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Abstract
Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied

using pure cultures, but less has been done to characterize the indigo production by micro-

bial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated

from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene

dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of

producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented

control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant

E. coli nagAc), were constructed to investigate indigo production. After 132-day operation,

G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l)

and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with

indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene ampli-

cons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was
undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the

abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was

strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later

stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analy-

sis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during

the operation. Among the four major genera (> 1% on average), the commonly reported

indigo-producing populations Comamonas and Pseudomonas showed no positive relation-

ship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and
Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo

yields (P < 0.05). This study should provide new insights into our understanding of indigo

bio-production by microbial communities.
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Introduction
Indigo is one of the most popular dyestuffs widely used in dyeing by the textile, food and phar-
maceutical industries. Although it used to be produced by extraction of plants such as Indigo-
fera and Polygonum tinctorium [1,2], indigo is mainly produced by chemical synthesis. Because
the toxic wastewater generated by chemical processes contains aniline, cyanide and high levels
of chemical and biological oxygen demands (COD and BOD), researchers have been trying to
develop greener methods for indigo production [3,4]. Microbial production of indigo could be
a competitive alternative owing to the environmentally-friendly nature [3].

Since 1983, a lot of indigo-producing bacterial strains, belonging to the genera Pseudomonas
[1,5–8], Rhodococcus [9], Sphingomonas [10], Acinetobacter [11,12] and Comamonas [13],
have been isolated from soils, polluted sediments, intertidal sediments and activated sludge.
The enzymes responsible for indigo bio-production (mono- or di-oxygenases) have been used
for the construction of genetically engineered microorganisms (GEMs) [14–17], and the mech-
anisms of indigo production from indole by both wild strains and GEMs have been studied
with the help of advanced chemical analytical methods [5,16,18]. In recent study we found that
microbial communities stimulated by different aromatics could also produce indigo from
indole, but the indigo production was dissimilar among different groups [19]. However, com-
pared with the pure-culture studies, the role of microbial communities in indigo production
still remains poorly understood.

The use of microbial communities in an industrial process has many advantages over the
use of pure cultures. For example, microbial communities can perform complicated functions
that a single population cannot, and they are more stable and resilient to complex environmen-
tal conditions [20–22]. In addition, bioaugmentation with specific strains may further improve
the performance of indigenous microbial communities, which has been successfully applied in
a variety of bioremediation processes [23,24]. However, the role and fate of the introduced
inocula are still debated [25]. With the rapid development of high-throughput sequencing
technologies, it is possible to obtain a detailed picture on the composition, structure and
dynamics of microbial communities [26–29]. Such information may have important implica-
tions on understanding microbial communities for indigo bio-production from indole.

In previous studies we showed that the wild strain Comamonas sp. MQ (a genus within
Betaproteobacteria), the recombinant Escherichia coli nagAc carrying the naphthalene dioxygen-
ase gene (nag) from strain MQ, and the activated sludge systems were capable of producing
indigo from indole [13,17,19]. In this study, we tried to address the following questions: (i)
Does inoculation of strain MQ/E. coli nagAc affect the composition of the indigenous microbial
community and alter the efficiency of indigo production? (ii) What microorganisms play key
roles in indigo production in these AS systems? To answer these questions, three AS systems,
i.e. non-augmented AS (G1), AS plus Comamonas sp. MQ (G2) and AS plus E. coli nagAc (G3),
were prepared to examine indigo biosynthesis from indole, and the microbial communities
were analyzed using Illumina MiSeq sequencing technology. This study should provide a new
insight to understand the microbial production of indigo.

Materials and Methods

Bacterial strains
Comamonas sp. MQ (CGMCC No. 6865) was isolated from activated sludge of a local sewage
farm (Dalian, China) [13]. The activated sludge used in this study was collected from Chunliu
River Wastewater Treatment Plant (Dalian, China) under the permission of Dalian Drainage
Department, and the field studies did not involve endangered or protected species. The
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recombinant E. coli nagAc carrying the naphthalene dioxygenase gene (GeneBank ID JN655512)
from strain MQ was constructed previously [17]. Strain MQ was cultivated in Luria-Bertani
(LB) medium with 300 mg/l naphthalene and incubated at 30°C with continuous shaking until
the bacteria reached the late logarithmic phase of growth. The recombinant E. coli nagAc was
cultured according to the methods described in the previous study [17]. Both strains were har-
vested by centrifugation at 8,000 × g for 5 min. The cells were washed twice with sterile sodium
phosphate buffer (PBS, 0.2 M, pH 7.0), and the cell pellets were used for inoculation.

