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a b s t r a c t

Understanding biological diversity and distribution patterns at multiple spatial scales is a central issue in
ecology. Here, we investigated the biogeographical patterns of microbial functional genes in 24 heath
soils from across the Arctic using GeoChip-based metagenomics and principal coordinates of neighbour
matrices (PCNM)-based analysis. Functional gene richness varied considerably among sites, while the
proportions of each major functional gene category were evenly distributed. Functional gene composi-
tion varied significantly at most medium to large spatial scales, and the PCNM analyses indicated that 14
e20% of the variation in total and major functional gene categories could be attributed primarily to
relatively large-scale spatial effects that were consistent with broad-scale variation in soil pH and total
nitrogen. The combination of variance partitioning and multi-scales analysis indicated that spatial dis-
tance effects accounted for 12% of the total variation in functional gene composition, whereas envi-
ronmental factors accounted for only 3%. This small but significant influence of spatial variation in
determining functional gene distributions contrasts sharply with typical microbial phylotype/species-
based biogeographical patterns (including these same Arctic soil samples), which are primarily deter-
mined by contemporary environmental heterogeneities. Therefore, our results suggest that historical
contingencies such as disturbance events, physical heterogeneities, community interactions or dispersal
barriers that occurred in the past, have some significant influence on soil functional gene distribution
patterns.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the diversity and distribution patterns of pop-
ulations and communities at multiple spatial scales is a central
issue in ecology (Levin, 1992; Borcard and Legendre, 2002;
Tuomisto et al., 2003; Zhou et al., 2008). For soil microbes, it is
well documented that population and community distributions in
natural environments are spatially patterned (Martiny et al., 2006;
Ramette and Tiedje, 2007; Hanson et al., 2012). The classic
: þ86 02586881000.
microbiological tenet “Everything is everywhere, but the environ-
ment selects” (Baas Becking, 1934) proposes that dispersal is
ubiquitous and contemporary environmental factors are the pri-
mary mechanism determining distributions of microbial commu-
nities. Many recent studies support this hypothesis by
demonstrating significant correlations across multiple sites be-
tweenmicrobial community structure and environmental variables
over large spatial scales (Fierer and Jackson, 2006; Lauber et al.,
2009; Chu et al., 2010; Griffiths et al., 2011). Meanwhile, historical
contingencies (factors that were important in the past but that are
not currently influential such as disturbance events, physical het-
erogeneities, community interactions, dispersal barriers etc.) have
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also been suggested as important determinants of microbial dis-
tributions (Martiny et al., 2006). Several field studies support this
latter hypothesis (Cho and Tiedje, 2000; Whitaker et al., 2003), and
since the impacts of historical contingencies on microbial com-
munities are likely correlated with spatial distance (Ramette and
Tiedje, 2007), it is now believed that microbial species/phylotype
distributions are shaped not just by local environmental hetero-
geneities but also to at least some minor extent by geographic
distance (Ge et al., 2008; Griffiths et al., 2011) or dispersal limitation
(Martiny et al., 2011).

A wide range of studies have investigated spatial patterning in
microbial communities at scales from centimeters to meters
(Franklin and Mills, 2003; Philippot et al., 2009), and at the land-
scape scale (Yergeau et al., 2009; Enwall et al., 2010; Bru et al., 2011;
Shi et al., 2015). Spatial autocorrelation has been commonly
observed, and can occur at sampling distances up to 739 km (Bru
et al., 2011). Techniques to analyze spatial patterns across multi-
ple scales have recently been used in microbial community studies
(Martiny et al., 2011; Franklin and Mills, 2003). For example,
Ramette and Tiedje (2007) showed that variation in species
abundances and community composition within the Burkholderia
bacterial group in an agricultural ecosystem was greatest at small
scales (between individual plant roots) rather than larger spatial
scales (across a field). However, because functional redundancy
among microbial phylotypes seems to be very frequent (Lozupone
et al., 2012), these taxonomy-based biogeographical studies may be
very limited in terms of providing insights as to how spatial het-
erogeneity in microbial community structure influences biogeo-
chemical processes within and among ecosystems. Nevertheless,
some recent studies have demonstrated that for some specific
biogeochemical processes, there can be strong spatial linkages
between abundances of the functional groups responsible for those
processes and activity rates. For example, denitrifier functional
gene abundances were highly spatially correlated with a N2O pro-
duction in soils at sampling distances up to 5 m at three different
Arctic sites (Banerjee and Siciliano, 2012a), and across a pasture at
distances from 6 to 16 m (Philippot et al., 2009). Furthermore, the
abundances of ammonia-oxidizing genes within archaeal and
bacterial communities were spatially correlated with aerobic
ammonia oxidation potential rates at distances up to 4 m in the
same Arctic soils referred to above (Banerjee and Siciliano, 2012b).
However, the question of whether the relationship between
phylogenetic structure and functioning in terrestrial soil microbial
communities applies across multiple biogeochemical functions and
across landscape and larger spatial scales has not yet been
investigated.

