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SI Results and Discussion
Artifacts and the Advantages of Microarray-Based Approaches. Sub-
stantial variations of the z values for microbial communities are
observed, ranging from 0.02 to 0.47 (1). Although some of the
observed z values are lower than those in plants, some are much
higher. Such variations could be due to the true differences of
microbial spatial distributions, but could also be compounded by
various sampling artifacts such as under-sampling, unequal
sampling, random sampling, and taxonomic lumping (1). In
general, the array-based approach has several advantages over
the conventional molecular approaches to minimize such arti-
facts.
Under-sampling. One of the sampling artifacts is undersampling.
Because microbial diversity is immense, all studies have greatly
undersampled microbial diversity (1). For example, only very
small portions (�1%) of a microbial community are randomly
sampled for determining TARs, using conventional PCR-based
molecular methods (e.g., DGGE, T-RFLP, cloning and sequenc-
ing) (2–4). Due to the low detection sensitivity, many rare taxa
could not be sampled for analysis (5). Undersampling could
result in flatter taxa-area relationships (1).

The GeoChip-based approach has advantages to ameliorate
the undersampling problem, although it could not eliminate it.
First, the arrays contain tens of thousands genes, and hence a
single hybridization can simultaneously survey all of these genes.
If the arrays represent well the diversity of the community
examined, the majority of microbial populations of interest, if
not all, can be surveyed for analysis. Second, the GeoChip
contain probes for many different types of functional genes, and
hence more broad functional groups will be sampled from a
community. Sampling multiple genes of diverse functions could
reduce the potential biases from a single gene such as 16S rRNA
gene. The information on microbial diversity based on many
functional genes/groups will be more representative of the
overall picture of microbial diversity at the whole-community
level than those based on single gene (e.g., 16S rRNA gene).
Third, compared with the conventional approaches, higher
detection sensitivity (as low as 2 bacterial cells) can be obtained
with the whole-community genome amplification (WCGA)-
assisted microarray detection approach (6). Therefore, some less
abundant taxa could be possibly detected for analysis with the
array-based hybridization. In addition, undersampling problem
will be much less severe with functional genes than rRNA genes.
Not all microbial populations in a community have certain
functional genes (e.g., nirS, nirK) of interest, and consequently
the microbial population diversity based on functional genes will
be much lower than that based on 16S rRNA genes. Thus, less
sampling efforts are required to survey the functional gene
diversity of the microbial community of interest. For instance,
generally speaking, up to 5% (0.1–5%) of cultured heterotrophs
in a typical soil community are denitrifiers (7). Assuming that 1 g
of soil contains 2,000–18,000 genomes (8–10), a total of 100–900
microbial populations would have been expected to be denitri-
fiers. The GeoChips used in this study (GeoChip2.0) have probes
to target 136 nirS- or 127 nirK-containing populations. Theo-
retically GeoChip 2.0 could detect at least �30% denitrifiers in
a soil community if the numbers used above are valid and
applicable to various soils. We are developing next generation of
GeoChips (GeoChip 3.0), which is able to detect 2–3 times more
populations involved in denitrification. For another example,
nitrification is more restrictive to narrow phylogenetic groups
(e.g., �-proteobacteria) and some Archaea (e.g., Euryarchaeota)

and amoA genes are less divergent among different microbial
populations. GeoChip 2.0 contain probes to target 32 amoA gene
sequences, whereas GeoChip 3.0 have probes to target �500
amoA sequences from both Bacteria and Archaea. Therefore, it
is expected that GeoChips would have been able to detect
substantial proportions, if not all, of nitrifiers in a soil commu-
nity. Finally, distance-decay approach (2, 11) uses relative
comparisons of microbial community composition rather than
richness to examine TARs. It also has advantages in ameliorating
the undersampling problem because it is not at all necessary to
fully characterize or sample a community for making relative
comparisons, which could still give robust measures of spatial
scaling parameters (2). In a word, the undersampling problem
can be greatly ameliorated with the GeoChip-based detection
methods and appropriate experimental designs and data analysis
approaches.
Unequal sampling. The second artifact is unequal sampling (1). To
minimize the artifact associated with under-sampling, more
sampling efforts are required to describe diversity in larger areas
than smaller area (1), which leads to another sampling artifact,
unequal sampling, that is, the sampling efforts are not equal
between larger and smaller areas. Because some species could be
missed during sampling processes, sampling progressively larger
area and devoting more time to data collection will increase the
number of counting the missed species. As a result, such unequal
sampling could lead to increases in species richness estimation in
larger area, even if the richness in the real community remains
unchanged (12–14).