Experimental design and operation conditions
Three sequencing batch reactors (SBRs) were simulated with 250-ml flasks containing 100 ml
synthetic wastewater, which consisted of 6 g/l Na2HPO4, 3 g/l KH2PO4, 0.5 g/l NaCl, 1 g/l
NH4Cl, 0.011 g/l CaCl2, 0.24 g/l MgSO4 and 0.2 g/l naphthalene. The SBRs were seeded with
the activated sludge (0.54 g, dry weight at 105°C), and domesticated with the wastewater for 15
days. Then, the SBRs were inoculated with different bacteria: (1) group 1 (G1), non-augmented
SBR; (2) group 2 (G2), augmented SBR with Comamonas sp. MQ (0.22 g, dry weight); (3)
group 3 (G3), augmented SBR with recombinant E. coli nagAc (0.24 g, dry weight). The whole
operation process was divided into three stages: T1 stage (0–30 d), indole was 73–85 mg/l; T2
stage (30–81 d), indole was 168–185 mg/l; and T3 stage (81–132 d), indole was 277–290 mg/l.
Each operation cycle of SBR was performed for 72 h, including 2 h filling, 66 h reacting, 2 h set-
tling and 2 h decanting. At the end of each SBR operation cycle, samples were taken to monitor
the yields of indigo and the residual concentrations of indole. The pure culture controls were
performed by inoculating the same amount of strain MQ and recombinant E. coli nagAc into the
synthetic wastewater, respectively, and the operation processes were carried out under the
identical conditions as the AS systems.

Chemical analysis
The concentrations of indole and indigo were measured using high performance liquid chro-
matography (HPLC) (Shimadzu LC20A; Thermo Hypersil ODS-2 column, 5 μm, 250×4.6
mm). The pigments were also analyzed by HPLC-mass spectroscopy (MS) to identify the prod-
ucts. HPLC and MS were conducted as described previously [13,17].

DNA extraction, PCR amplification, and sequencing
During the operation, activated sludge samples were taken concurrently from the three reactors
for high-throughput sequencing, and 11 samples were collected from each group (Table A in
S1 File). The genomic DNA was extracted using the protocol previously described [30]. DNA
concentration was determined by Pico Green assay using a FLUOstar OPTIMA fluorescence
plate reader (BMG Labtech, Germany), and each DNA sample was diluted to 10 ng/μl for PCR
amplification. The V4 region of the 16S rRNA gene was amplified using the methods previ-
ously described [19]. High-throughput sequencing of the 16S rRNA gene was conducted on
Illumina MiSeq platform for 300 cycles at the Institute for Environmental Genomics, Univer-
sity of Oklahoma.

Data analysis
After sequencing, the bar-codes and primers were removed, and the paired-end (PE) reads
were overlapped using the Flash program to assemble the final V4 tag sequences [31]. The low-
quality fragments were all eliminated, including the sequences without exactly matching the
forward primer, the sequences containing ambiguous reads (N), and the variable tags shorter
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than 240 bp. The clean sequences were then subjected to Chimera detection by UCHIME [32].
Each sample was randomly re-sampled and normalized at 27,530 sequences. Operational taxo-
nomic units (OTU) were classified at 97% similarity level using CD-HIT [33], and the reads
from singleton OTUs were removed. In addition, the taxonomic assignment of OTUs was per-
formed by RDP classifier with a confidence threshold of 50% [34]. The Shannon index (H),
Pielou’s evenness index (J), species richness estimator of Chao1 and rarefaction curves were
analyzed by Mothur for each sample [35]. The detrended correspondence analysis (DCA) was
performed by Canoco 4.5 [36]. The dissimilarity tests based on Bray-Curtis similarity distance
matrices were performed by the Vegan package in R 3.1.2 (http://www.r-project.org/), includ-
ing permutational multivariate analysis of variance (Adonis), analysis of similarity (ANOSIM)
and multiresponse permutation procedure (MRPP) [37]. A phylogenetic tree was constructed
by MEGA 5.1 using neighbor-joining algorithm with 1,000 bootstrap replicates. The 10 most
abundant genera in each group were depicted in a heat map conducted by R 3.1.2. Pearson cor-
relation was calculated to determine the relationship between the relative abundances of micro-
bial taxa and indigo yields. The sequencing data have been deposited into the NCBI Sequence
Read Archive database under the accession number SRX897059.