Understanding spatial distributions of soil functional genes at
large scales is a high priority in terms of predicting terrestrial
ecosystem responses to global land use and climate changes (He
et al., 2010a; Zhou et al., 2012; Chan et al., 2013; Feng et al.,
2014). In a previous study, we documented the pattern and in-
fluences of environmental heterogeneity and geographic distance
on bacterial community structure in heath tundra soils that were
sampled from across a large part of the Arctic (Chu et al., 2010). Our
overall goal in this current studywas to investigate the patterns and
controls on functional gene distributions in those same soils to
directly compare taxonomically-based and trait-based biogeo-
graphical patterns and the relative influences of environmental and
spatial factors. Characterizing the ‘pure’ influence of spatial scale on
the biogeography of microbial communities is complex because
other categories of potential explanatory variables such as those
associated with environmental heterogeneity can also vary across
space. Most previous studies of this issue have investigated the
influences of local environment and spatial distance separately,
without accounting for potential covariation (Fierer and Jackson,
2006; Lauber et al., 2009; Chu et al., 2010; Feng et al., 2014). The
Principal Coordinates of Neighbor Matrices (PCNM) analytical
approach was specifically developed to model community struc-
tures across a wide range of scales and to characterize the relative
influences of the explanatory factors both separately, and in com-
bination, at multiple different spatial scales (Borcard and Legendre,
2002).

To characterize soil microbial functional genes in these soils, we
utilized the GeoChip 4.0 array which contains probes for ~152,000
biogeochemically important functional genes (Hazen et al., 2010;
He et al., 2010b; Yang et al., 2013; Tu et al., 2014). Using the GEO-
CHIP and PCNM analytical approaches on the same triplicate
samples from the 24 heath tundra sites across the Arctic that we
had used in our study of microbial community phylogenetic
composition (Chu et al., 2010), we specifically address the following
three questions:

I) Are distributions of microbial functional genes in Arctic soils
more spatially structured at large or small scales?

II) Can the spatial structure of soil microbial functional genes be
categorized into discrete spatial scales that are associated
with heterogeneities in environmental variables?

III) What is the relative importance of spatial distance as
compared to local environment in determining the distri-
bution patterns of microbial functional genes in heath soils
across the Arctic?
2. Methods and materials

2.1. Soil sampling

Surface soil organic samples were collected from 24 heath
tundra sites (at least 190 km apart from each other) across the
Canadian, Alaskan and European Arctic in the summer of 2007 and
2008 as described by Chu et al. (2010). At each site, soil samples
were collected close to the top of exposed ridges at three similar
locations (20e100 m apart) from below dry heath vegetation in
which at least one of the following plant species was common:
Empetrum spp., Cassiope spp. or Dryas spp. The soil type immedi-
ately underlying this vegetation was typically an Orthic Dystric
Static Cryosol (Par�e, 2011. Canadian Soil Classification System -
http://sis.agr.gc.ca/cansis/taxa/cssc3/CY/SC/index.html). Samples of
the top surface dark brown/black organic soil were cut out with a
serrated knife (that was wiped off with a clean tissue before sam-
pling from subsequent locations) from a ~12 cm � 12 cm area to
2e5 cm depth and placed in a separate plastic bag. All the samples
were immediately shipped to Kingston, Canada where they were
stored at�20 �C until processing. Details of the soil sampling and of
each site's geographical, ecological, and biogeochemical charac-
teristics (including methods for the latter) have been described
previously (Chu et al., 2010). Unfortunately, climatic data were not
available for many of the sites because they did not have local
weather stations.