Different from other conventional sampling approaches, such
as PCR amplification-based cloning, terminal fragment length
polymorphisms, and mass spectrometry-based protein analysis,
which are an open-format detection approach, microarray-based
hybridization, is a close-format detection approach, because it
provides information only for the genes fabricated on the
microarrays. No information will be obtained for the genes that
have no probes on the arrays. Because the same arrays were used
to analyze the samples from areas of different size, theoretically,
no additional genes will be detected with microarray hybridiza-
tion even if more sampling efforts are used for surveying larger
area. Consequently, the unequal sampling problem can also be
minimized or eliminated by the array-based close-format detec-
tion approach.
Random sampling. The third sampling artifact is associated with
random sampling strategy. DNA reassociation kinetic studies
estimate that one gram of soil could contain 2,000–18,000
genomes (8–10), suggesting that prokaryotic diversity in soil is
extremely high. Generally, only small portions (� 1% of species
per population) from a microbial community are randomly
sampled for determining TARs, using conventional PCR-based
molecular methods. If a community of 2,000–18,000 genomes is
randomly divided into 100 portions, the species/genome com-
position among different portions will be quite different. If the
sampling process is completely random, theoretically, the prob-
ability of sampling the same portion of a community in various
sampling events for determining TARs could be very small (as
low as �0.01%). Although certain populations (e.g., dominant
populations) will have higher probabilities of being resampled by
these methods if they are abundant and/or evenly distributed
among these different portions, it is still not possible to ensure
that the same portions of a microbial community are measured
across the different sampling events. Because different portions
of a community are randomly sampled for analysis in different
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sampling events, the estimated species richness would increase as
more sampling efforts are used, even for the same community
without any changes in diversity. Thus, theoretically, the ran-
domly sampling approach could also lead to overestimation of
TARs.

With the array-based approach, all of the samples are com-
pared against the same sets of probes on the array, ensuring that
the same portion of species/populations (i.e., those species/
populations with probes on the arrays) from a community are
sampled for comparison across all samples in a study. As a result,
the sampling artifact due to the nature of random sampling
process can be minimized if not eliminated.

It should be noted that, although the artifacts associated with
the nature of random sampling process could occur with the
conventional PCR-based fingerprinting and cloning approaches,
they still have values in evaluating TARs. Some previous results
showed that conventional fingerprinting and cloning-based ap-
proaches are able to consistently (� 90%) sample dominant
populations (11, 15), and hence the sampling processes are not
totally random. Thus, the z values determined by using such
approaches should still be valuable (2, 11). However, great
cautions should be taken. The relative impacts due to the
randomly sampling nature of these conventional approaches on
estimating TARs are community-dependent. If a community is
very complex and without dominant populations as previously
demonstrated in various soils (16), substantial overestimation of
z values would be expected with the conventional molecular
methods.
Taxonomic lumping. The fourth sampling artifact is associated with
taxonomic lumping. The spatial biodiversity patterns depend on
the defined taxonomic resolution. The z value increases with
increased taxonomic resolution (1, 17). Due to the low rates of
molecular evolution, it is difficult to obtain fine-scale resolution
at the desired species/strain level with rRNA genes (18, 19). The
taxonomic resolutions based on morphortypes, ribosomal RNA
genes-based phylotypes and fingerprints probably include a
much greater diversity of ecological types than contained within
a plant or animal species. Such coarse level taxonomic resolu-
tions could also lead to the flat TARs relative to those of plants
and animals (1, 2, 11). Because microbial spatial patterns are
very sensitive to taxonomic resolutions used, the observations of
microbial cosmopolitanism might be due to taxonomic ‘‘lump-
ing’’ of microorganisms (11).

Microarray hybridization was carried out overnight at 50°C in
50% of formamide. Our previous results showed that, under such
conditions, by simultaneously considering probe sequence sim-
ilarity, sequence stretches and free energy, specific probes of
50mer can be designed with the sequence similarity of �90% to
the target sequences (20, 21). Because many functional genes
have �90% DNA sequence identity at the species level, e.g.,
amoA (0.75 � 0.11%), nirS (0.70 � 0.18%), and dsrAB (0.73 �
0.13%) (18), the level of �90% sequence similarity will provide
species/strain level of resolution (22). The sequence similarity
criterion can be further relaxed if the other two criteria are
applied. For instance, specific hybridization was also observed
for some probes with �98% similarity to the target sequences.
These results suggest that finer strain level of resolution could be
possibly achieved with some 50mer probes under the hybridiza-
tion conditions examined (21, 22).