Quantitative real-Time PCR assays
The naphthalene dioxygenase gene (nagAc) of Comamonas sp. MQ was selected for qPCR
assays, which were conducted in triplicate using TaKaRa PCR Thermal Cycler Dice Real Time
System (TaKaRa, China) with the primer set nagF (5’-CAG CGC ACT TTC GGA ACC-3’) and
nagR (5’-CTG GTA GGC GCG GTA AAA G-3’). The qPCR mixture (25 μl) contained 12.5 μl
of SYBR Premix Ex Taq (TaKaRa, China), 1 μl of each primer (10 μM), and 2 μl of template
DNA. The thermal profile included 30 s of initial denaturation at 95°C, and 40 cycles of 5 s at
95°C and 30 s at 60°C. Amplicons were visualized and checked by electrophoresis on agarose
gel (1.5%, w/v).

Results

Indigo production from indole in the AS systems
Three AS systems for indigo production were constructed using naphthalene and indole as the
inducible substrates (Table A in S1 File). A blue product was produced by three reactors in the
presence of indole. Metabolite analysis by HPLC-MS showed that the blue product had a
prominent molecular ion (MH+) peak at m/z 263, which was confirmed to be indigo (Fig A in
S1 File). The results demonstrated that all three AS systems were able to produce indigo from
indole. Fig 1 depicts the performances of indigo production and indole consumption over the
132-day operation, which have been divided into three stages based on the changes in indole
concentration, i.e. T1 (0–30 d), T2 (30–81 d) and T3 (81–132 d). In T1 stage, G2 produced the
highest yields of indigo (nearly 15.7 ± 0.8 mg/l) compared to negligible production in G1 and
G3. Subsequently, the indigo yields in G1 (17.3 ± 0.9 mg/l) and G3 (45.9 ± 2.3 mg/l) displayed
modest increases in the T2 stage. All three treatments exhibited better capabilities for indigo
production in T3 stage when the influent indole concentration was raised to 280 mg/l. After
Day 90, indigo yields dramatically increased to approximately 99.5 ± 3.0 mg/l in G3, whereas
the yields of G1 and G2 were only 19.2 ± 1.2 and 27.3 ± 1.3 mg/l, respectively. Indole was
completely transformed at the end of each SBR cycle over the entire period of operation (Fig
1B). In the pure culture controls, strain MQ could produce 33.2 ± 2.5 mg/l indigo from indole
at the first operation cycle due to the good activities of naphthalene dioxygenase induced in the
cells (Fig B in S1 File). Similarly, the recombinant E. coli nagAc could produce 68.4 ± 3.1 mg/l
indigo from indole, while the non-recombinant E. coli without nag gene was unable to produce
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indigo (Fig B in S1 File). Then, strain MQ was able to grow in the synthetic wastewater medium
when indole concentration was below 100 mg/l, but low yields of indigo (<10 mg/l) were pro-
duced due to the toxicity of indole to bacterial strains (Fig B in S1 File). When the concentra-
tions of indole increased to above 100 mg/l, strain MQ could hardly grow. Whereas, the
recombinant E. coli nagAc was unable to grow due to the lack of nutrients and almost no indigo
was produced after the first operation cycle. These results indicated that both inoculated strains
might contribute to indigo production in the AS systems at early days of operation process.
The differences in indigo production among the three treatments suggested the harbored
microbial communities were the driving force in indigo production.