2.2. GeoChip analysis

DNA was extracted from 5 g fresh weight of soil from each
sampling location (n ¼ 72 in total) using a freeze-grinding me-
chanical lysis method as described previously (Zhou et al., 1996).
We used GeoChip 4.0 to analyze DNA samples as described previ-
ously (Lu et al., 2012; Yang et al., 2013; Tu et al., 2014). Briefly, DNA
was labeled with the fluorescent dye Cy-5 using a random priming
method and then purified with the QIA quick purification kit
(Qiagen, Valencia, CA, USA) according to the manufacturer's
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instructions. After measuring dye incorporation on a NanoDrop
ND-1000 spectrophotometer (Nano-Drop Technologies Inc., Wil-
mington, DE, USA), DNA was dried in a Speed Vac (ThermoSavant,
Milford, MA, USA) at 45 �C for 45 min. Subsequently, labeled DNA
was resuspended in 50 ml hybridization solution containing 40%
formamide, 3 � SSC, 10 mg of unlabeled herring sperm DNA
(Promega, Madison, WI, USA), and 0.1% SDS, and hybridizations
were performed with a MAUI hybridization station (BioMicro, Salt
Lake City, UT, USA) according to the manufacturer's recommended
method. After washing and drying, microarrays were scanned with
a NimbleGen MS200 scanner (Roche, Madison, WI, USA) at 633 nm
using a laser power of 100% and a photomultiplier tube (PMT) gain
of 75%. Signal intensities were subsequently quantified.

GeoChip 4.0 contained 83,992 50-mer oligo probes which
covered 152,414 gene variants from 401 distinct functional gene
categories associated with bacteria, archaea and fungi (Lu et al.,
2012; Tu et al., 2014). There are 12 main gene categories: biogeo-
chemical cycling of carbon, nitrogen, phosphorus, and sulfur;
resistance to metal and antibiotics; energy process; organic com-
pound remediation; stress response; bacterial phage-related;
virulence-related; and others (Tu et al., 2014).

2.3. Data analysis

Raw data were analyzed using a data analysis pipeline as
described previously (He et al., 2010b). In brief, the following steps
were performed: (i) spots flagged or with a signal to noise ratio
(SNR) less than 2.0 were removed as poor-quality spots; (ii) after
removing poor spots, normalized intensity of each spot was
calculated by dividing the signal intensity of each spot by the total
intensity of the microarray and then multiplying it with a constant
value of 58,000,740, which is the average signal intensity of all of
GeoChip data; (iii) intensities were transformed to natural loga-
rithm values; and (iv) a minimum of two valid values of three
biological replicates were remained from the same sites. In order to
quantify geographical linkages among all the sites, we first deter-
mined the threshold spatial index above which all the sites were
connected (Borcard and Legendre, 2002) using the location data
(latitude and longitude). The threshold (shortest distance index
which could keep all the sites link together) was chosen to be as
short as possible to ensure that all points remain connected by links
smaller than or equal to the truncation distance (Fig. S1). Before
principal coordinates of neighbour matrices (PCNM) (Borcard and
Legendre, 2002) analysis, Moran's I (Moran, 1950) was used to
measure spatial correlation of univariate quantitative variables
(Fig. S2). Values below E(I) indicate negative spatial correlation, and
values above E(I) indicate positive correlation. E(I) is close to
0 when n (the total number of observations) is large (Borcard et al.,
2011). After that, we performed a correlogram of these spatial
correlation values against the distance classes (Fig. S3), degrees
(longitude) were used to construct the distance class index. The
number of classes was computed using Sturge's rule [number of
classes¼ 1þ (3.3219� log10n), where n is the number of elements
(number of samples in this case)]. The Mantel correlogram was
computed, tested and plotted by using vegan's function
mantel. correlog (Fig. S3). Then we used PCNM method to decom-
pose the total spatial variation into a discrete set of explanatory
spatial variables, each of which corresponds to a specific scale. The
spatial trend was removed from the GeoChip data by linear
regression of the x, y coordinates (latitude, longitude) of all samples
from the study sites before PCNM analysis was performed. The
detrended biological variables were regressed on the PCNM vari-
ables, and the significance coefficients were tested on 999 per-
mutations of the residuals (Legendre and Legendre, 1998; Borcard
et al., 2011). A forward selection as in CANOCO (TerBraak, 1988)
based on the 999 Monte Carlo permutation procedure using re-
siduals from the reduced model by the “packfor” package (Blanchet
et al., 2008; Dray et al., 2011) was used to identify those environ-
mental parameters that explained the spatial patterns at different
scales. Multivariate linear regressions were then applied to calcu-
late the explained variance for each variable. In addition, in order to
compare the correlation between the functional gene richness and
bacterial OTU richness, we only calculated the bacterial functional
gene richness (There are very few archaeal and fungal functional
gene richness were detected by Geo Chip).

