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A. Field operation and geochemical characteristics
    After two years of biostimulation, low levels of uranium (<30 µg/L) were achieved and maintained in the inner MLS located at the fast flow zone of the test system (Fig. 1) (Wu et al., 2007; Cardenas et al., 2008). The geochemical parameters on Day 774 when the sediment samples were collected from these wells is presented in Table 1. The pH in the treatment area was around 6, nitrate concentrations in the inner loop dropped to near zero, and sulfate was present at a significantly low level. Higher concentrations of Mn and Fe were observed in the inner loop groundwater. These were mainly present as Mn(II) and Fe(II), the products of bioreduction of Mn(IV) and Fe(III) oxides. The presence of Ca2+ (25-32 mg/L) in the groundwater could potentially impact the microbial U(VI) reduction rate (Brooks et al., 2005). In the solid phase, no U(IV) was detected in the sediment samples from the subsurface before biostimulation (Kelly et al., 2008).  On day 774, partial reductions of U(VI) to U(IV) in sediment samples from the inner loop injection well FW104 and MLS wells were confirmed by XANES analysis, but U(IV) was not detected in the samples from outer loop wells and inner loop extraction well FW026. The appearance of sulfide in the groundwater and sediment suggested that sulfate-reduction were occurring in the inner loop.

With a bromide tracer, hydrogeological analysis showed the hydraulic connection between the inner loop injection well FW104 and other wells. MT is an important parameter which describes the average time required for the groundwater to flow from FW104 to the other individual wells. A short MT was observed in the inner loop MLS wells FW101-2 and 102-3 (2.8 and 3.7 hrs). This suggested that groundwater injected into FW104 could flow to the area close to these wells rapidly, but it took a longer time for the injected water to reach FW101-3 and FW102-2, as well as FW026.  The MTs between FW104 and the outer loop MLS wells were much longer. BR was calculated based on the mass fraction of bromide recovered in the different wells. A well with higher BR means that it received a higher fraction of groundwater from FW104. All inner loop MLS wells had high BR (Table 1).  For example, the BR was greater than 93-94% for FW101-2, FW102-2 and FW102-3. This indicated that 93-94% of the groundwater that flowed through these wells originated from FW104. The outer loop MLS wells had a lower BR (8-18%), indicating that the outer loop was not completely isolated from the inner loop but only a limited fraction of groundwater from FW104 reached the outer loop area. When ethanol was injected into FW104, the COD concentration increased to about 120 mg/L in that well and higher COD concentrations (up to 90-100 mg/L) were detected in FW101-2 and 102-3, but lower concentrations (60-70 mg/L) were detected in FW102-2 and 101-3. The COD concentrations were 20-30 mg/L in FW026 and near or below the detection limit (10 mg/L) in the outer loop wells. Further analyses indicated that the COD concentrations, except for injection well FW104, were mainly due to the presence of acetate (Wu et al., 2007). This suggests that ethanol degradation and consumption of intermediate acetate occurred basically in the inner loop and little or no electron donor escaped to the outer loop area.

An ordination plot constructed on the basis of the geochemical parameters separated the inner loop samples from the outer loop samples as two main clusters (Fig. 2). The two clusters were mainly separated along the principal component 1 (PC1) axis, which explained 65.5% of the total variance, while the second component explained 24.7%. PC1 scores correlated significantly with potassium sulfate, iron, BR, magnesium, sodium, pH, the ratio of U(IV) to total U in sediment, and manganese (Table 1). The inner loop group contained samples with higher values for potassium, iron, manganese, pH in groundwater, U(IV)/U in sediment and high BR, while the outer loop group contained samples with higher values for sulfate, magnesium, and sodium in groundwater. All results indicate that this system operated well and was consistent with original design, and that the injection of ethanol was effective for the remediation of U(VI)-contaminated site.
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Fig. S1 Map of the Well configurations (A).  Flow field illustration of the inner and outer loops during operation (B). Ethanol was injected to inner loop well FW104. Outer loop recirculation from FW103 to FW024 with added clean water formed hydraulic protection for the inner loop. Seven MLS wells in different depths below ground surface (bgs): FW100-2 (13.7m bgs), FW100-3 (12.19m bgs), FW100-4 (10.67m bgs), FW101-2 (13.7m bgs), FW101-3 (12.19m bgs), FW102-2 (13.7m bgs), and FW102-3 (12.19m bgs).
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Fig. S2 Ordination plot produced from principal-component analysis of geochemical data from the wells in the treatment area on day 773. Open circles represent samples collected from outer loop wells and solid circles represent samples collected from inner loop wells.
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Fig. S3 Hierarchical cluster analysis of genes involved in organic carbon degradation (A) and sulfate reduction (B). See the legend of Fig. S2 for explanation.
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