Overview of sequencing analysis of 16S rRNA gene amplicons
A total of 1,721,342 effective reads with an average length of 253 bp were obtained from 36
samples, resulting in 1,422 OTUs at 97% sequence identity cutoff. Even at high depth (~27,500
sequences per sample) of sequencing, the rarefaction curves did not approach saturation,

Fig 1. Indigo production from indole by microbial communities. A. Indigo production by three activated
sludge systems. B. Indole consumption by three activated sludge systems. G1, non-augmented AS; G2, AS
plusComamonas sp. MQ; G3, AS plus E. coli nagAc. The concentrations of indole and indigo were measured
by HPLC at the end of SBR operation cycle.

doi:10.1371/journal.pone.0138455.g001
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indicating that some microbial taxa remained undetected (Fig C in S1 File). Microbial richness
(the observed OTU number and Chao1 estimator) was similar among the samples from G1,
G2 and G3 (ANOVA, P> 0.05) (Table B in S1 File). However, both Shannon (H) and evenness
(J) indices were significantly different among the three treatments in T1 stage (P< 0.05), prob-
ably owing to the inoculation of strain MQ and E. coli nagAc at the beginning of operation. The
H and J indices showed little difference in T2 stage (P> 0.05), but then became distinctly dif-
ferent in T3 stage (P< 0.05) (Table B in S1 File). Compared to the original sludges, the micro-
bial richness and evenness were significantly lower in all three treatments (P< 0.001), leading
to lower Shannon indices (Table B in S1 File), which indicated that the addition of indole
reduced microbial diversity in the AS systems.

Survival of the inoculated strains in the AS systems
The relative abundances of Comamonas sp. and E. coli were investigated to determine the sur-
vival rates of the inoculated strains. In G1 and G3, Comamonas sp. maintained about 40% of
the population throughout operation process (Fig D in S1 File). However, in G2, before Day
10, 87% of the sequences belonged to Comamonas sp. (Fig D in S1 File), most likely due to the
inoculation of Comamonas sp. MQ. From Day 10 to 30, the proportion of Comamonas sp.
declined to around 30% and remained at that level (Fig D in S1 File). In contrast, very few E.
coli sequences were detected in any of the groups based on taxonomic classification by the RDP
classifier.

The nagAc gene from both inoculated strains was detected by qPCR at each sampling time
point. In the non-augmented G1, there were less than 10 copies/ng nagAc at all the time points
(Fig E in S1 File). In G2, the gene abundance peaked at Day 10, reaching 4.5×104 copies/ng,
which corresponded well with the high proportion of Comamonas sp. as shown above, yet
dropped to 45 copies/ng at Day 30, and below 1 copy/ng at Day 130 (Fig E in S1 File). This
gene was also detected in G3 with relatively high abundance within 10 days (200–500 copies/ng)
(Fig E in S1 File). As indicated above, the relative abundances of Comamonas sp. in G1 and G3
were almost the same (Fig E in S1 File), but the nagAc abundances in G2 and G3 was much
higher than those in G1. Thus, the nagAc gene in G3 should be from E. coli nagAc added at the
beginning, while the gene in G2 was probably from Comamonas sp. MQ. The indigo yields
significantly correlated with the abundance of the nagAc gene (in log10 unit) in the T1 stage
(R2 = 0.62, P< 0.001), but showing no significant relationship at the T2 and T3 stages (P> 0.10)
(Fig 2). Based on the combination analyses of high-throughput sequencing and qPCR, it sug-
gested that the inoculated strainMQ could remain in the AS systems for at least 30 days.

Community composition and dynamics of three AS systems
DCA was performed to visualize the succession of microbial communities over time. The
microbial communities from three treatments diverged from the original AS after receiving
indole (Fig 3). The three treatments clustered separately in early days of T1 stage (Day 6 to 12),
but converged by late days of T1 stage (Day 24 to 30) (Fig 3), during which the inoculated
strains had almost disappeared. Then in T2 stage, the groups separated, forming three clusters
(Fig 3). In T3 stage, G2 and G3 were clustered, but distinctly separated from G1 (Fig 3). Results
of three dissimilarity tests, Adonis, ANOSIM and MRPP, suggested that the community struc-
tures of the original AS and the three treatments were significantly different (P< 0.05)
(Table C in S1 File). Furthermore, the communities of the three treatments were also distinctly
different between T1 and T2 stages (P< 0.05), but not between T2 and T3 stages (P> 0.05)
(Table C in S1 File).
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The microbial community composition of the three treatments are illustrated in Fig 4.
Among the total 1,422 OTUs detected, 351, 197 and 143 OTUs were shared by the three treat-
ments in T1, T2 and T3 stages, respectively (Fig F in S1 File). These shared OTUs accounted
for 99% of the classified sequences in each stage. As a result, the downstream analysis focused
primarily on the shared OTUs. Although 16 phyla were detected in T1 stage, Proteobacteria
and Bacteroidetes covered over 97% of the shared sequences (Fig 4A). In T2 and T3 stages,
more than 96% of the shared sequences belonged to Proteobacteria (Fig 4A), among which
Betaproteobacteria was the most dominant class (43.8–77.5% in T2 stage, 49.7–84.0% in T3
stage). Compared with the three treatments, the original sludge communities had higher per-
centages of Gammaproteobacteria (54.8%, compared to 22.4% on average) and Bacteroidetes
(14.0%, compared to 1.6% on average).