To better assess the effects of space and environmental soil
parameters on functional gene distributions, we conducted a vari-
ance partitioning analysis by combining the PCNM output with a
modified variation partitioning diagram (Fig. S4) derived from
Borcard et al. (2011). In this analysis, the location coordinates (i.e.
latitude, but not longitude because it did not significantly correlate
with site gene composition), environmental soil variables, and
PCNM scales were independently forward selected before variance
partitioning. The variance partitioning of the spatial and environ-
mental variations were further examined by redundancy analysis
ordination (Borcard et al., 1992; Legendre and Legendre, 1998),
using the “varpart” function in the “vegan” package (Oksanen et al.,
2007), which computes the adjusted canonical R2 in multiple
regression (Peres-Neto et al., 2006). During the variance parti-
tioning analysis, the GeoChip data were undetrended, because a
linear trend can be considered as a source of variation like any other
and is likely to act on the response as well as the explanatory
variables. All of the analyses were performed by functions in R v.
3.0.1 (R Development Core Team, 2006).
2.4. Data accessibility

The GeoChip dataset was deposited in the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE63927)
under study number GSE63927.
3. Results

3.1. Functional gene distribution and diversity

From the 24 Arctic heath sites that were sampled in triplicate
(i.e. 72 soil samples in total), we detected a total of 44,714 different
genes involved in carbon, nitrogen, sulfur and phosphorus cycling,
organic contaminant degradation, stress tolerance, metal tolerance,
fungi function and antibiotic resistance. Although the proportions
of these major functional gene categories were very similar across
all sites (Fig. 1), the number of hybridized gene probes per category
differed among sites (Fig. S5; Table S2), indicating that the richness
of the genes associated with each of these major biological func-
tions varied among Arctic sites. For example, the number of the
detected genes that were associated with carbon degradation var-
ied from 2000 to 2800 among sites, while the number of genes
associated with nitrogen fixation varied from 300 to 400, and
likewise for other functional gene categories (Fig. S5). The hierar-
chical clustering analysis of functional gene composition showed
that the three sampling locations within each site clustered
together except Bl site (Fig. S6), indicating great similarities in
functional gene composition at this spatial scale (20e100 m apart).
Furthermore, at larger scales (i.e. among the sites, and therefore at
least 190 km apart), the similarities in gene composition among
pairs of sites was high (65e88%) (Table S3). Conversely, very few
detected genes (0.1e0.8%) were unique to only one site in the study
(Table S3).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63927
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Fig. 1. Functional genes detected by GeoChip 4.0 in 24 similar dry heath tundra ecosystem sites across the Arctic. The length of the bar at each site is proportional to the total
number of functional genes sampled there (mean number of functional genes across the 3 sampling locations per siteenumerical value indicated at the end of each bar). The section
lengths within each bar indicate the relative proportions of total genes associated with each of the different functional gene categories. ‘Others’ refer to the remaining, less abundant
functional genes.
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In this study, we found richness (i.e. patterns of richness of
hybridized gene probes among sites) was not significantly corre-
lated with soil physiochemical properties such as total carbon (TC),
total nitrogen (TN), available phosphorus, pH, moisture, or with
latitude (Fig. S7). Finally, site-level functional gene richness was not
significantly correlated with bacterial OTU richness as determined
in our previous study (Chu et al., 2010) (Fig. S8).

