppose there are
six (N) samples in a data set and we select one (k) for the test
set. The procedure is repeated six (N/k) times such that all the
data are eventually used in mutually exclusive test sets. Com-
bining the error estimates from all N/k iterations provides a
less biased estimate of the generalization error. Alternatives to
cross-validation include early stopping and various complexity
measures, such as the Akaike information criterion. In our
experience, the usefulness of early stopping is severely limited
by small sample sizes.

To make the final connection between the site geochemistry
and the gene distributions, a method is needed to identify the
model inputs that have the greatest influence on the predicted
values. Traditionally, sensitivity analysis has been employed for
measuring importance. However, there are several different
definitions of sensitivity in general usage (32, 52). Sensitivity
may be defined as a local measure that assumes a large value
when a small perturbation about a specific input value pro-
duces a large change in the output. Other definitions are global
measures that assess sensitivity as the mean of absolute sensi-
tivities over all samples and outputs for each input variable.
Different methods given identical input data may yield radi-
cally different results because they are based on different con-
cepts. We propose an importance method that indicates which
of the inputs had the greatest impact on predicting the distri-

FIG. 6. Importance analysis of the three principal components for
each dsrAB2 gene class using the ANN model with optimized weight
decay and leave-one-out cross-validation.
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butions of gene clusters at the sites. This is equivalent to
substituting the mean value of an input into the model for
every sample and then measuring the increase in the prediction
error based on only the other inputs.

The success of relating indicators of phylogenetic or func-
tional groupings of bacteria (based on any technique) to envi-
ronmental characteristics will depend on the validity of the

assumption that microorganisms within a group can also be
considered an ecotype that will respond in a similar manner to
different geochemical conditions. This is the basis for using
phylogenetic 16S rRNA gene probes to evaluate community
changes within specific groups (37). Another approach is to
group the clones of functional genes according to their distri-
bution in the samples examined and relate those groupings to

FIG. 7. Principal component analysis sample scores and dsrAB2 frequencies for gene classes (a) A, (b) B, (c) C, (d) D, and (e) E. The samples
are identified in panel f.
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the site characteristics. Thus, the groups being related to geo-
chemistry or other characteristics can be distributionally re-
lated (they occur at a similar group of sites) but not related by
sequence similarity. For example, Liu et al. (38) found rela-
tionships between nitrate and oxygen with community struc-
ture in denitrifying populations in marine sediments after
grouping the clones of nirS and nirK by their distribution at the
sampled sites. These types of clusters may not readily lend
themselves to development and application of probes. How-
ever, approaches such as functional gene arrays (65) may be
applicable in these situations as an alternative to cloning and
sequencing.

Based on an examination of the literature and the results
presented here, it may be uncommon for clone groups of
specific functional genes to react in a similar manner to envi-
ronmental characteristics, such as geochemistry. If this is true,
probes for functional genes may not be as useful as those
developed for 16S and other phylogenetic genes. General spa-
tial distributions of phylogenetic groups have been observed
(24) especially over wide ranges of environmental characteris-
tics, such as the transition from fresh to salt water (51). Chang
et al. (14) found by logistic regression that one cluster of dsr
gene sequences (out of eight) was highly related to uranium at
a mill tailings site. Also, there are examples where similar
clones of functional genes have been found in a variety of
dissimilar environments (4).

Conclusions. The inherent complexity and scale will often
limit our ability to understand the relationships between phy-
logenetic or functional gene groups and environmental char-
acteristics. To further our understanding we are attempting to
capture patterns or correspondence between gene patterns and
the geochemistry to infer relationships among them. If success-
ful, we can begin to understand, at least in simple terms, what
dominant variables show strong statistical influence or coinci-
dence with specific populations. However, we will not always
measure the critical environmental characteristics, or we may
not measure them on an appropriate scale. Only when a char-
acteristic we measure exerts a strong influence can we hope to
make inferences between the geochemistry and gene distribu-
tions. Also, when we are successful it does not mean that other
variables are not important but only that given the measure-
ments made, the sites sampled, and the limits of our sampling
methods we could not detect the influence of other variables.
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56. Sjöberg, J., and L. Ljung. 1995. Overtraining, regularization and searching
for a minimum, with application to neural networks. Int. J. Control 62:1391–
1407.

57. Stepanauskas, R., M. A. Moran, B. A. Bergamaschi, and J. T. Hollibaugh.
2003. Covariance of bacterioplankton composition and environmental vari-
ables in a temperate delta system. Aquat. Microb. Ecol. 31:85–98.

58. Stone, M. 1974. Cross-validatory choice and assessment of statistical predic-
tions. J. R. Stat. Soc. Ser. B 36:111–147.

59. Takai, K., T. Komatsu, F. Inagaki, and K. Horikoshi. 2001. Distribution of
archaea in a black smoker chimney structure. Appl. Environ. Microbiol.
67:3618–3629.

60. Tetko, I. V., D. J. Livingstone, and A. I. Luik. 1995. Neural-network studies.
1. Comparison of overfitting and overtraining. J. Chem. Inf. Comp. Sci.
35:826–833.

61. Thomsen, T. R., K. Finster, and N. B. Ramsing. 2001. Biogeochemical and
molecular signatures of anaerobic methane oxidation in a marine sediment.
Appl. Environ. Microbiol. 67:1646–1656.
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