A total of 144 families were classified based on the RDP database and 87 families were
shared by three treatments. Ten of these families represented over 90% of sequences. In the
original AS, Pseudomondaceae was the most abundant and accounted for 48.3% of the
sequences, followed by Comamonadaceae (11.9%), Xanthomonadaceae (6.0%), Chitinophaga-
ceae (4.5%), Flavobacteriaceae (3.5%), Phyllobacteriaceae (2.9%), Alcaligenaceae (1.5%) and
Rhodobacteraceae (1.4%) (Fig 4B). The community compositions of G1, G2 and G3 were dis-
tinct from the original AS (Fig 4B). For instance, Comamonadaceae was detected in all three
treatments with considerably higher relative abundance (more than 40% on average). In G2,
Comamonadaceae was extremely enriched in early days of T1 stage (83–90%) due to the

Fig 2. Relationship between the indigo yield and the abundance of nagAc gene in T1 (A), T2 (B) and T3 (C) stages. The line represents the linear-fit
model to the data. Triple asterisks indicate P < 0.001. The relative abundance of the nagAc gene, given in log10 unit, was determined by qPCR quantification
using the nagAc gene from Comamonas sp. MQ as the standard.

doi:10.1371/journal.pone.0138455.g002
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addition of Comamonas sp. MQ, yet the abundance decreased in T2 and T3 stages and was
even lower than those in G1 and G3 (Fig 4B). The abundance of Pseudomonadaceae decreased
dramatically in T1 stage (3.7–6.5%) and further decreased in T2 (below 0.6%) and T3 (below
0.2%) stages. In contrast, the abundance of Alcaligenaceae was below 5% in T1 stage of each
treatment, while increased to above 30% in T2 and T3 stages of G2 and G3, becoming the pre-
dominant population (Fig 4B). The relative abundance of Phyllobacteriaceae also increased in
all three treatments (4.3–18.0%), especially G1 (10.5–31.0%). The most abundant genera from
the original AS and three treatments are shown in Fig 4C. Four genera were abundant (> 1%
on average) in all three treatments, i.e. Comamonas (family Comamonadaceae), Pseudomonas
(family Pseudomonadaceae), Alcaligenes (family Alcaligenaceae) and Aquamicrobium (family
Phyllobacteriaceae), which represented major fractions of their corresponding families
(Table D in S1 File) and therefore shared similar dynamic patterns.

Linking community composition to indigo production
To discern the relationship between community composition and indigo production, Pearson
correlation test was conducted at both genus and family levels (Fig 5). Among the four major
genera (Comamonas, Pseudomonas, Alcaligenes and Aquamicrobium), the most abundant
genus Comamonas had no significant correlation with indigo yields in all groups (P> 0.10)
(Fig 5). The abundance of Pseudomonas did not have correlations with indigo yields in G1 or
G2 (P> 0.05) either, but was negatively correlated with indigo yields in G3 (r = -0.66,
P< 0.05) (Fig 5). In contrast, the relative abundance of Alcaligenes exhibited a strong positive
relationship with indigo yields in G3 (r = 0.97, P< 0.001), and the relative abundance of