3.2. Multi-scale analysis of functional gene variation

We used the same approach as Borcard and Legendre (2002)
and classified the different spatial scales into large, medium and
small scales according to the PCNM orders. Analysis of the func-
tional gene distributions (Moran's IeMethods in Supplementary
material) indicated significant positive correlations with seven of
these spatial scale categories. The remaining spatial scale categories
showed non-significant or negative spatial correlations, and were
not included in subsequent PCNM analyses (Fig. S9). We observed
significant positive spatial correlation below 20 (distance class in-
dex), indicating that closer sites tended to have more similar
communities. The significant negative correlation after 60 suggests
that pairs of sites that were substantially distant from each other
may have had contrasting soil conditions that resulted in different
functional gene composition (Fig. S3). The PCNM analysis was
conducted using the geographic coordinates of the locations within
each of the 72 plots, and the derived spatial scales decreased with
increasing PCNM orders. This spatial scale decomposition method
yielded 14 spatial scale categories across all of our Arctic samples
(Table S4), ranging from large scale (long distance e S1) to small
scale (short distancee S14). Across these 14 spatial scale categories,
the 7 largest scale categories (excepting S2) were significantly
positively correlated with each other (Table S5), indicating of
spatial autocorrelation. Using the forward selection method
(Blanchet et al., 2008), we found that variation in composition of
functional genes within at least some of the functional gene cate-
gories was significantly related to scales 1, 3 and 4e8 (Table 1). For
the carbon cycling, nitrogen cycling, sulphur cycling, phosphorus
cycling, organic remediation, stress tolerance, fungi function and
other functional gene categories, about 16e21% of the variation in
composition across sites could be explained by these 7 spatial



Table 1
Percentages of variation in functional genes for major biological processes that are explained at spatial scale categories ranging from large (‘1’) to medium (‘8’) e See text for
details. Values for all functional genes combined (i.e. total genes detected by GeoChip 4.0) are included at the bottom of the table. Significance of themodels and variables were
tested by Monte Carlo permutations (**P � 0.01; *P � 0.05).

Scale 1 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Residuals

Carbon cycling 2.32** 2.05* 2.12** 2.14* 2.11** 5.42** 3.29** 80.56
Nitrogen cycling 2.25* 1.94* 2.16** 2.22* 1.94. 5.56** 3.12** 80.82
Sulphur cycling 2.21** 1.94* 1.99** 2.13* 2.02* 5.71** 3.31** 80.7
Fungi function 2.55** 2.14** 2.17* 2.02* 2.22* 5.58** 3.64** 79.68
Phosphorus cycling 2.25** 2.05* 2.13** 1.91* 2.03** 5.48** 3.07** 81.08
Organic Remediation 2.25* 1.96* 1.95* 2.10** 1.99* 5.57** 3.24** 80.94
Stress 2.25** 1.92* 2.07** 2.12* 2.07** 5.49** 3.38** 80.71
cold shock (stress) 2.15* 2.21* 7.46** 4.07** 84.11
heat shock (stress) 2.39** 1.88* 1.94* 2.21* 1.96* 5.4** 3.16** 81.05
Soil borne pathogen 2.21* 1.96* 1.99. 1.92* 2.16* 5.77** 3.31** 80.69
Soil_benefit 2.03. 1.94* 2.22* 2.14* 2.07** 5.16** 3.08** 81.36
Bacterial phage 2.49** 2.05* 2.73** 2.45** 2.49** 5.67** 3.27** 78.84
Virulence 2.32** 2.01* 2.23* 2.12* 1.91* 5.36** 3.32** 80.74
Energy process 2.14* 2.19* 2.17** 2.07** 2.06* 4.74** 3.27** 81.35
Antibiotic resistance 2.24** 2.03* 2.03* 2.05* 2.01** 5.24** 3.19** 81.21
Metal resistance 2.21** 1.91* 2.08* 2.03* 1.93* 5.55** 3.18** 81.12
All functional genes 2.21* 7.46** 4.07** 86.26

Note: Soil benefit contains the functional genes which are helpful to the soil.
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scales, while the cold shock gene variation (16%) was explained by
just 4 of the significant spatial scales (Table 1). Moreover, functional
gene subcategories such as nifH (nitrogen fixation), nirS (denitrifi-
cation), pmoA (methane oxidation) andmcrA (methane production)
also varied significantly at different spatial scales (Table S6).
Although each of the larger scale categories (i.e., 1, 3, 4, 5 and 6) was
not as correlated with the variation within the functional gene
categories as were the two finer scales (7 and 8), overall, the
combination of these large scales together had more explanatory
power (Table 1). These analyses strongly suggest that large-scale
processes are more important than medium or small-scale pro-
cesses in determining spatial variation in functional gene groups
within soil communities across the Arctic.

