Supporting figure legends

SI_Figure 1. Fluorescence images showing the effect of different formamide concentrations on hybridization specificity of community genome arrays. The locations of individual probes on the pilot arrays are listed in SM_Table 1. Whole genomic DNA from *A. tolulyticus* Td-21 was randomly labeled with the fluorescent dye Cy5 (red pseudocolor) and hybridized with the CGA at 55°C for 12–15 h in the presence of 0, 10, 20, 30, 40, 50, 60, or 70% (v/v) formamide. The hybridization signal for the targeted Td-21 genome is circled.

SI_Figure 2. Detection sensitivity of CGA hybridization using labeled pure genomic DNA. Genomic DNA from a pure culture of *P. stutzeri* B2-2 was labeled with Cy3 using the random primer labeling method. Labeled target DNA was hybridized to the community genome array at total concentrations of 0.2, 0.5, 1, 2, and 5 ng in a total hybridization solution volume of 3 μ l. The arrays were scanned with 100% laser power and 100% PMT gain. The scanned image display of the hybridization reaction is presented, with the arrow indicating the hybridization signal for the B2-2 genome probe. Other fluorescent spots indicate cross-hybridization of the labeled target DNA with genomes from other *P. stutzeri* strains.

Supporting Table

S1_Table 1. Locations of reference strains on the community genome array

Rows	Column s ⁺	Groups	Species#	Strains/genes	G+C Content
2	a	≁proteobacteria	Shewanella pealeana	ANG-SQ1	45
3	a	≁proteobacteria	Shewanella algae	OK-1	52-55

4	a	γ-proteobacteria	Shewanella amazonensis	SB2B	52
5	a	γ-proteobacteria	Shewanella woodyi	MS32	39
6	a	≁proteobacteria	Shewanella oneidensis	MR-1	45
7	a	≁proteobacteria	S. oneidensis	MR-4	45
8	a	β -proteobacteria	Azoarcus tolulyticus	Td-1	69.3
9	a	β -proteobacteria	A. tolulyticus	Td-2	67.8
10	a	β -proteobacteria	A. tolulyticus	Td-3	68.5
11	a	β -proteobacteria	A. tolulyticus	Td-15	68.0*
12	a	β -proteobacteria	A. tolulyticus	Td-17	66.9
13	a	β -proteobacteria	A. tolulyticus	Td-19	67.3
14	a	β -proteobacteria	A. tolulyticus	Td-21	68.6
15	a	β -proteobacteria	Azoarcus sp.	BL-11	67.4
1	b	β -proteobacteria	A. indigens	VB22 ^T	68.0*
2	b	≁proteobacteria	Shewanella sp.	A8-3	49*
3	b	≁proteobacteria	Pseudomonas stutzeri	B2-2	63.0*
4	b	≁proteobacteria	Halomonas variabilis	B9-12	65.2*
5	b	α -proteobacteria	<i>a</i> -proteobacterium	C1-4	
6	b	≁proteobacteria	P. stutzeri	C5-1	63.0*
7	b	≁proteobacteria	Marinobacter sp.	C10-5	55.7
8	b	≁proteobacteria	Marinobacter sp.	D3-15	55.7
		Gram positive	Staphylococcus		37*
9	b		saprophyticus	D3-16	
10	b	γ-proteobacteria	Marinobacter sp.	D5-10	55.7

11	b	≁proteobacteria	P. stutzeri	D7-6	63.0*
12	b	≁proteobacteria	P. stutzeri	D8-12	63.0*
13	b	γ-proteobacteria	Marinobacter sp.	E1-7	55.7
14	b	γproteobacteria	P. stutzeri	E4-2	63.0*
		Gram positive			43*
15	b	bacteria	Bacillus methanolicus	F6-2	
		Gram positive			43*
1	с	bactria	B. methanolicus	F7-3	
2	с	≁proteobacteria	P. stutzeri	F9-1	63.0*
3	с	γproteobacteria	P. stutzeri	F9-2	63.0*
4	с	≁proteobacteria	Marinobacter sp.	2-25	55.7
5	с	α -proteobacteria	Pseudomonas sp.	G-179	63.0*
6	с	γproteobacteria	P. stutzeri 17592	ATCC 17592	60.9
7	с	≁proteobacteria	P. stutzeri DSM 50238	DSM 50238	64.9
8	с	≁proteobacteria	P. stutzeri 17594	ATCC 17594	63.8
9	с	≁proteobacteria	P. stutzeri 17595	ATCC 17595	61.5
10	с	≁proteobacteria	P. stutzeri 17587	ATCC 17587	62.3
11	с	≁proteobacteria	P. stutzeri CCUG 11256	CCUG 11256	65.0
12	с	γ-proteobacteria	P. stutzeri 17591	ATCC 17591	61.4
13	с	γ-proteobacteria	P. stutzeri DNSP21	DNSP21	63.4
14	с	γ-proteobacteria	P. balearica DSM 6083	DSM 6083	64.4
15	c	γ-proteobacteria	Escherichia coli	S17-1/λ _{pir}	55.1*
1	d	Yeast	Saccharomyces cerevisiae	Yeast Genomic	

				DNA	
2	d	Yeast	S. cerevisiae	Yeast- <i>mfαl</i>	
3	d	Yeast	S. cerevisiae	Yeast- <i>mf0</i> 2	
4	d	Yeast	S. cerevisiae	Yeast-ras1	
5	d	Yeast	S. cerevisiae	Yeast-act1	
6	d	Yeast	S. cerevisiae	Yeast-ste3	
7	d	γ-proteobacteria	Shewanella sp.	7-1	49*
8	d	γ-proteobacteria	Shewanella sp.	7-2	49*
9	d	γ-proteobacteria	Shewanella gelidimarina	11-1	48
10	d	γ-proteobacteria	Shewanella sp.	11-2	49*
11	d	γ-proteobacteria	Shewanella sp.	14-2	49*
12	d	γ-proteobacteria	Shewanella sp.	PS-2 (SQ26)	49*
13	d	γ-proteobacteria	Shewanella sp.	PS-3 (SQ26)	49*
14	d	γproteobacteria	S. woodyi	PV-3	39
15	d				
1	е	γ-proteobacteria	Pseudomonas fluorescens	ATCC 17397	60.54
2	е	γ-proteobacteria	Pseudomonas putida	ATCC 12633	63.0*
3	е	γ-proteobacteria	P. putida	DSM4476	63.0*
		γ-proteobacteria	Pseudomonas		63.0*
4	е		chlororaphis	ATCC 17811	
5	е	≁proteobacteria	P. fluorescens	ATCC 17467	60.54
6	e	γproteobacteria	P. fluorescens	ATCC 13525	60.54
		γproteobacteria	Pseudomonas		63.0*
7	e		aureofacieus	ATCC 13985	

8	е	γproteobacteria	P. fluorescens	ATCC 17400	60.54
9	e	γ-proteobacteria	Pseudomonas aeruginosa	ATCC 27583	66.1
10	e	γ-proteobacteria	P. auruginosa	ATCC 15692	63.0*
11	e	γproteobacteria	P. stutzeri KC	KC	63.0*
12	e	γ-proteobacteria	P. stutzeri	Tm300	63.0*
13	e	γ-proteobacteria	Pseudomonas mendocina	ATCC 25411	63.0*
14	e				
15	e				

⁺The species presented in the fifth column (e) were added for experiments evaluating species relationships.

*Genus average.

[#]For phylogenetic relationships between most of the strains, please refer to the references 15, 26,

28, 30, 43, and 46.

Supporting Figures

SI_Figure 1.

SI_Figure 2.