Fig 3. Detrended correspondence analysis (DCA) of microbial communities based on Illumina MiSeq
sequencing. Symbols represented the samples from different treatments: cycle (●), original AS; square (■),
G1; diamond (♦), G2; triangle (▲), G3. Colors represented the samples collected at different stages: orange,
early days of T1 stage (0–15 d); red, late days of T1 stage (15–30 d); blue, T2 stage (30–81 d); green, T3
stage (81–132 d). Detailed group setup was presented in Table A in S1 File.

doi:10.1371/journal.pone.0138455.g003
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Aquamicrobium was also positively correlated with indigo yields in G1 (r = 0.92, P = 0.001)
(Fig 5). The relative abundances of family Comamonadaceae, Pseudomonadaceae, Alcaligen-
aceae and Phyllobacteriaceae showed similar correlations with indigo yields as the correspond-
ing genus in general (P< 0.05) (Fig G in S1 File).

Fig 4. Community compositions of three treatments in T1, T2 and T3 stages. A. Phylogenetic tree of the shared 16S rRNA gene sequences constructed
by the neighbor-joining method with 1,000 bootstrap replicates. The number in parentheses represented the relative abundances of each OTU, and only
OTUs accounting for more than 0.05% of the shared sequences were shown. Sequences of typical indigo-producing strains reported previously were
indicated with symbol (●) and the accession number.B. Relative abundance of the dominant families from the shared OTUs.C. Heat map of the 10 most
abundant genera in each treatment. The color intensity in each cell showed the relative abundance of a genus in a treatment.

doi:10.1371/journal.pone.0138455.g004
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The correlation analysis was also performed with other dominant families with more diverse
genera. The relative abundances of Rhodobacteraceae and Xanthobacteraceae were positively
correlated with indigo yields in G1 (P< 0.05), whereas the abundances of Beijerinckiaceae
showed positive effects on indigo production in G2 and G3 (P< 0.05) (Fig G in S1 File). In
contrast, the abundances of Xanthomonadaceae decreased with indigo yields in G1 and G3
(P< 0.05) (Fig G in S1 File).

Discussion
While the microbial production of indigo has been comprehensively studied using wild strains
or GEMs, less has been done to characterize the indigo-producing capacity of microbial com-
munities. In this study, we successfully achieved indigo production from indole by AS and
bioaugmented AS, and the associated microbial communities were revealed by Illumina MiSeq
sequencing technology. The two bioaugmented groups produced higher yields of indigo
(27.3 ± 1.3 and 99.5 ± 3.0 mg/l) compared with the non-augmented AS (19.2 ± 1.2 mg/l).
Sequencing analysis revealed that the inoculated Comamonas sp. MQ was dominant early in
the time course, while the recombinant E. coli nagAc was not detected in the bioaugmented sys-
tem. Similar results were observed in bioaugmentation studies on 3-chloroaniline and

Fig 5. Correlations between the relative abundances of the major genera and indigo yield in each treatment. Pearson correlation coefficients (r) with
the associated P values were shown for each taxon of each treatment.

doi:10.1371/journal.pone.0138455.g005
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polyurethane biodegradation, in which the inoculated strains accelerated the removal of unde-
sired compounds, but did not remain in activated sludge or soil communities [23,38,39]. qPCR
analysis showed that the indigo yields were closely associated with nagAc gene abundance in
T1 stage (Fig 2), and thus naphthalene dioxygenase might be responsible for the production of
indigo. However, the abundance of nagAc gene was greatly reduced by Day 80 (Fig E in S1
File), and it had no significant relationship with indigo yields in T2 and T3 stages (Fig 2). The
indigo yields, by contrast, increased significantly after Day 70, especially in G3 (Fig 1). There-
fore, we would expect other oxygenases in the AS systems that might catalyze the biotransfor-
mation of indole to indigo, and the indigenous bacteria were primarily responsible for the high
yields of indigo in the late period of operation. These results were similar to those reported by
Bai et al. [25], who found that indigenous bacteria played the most significant roles in degrad-
ing pyridine and quinoline in their bioaugmented systems.