In order to understand how these spatial patterns could be
explained by soil characteristics, partial standard regression co-
efficients were calculated for the soil physicochemical variables
(Table 2). In this analysis, the specific contribution of each envi-
ronmental variable to each scale was determined, and only those
that were statistically significant were included in the models. The
soil physicochemical variables in all explained 1.4%e30.3% of the
spatial variationwith the relationships being strongest for the scale
5 category and weakest for scale 12 (Table 2). The greatest
explanatory power (highest regression coefficients) was for varia-
tion in soil total nitrogen, DOC, DON and pH at the broad scales (1, 2,
5 and 6). As the variations in functional gene groups were also
generated mainly by broad scale processes (Table 1), our results
suggest that soil pH and total N were the main contributors to the
Table 2
Partial regression coefficients relating soil physicochemical variables to a range of spatial s
refers to the percentages of the total variance explained by significant environmental var
they were not significantly correlated with any of the environmental variables. DOC: dis

Soil variables PCNM scale

Scale 1 Scale 2 Scale 5 Scale 6

C
N �70.19 �29.11 �12.44 4.07
CN ratio
DOC 0.02
DON 1.13
NH4

þ

P
pH �17.17 14.86 6.05
Moisture
Total % explained 17.30 16.29 30.32 5.11
spatial patterning of functional genes in Arctic heath soils (Table S7
and S8).

3.3. Functional gene variation partitioning according to the soil
variables and spatial scale categories

The significant PCNM scales were split into broad and fine-scale
groups, and the latitudinal coordinate of sampling site was repre-
sented by a linear trend. Together, the whole set (environmental
component, linear trend and broad scale) of spatial and environ-
mental soil variables explained 14.5% of variation in the unde-
trended (see method in Borcard et al., 2011) GeoChip data (i.e. for
all functional genes combined). The spatial variables (broad scale
plus linear trend) alone explained 12.2% of variation in functional
genes, and the environmental soil variables explained 3.1% (among
them 0.6% was spatially structured) (Fig. 2). The covariations (i.e.
overlaps) between environmental variables and spatial distance/
latitude were very small (Fig. 2; Fig. S9), indicating that the effects
of spatial scales and environmental variables were largely inde-
pendent of each other. However, a large part of the variation (85.5%)
across all functional genes together was not explained by any of the
model parameters, or their interactions. The combination of PCNM
and variance partitioning analysis was also performed on each of
the categories of major functional genes associated with carbon
cycling, nitrogen cycling and phosphorus cycling, and about 18% of
the variations in these gene distributions were explained by the
spatial and environmental soil variables together (Figs. 2 and 3,
cale categories from large (‘1’) to small (‘13’) e See text for details. 'Total % explained'
iables in each of the scale categories. PCNM scales 3, 4 and 7 are not shown because
solved organic carbon; DON: dissolved organic nitrogen; P: Phosphorus.

Scale 9 Scale 10 Scale 11 Scale 12 Scale 13

0.15 �0.01

0.10
0.00 0.00

�0.01 0.00
�0.05

0.04 �0.01
1.53

0.02
23.29 27.95 15.03 1.43 17.20



Fig. 2. Variance partitioning (as % of total variance) of the undetrended functional gene distributions across the 24 Arctic sites into a pure environmental component (upper left-
hand orange circle), a pure trend (latitude) scale (upper right-hand blue circle) and a pure broad spatial scale derived from the PCNM spatial components and their covariation
(lower purple circle). The empty sectors in the plots indicate relationships with small negative R2