Based on DCA ordination and dissimilarity tests, the communities from the three treatment
groups changed when indole was added. Both deterministic and stochastic processes could be
involved in shaping the assembly and succession of the communities [40–43]. The separation
of the three treatments in early days of T1 stage could be due to the addition of exogenous
strains Comamonas sp. MQ and E. coli nagAc. But in late days of T1 stage, both inoculated
strains were almost gone (Fig D in S1 File), and each treatment started to recover their own
communities, during which the stochastic processes of colonization and extinction might be
involved [41,43]. Thereafter, distinct communities had been established in T2 and T3 stages,
and each community was assembled under the high indole pressure. A recent study by Zhou
et al. [42] found that, even under identical conditions, the same source community could
evolve into different communities with different structures and distinct functions due to sto-
chastic processes. Chase [40] also found that stochastic processes were likely to play a strong
role in the assembly of high-productivity communities. Therefore, we speculated that the dif-
ferences in indigo production among the three treatments in T2 and T3 stages might be a con-
sequence of stochastic processes in community assembly.

Previous studies have shown that Comamonadaceae (genus Comamonas) [13],Moraxella-
ceae (genus Acinetobacter) [11,12], Nocardiaceae (genus Rhodococcus) [9], Pseudomonadaceae
(genus Pseudomonas) [1,5–8] and Sphingomonadaceae (genus Sphingomonas) [9] were able to
produce indigo from indole. However, only a few sequences ofMoraxellaceae, Nocardiaceae
and Sphingomonadaceae were detected in all three treatments. The dominant families Alcali-
genaceae, Phyllobacteriaceae, Beijerinckiaceae, Rhodobacteraceae and Xanthobacteraceae have
not been reported to participate in indigo bio-production, and owing to the fact that the abun-
dances of those families were positively correlated with indigo yields, there may be some new
indigo-producing strains in these treatments.

Among the bacterial strains reported to produce indigo, Pseudomonas sp. is most com-
monly studied [1,5–8]. Although Pseudomonas has been widely used as a model microorgan-
ism in the study of naphthalene degradation, a previous study showed that Pseudomonas was
not the dominant degrader in naphthalene-amended soil microcosms [44]. Likewise, in this
study, Pseudomonas abundance decreased during the operation in all three treatments, thus
displaying no positive relationship with indigo production. In our previous study, Comamonas
sp. MQ exhibited the ability to produce indigo from indole [13]. As indigo yields were signifi-
cantly positively correlated with the abundance of nag gene from Comamonas sp. MQ in T1
stage, Comamonas could play an important role in indigo production in the early stage. How-
ever, Comamonas displayed no significant correlations with indigo yields over the whole period
of operation (P> 0.10). Therefore, there were likely other populations that could also produce
indigo from indole. Alcaligenes and Aquamicrobium, with the ability to degrade aromatic com-
pounds [45,46], might serve as good candidates for indigo production in this study. During the
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past several decades, only one study found trace amounts of indigo in the culture broth of Alca-
ligenes sp. In3 when growing with indole [47]. While Aquamicrobium sp. was reported to be
capable of degrading thiophene-2-carboxylate and biphenyls [46,48], indigo production has
been rarely described. In the present study, the relative abundance of Alcaligenes increased dra-
matically in T2 and T3 stages of G3, during which the system reached the maximal indigo pro-
duction. A significantly positive correlation was obtained between the abundance of
Alcaligenes and indigo yields in G3 (Fig 5). Similarly, a strong positive correlation of relative
abundance with indigo yields was also found for Aquamicrobium in G1 (Fig 5). In previous
report [19], we have found that Aquamicrobium could serve as a new biocatalyst for indigo
production in AS systems. Therefore, it was presumed that Alcaligenes and Aquamicrobium
were likely to be the functional bacteria in the AS communities responsible for indigo produc-
tion. The present study also suggests that there are more bacteria capable of producing indigo
from indole as revealed by high-throughput sequencing technologies. Nevertheless, the dupli-
cate measurements in a single reactor run does not make up for the lack of a second or third
replicate reactor with the exact same conditions, and further investigation needs to be carried
out in triplicate in order to provide a more effective analysis of microbial communities.

In summary, the possibility of bioaugmented microbial communities producing indigo was
demonstrated, and our studies also supplied the Illumina sequencing data for the microbial
communities associated with indigo production during 132-day operation. The structure and
diversity of the communities changed greatly over time. Our results suggested several popula-
tions might participate in indigo production, such as Alcaligenes and Aquamicrobium, which
had not been widely observed previously. This study should provide important information on
microbial communities for the production of indigo from indole.
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