adj values that were not presented. Small spatial-scale variables are absent from the
variance partitioning diagrams because they were not included in the analysis since they had negative or no correlation to functional genes.
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Fig. 3. Variance partitioning (as % of total variance) of the undetrended distributions of functional genes associated with sub-categories of nitrogen cycling (nifH-nitrogen fixation;
nirS-nitrate denitrification; pmoA-methane oxidation; mrcA-methane production) across the 24 Arctic sites into a pure environmental component (upper left-hand orange circle), a
pure trend scale (latitude) and a pure broad spatial scale derived from the PCNM spatial components and their covariation (lower purple circle). Empty sectors in the plots occur
where the relationships had small negative R2

adj values.
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Fig. S9). Furthermore, in our separate analyses of distinct categories
of functional genes, spatial variables explained more variation
(14.8%e16.8%) than the environmental soil variables (2.5%e4.0%).
Similar to the analysis of all functional genes combined, the analysis
of individual functional gene categories also indicated that a large
part of the variation (>80%) was not explained by either the envi-
ronmental, latitudinal or spatial components of the PCNM, or their
interactions.

4. Discussion

Our investigation of the spatial structure of functional genes in
heath tundra soils from across the Arctic indicated that the pro-
portions of many important categories of functional genes were
similarly distributed (Fig. 1). By contrast, we found substantial
variation in bacterial phylotype community structure among these
same soil samples in our previous study (Chu et al., 2010). Burke
et al. (2011)’s study of bacterial community structure on a green
macro algal host species also found high microbial phylogenetic
variability but similar microbial functional gene distributions. In
addition, the functional gene distributions in our samples were
structured according to multiple different spatial scales that
correspond with heterogeneity in specific environmental variables,
suggesting that scale-dependent ecological processes are an
important determinant of soil functional gene biogeography.
Spatial factors were consistently more important than latitude or
environmental factors in explaining the compositional variation in
our analysis of all functional genes combined, and in our analyses of
each separate category of functional genes (Figs. 2 and 3). Banerjee
and Siciliano (2012b) also found that spatial scale was an important
control on ammonia oxidation communities in Arctic soils, but over
a much smaller distance range (up to 4 m) than our study. Despite
the statistical significance of spatial distance in determining mi-
crobial gene (and phylotype) distributions, it generally accounts for
a fairly small proportion of the total variation within such data. For
example, at least 80% of the variation in functional gene composi-
tion across our Arctic sites was not explained by either the spatial,
latitudinal or environmental factors (or their interactions). Like-
wise, Ramette and Tiedje (2007)’s reported that 73% of the genetic
variation in Burkholderia ambifaria bacterial populations could not
be explained by environmental and spatial variables across a patchy
agricultural field. Similarly, only about one fifth of the total varia-
tion in microbial community composition in a forest soil could be
explained by environmental heterogeneity (20.7%) or geographic
distance (18.3%), or their interaction (5.8%) (Zhou et al., 2008). High
levels of unexplained variation have been attributed to unmea-
sured environmental factors and inadequate sampling methodol-
ogies (Zhou et al., 2008), and former probably also include factors
that were spatially structured and possibly auto-correlated with
latitude. The recently developed neutral theory in community
ecology (Hubbell, 2001) suggests that some of the unexplained
variation could be due to stochastically structured gene distribu-
tions that occur when phylotype immigration and extinction rates
have a stronger influence than natural selection in determining
community composition and therefore functional gene bio-
geographies. By contrast, classic niche theory predicts that natural
selection would tend to favour functional genes that were appro-
priate to the environment, and to eliminate the remainder. These
two processes are not mutually exclusive, and both seem to be
operating simultaneously in a wide range of ecological
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communities (Gravel et al., 2011). To fully characterize the controls
on trait- and taxonomically-based spatial patterning, future studies
are needed that specifically address the unmeasured variability,
and that evaluate and contrast the potential influences of niche and
neutral-based processes in determining the distributions of soil
functional genes.

A central goal in ecology is to develop a comprehensive multi-
scale understanding of spatial patterns in community structure
and functional gene distribution (Zhou et al., 2008), and the
development of the PCNMmethod (Borcard and Legendre, 2002) is
an important step forward in this process. In this study, both the
analysis of all functional genes together, and the analyses of indi-
vidual gene categories such as carbon cycling, nitrogen cycling and
phosphorus cycling indicated significant variation at spatial scales
ranging from S9 through to S1, with the larger scales explaining
more of the total variation. By contrast, some studies found that the
microbial community were shaped primarily by small-scale spatial
factors. For example, using geostatistical variogram analysis,
Franklin and Mills (2003) found that significant spatial autocorre-
lation in taxonomy-based microbial community structure at scales
ranging from 30 cm to more than 6 m. Through nested sampling
scheme at scales ranging from 2 to 2000 m, King et al. (2010) found
that bacterial community composition has significant spatial
autocorrelation up to a distance of 240 m. Several studies have
specifically focused on spatial patterning of individual functional
genes related to denitrification. For example, Philippot et al. (2009)
observed a non-random distribution pattern of the size of the
denitrifier community estimated by quantification of the denitri-
fication genes (narG, napA, nirS, nirK and nosZ) with a spatial
dependence (6e16 m). Banerjee and Siciliano (2012a, b) found that
denitrifier functional gene (nirK, nirS and nosZ) distributions were
highly spatially correlated within a scale of 5 m. In our study, we
found that nirS denitrifier functional genes were shaped primarily
by very large spatial scale factors. Together, these studies comple-
ment each other because they were done at non-overlapping
sample distances. They suggest that microbial gene distributions
(at least for the denitrifier function) may be determined by very
small scale spatial factors (acting at distances up to ~16 m) and also
by very large scale spatial factors.

Spatial structuring in microbial communities may result from
several environmental variables acting at different spatial scales
(Legendre and Legendre, 1998). For example, in Arctic soils,
Banerjee and Siciliano (2012b) found that gene abundances were
spatially structuredwithin 4m, but the biochemical processes were
structured within 40 m. In our study, soil pH was significantly
correlated with large- (scale 2, 5 and 6) and small-scale (scale 10)
spatial patterning in functional gene distributions, which was
consistent with the results from other ecosystems showing that soil
pH was a key determinant of taxonomic distributions in bacteria
(Lauber et al., 2009). Similarly, Feng et al. (2014) found that soil pH
was a key factor determining the community structure of the
Anoxygenic purple phototrophic bacteria functional group in the
same soil samples as studied here. On the basis of all our studies
with these heath soils, we conclude that pH in particular plays a
very important role in determining not just the distributions and
community structure of Arctic soil microorganisms (Chu et al.,
2010; Feng et al., 2014), but also the distributions of functional
genes.

Many studies have investigated the role of environmental het-
erogeneity and spatial distance on the microbial phylotype distri-
butions (Fierer and Jackson, 2006;Martiny et al., 2006; Lauber et al.,
2009; Chu et al., 2010; Griffiths et al., 2011). Furthermore, the
relative contribution of contemporary factors and historical con-
tingency in shaping functional gene distributions has also been
investigated, but only in experimental manipulation contexts or
over small geographical areas (Zhou et al., 2008, 2012; He et al.,
2010a; Chan et al., 2013). For example, Yang et al. (2013) found
that elevation, vegetation, and soil variables contributed 7.7%,
25.5%, and 22.7%, respectively, to the variation in functional gene
distributions. In our study here, we found that spatial distance
played an important role in shaping soil functional gene distribu-
tions across the Arctic region. By contrast, bacterial community
structure in those same Arctic soils was unaffected by spatial dis-
tance (Chu et al., 2010). Here, we found no correlation between soil
bacterial phylotype richness and total microbial functional gene
richness across the 24 heath sites, suggesting that the structure of
microbial functional gene distributions is fundamentally different
to that of bacterial taxonomic distributions perhaps because of
distinct archaeal and fungal gene contributions. In any event, these
results support the conclusion that the functional significance of
microbial community assembly and structure in natural environ-
ments relates more to spatial patterns in functional genes than to
spatial patterns in species/phylotypes (Burke et al., 2011).

5. Conclusion

Functional gene distributions in Arctic heath soils varied most at
large spatial scales, and local heterogeneity in environmental var-
iables had relatively little impact, together suggesting that histor-
ical contingencies are a major driver of trait-based biogeography.
These findings differ markedly from previous reports showing that
species/phylotypes distributions are strongly influenced by local
environmental effects (Fierer and Jackson, 2006; Chu et al., 2010;
Griffiths et al., 2011). We conclude that for Arctic soil microbes at
least, patterns of functional gene distributions might be different
from phylogenetic community distributions.
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