In summary, the array-based approach has great advantages in
minimizing or eliminating various artifacts associated with eval-
uation of microbial spatial diversity patterns, and thus it can
provide more realistic estimation of z values in microbial com-
munities.

SI Materials and Methods
Experimental Site, Sampling Strategy and Procedure. Generally
speaking, the taxa-area relationships (TARs) are determined by

both contiguous and noncontiguous sampling approaches (1).
The contiguous TARs estimate the increase in taxa richness for
nested areas within a single region, whereas the noncontiguous
TARs estimate the increase of taxa richness from local to global
scales. Several well known contiguous TARs estimations are
measured at meters scales (see refs. 1 and 17 for review; see also
refs. 2 [0.03 to 300 m], 11 [1–750 m within different land systems],
and 35 [1–8 m]). To ensure our results are comparative with
previous studies, in this study, we used contiguous sampling
approach and examined TARs at spatial scale of meter level
(ranging from 0.14 to 1000 m) (Fig. S3).

Two, perpendicular, 1-km transects crossing at the center of
each other were located in a deciduous forest near the Clinch
River on the Oak Ridge Reservation (Oak Ridge, TN). A forest
cover map based on satellite imageries by the USGS and the
USDA Forest Service classifies the experimental site as pre-
dominantly ‘‘oak-hickory’’ forest (The National Atlas, www.na-
tionalatlas.gov/mld/foresti.html). The mean annual temperature
is 14.3°C and annual precipitation is 113 cm based on records
from 1971 to 2000 (National Weather Service). The forest soil
type was primarily loam and the position of the center point of
the two crossing transects was 35°92�10�N and 84°26�40�W. The
entire sampling area was �0.5 km2 and the elevation difference
was �80 m (244 to 323 m). Sampling locations were placed at the
center point and one near each corner of each grid (Fig. S3).

Microbial functional processes and distribution could be hor-
izontally heterogeneous. To make sure that the sampling is
representative of the diversity at the meter scale of interest,
pooling samples around a sampling point is recommended and
commonly used approach (23). Thus, to minimize the possible
effects of spatial heterogeneity at the spatial level below meter
scale on experimental measurements, after removing loose
organic material (Oi horizon), four closely adjacent soil cores (15
cm deep) were randomly collected around each sampling point,
using a bucket auger. The collected soils were then mixed, sieved
through a 4-mm sieve, and combined. Also, by pooling 15-cm
core, we were able to control vertical heterogeneity while able to
measure (horizontal) spatial heterogeneity at meter scale. Thus,
the experimental data obtained in this study represent integrated
microbial community structure and environmental heterogene-
ity within the top 15 cm of the soil. A subset of the composited
soil was preserved immediately in the field by freezing in liquid
nitrogen, transported to the laboratory on dry ice, and stored at
�80°C until DNA extraction. In addition, at each sampling point,
the predominant overstory tree species within 10 m of the center
point were recorded.

DNA Extraction and Microarray Hybridization. Community DNA was
directly extracted and purified from 5 g of each preserved soil
sample, using a protocol modified from Zhou et al. (24).
Approximately 100 ng of purified community DNA was ampli-
fied in triplicate, using a Templiphi 500 amplification kit (Am-
ersham Biosciences), using the whole-community genome am-
plification approach as described by Wu et al. (25). Target
template labeling and microarray hybridization were carried out
as described in ref. 25. The GeoChip used in this study contained
24,243 oligonucleotide probes targeting �150 functional groups
of �10,000 genes essential to the biogeochemical cycles of
carbon, nitrogen, phosphorus, and sulfur along with metal
resistance, metal reduction and organic contaminant degrada-
tion (20). To control experimental error from random amplifi-
cation and fluorescent labeling, the triplicate samples were
pooled before hybridization. Microarray hybridization was car-
ried out overnight at 50°C plus 50% of formamide (25), in which
specific hybridization can be achieved for probes with sequence
identity of �90% to the target sequences (20, 21), even up to
98% similar to the target sequences for some probes (10). Many
functional genes had DNA sequence identity �90% at the
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species level, e.g., amoA (0.75 � 0.11%), nirS (0.70 � 0.18%),
and dsrAB (0.73 � 0.13%) (11). Thus, the GeoChip hybridiza-
tion could provide species-strain level of resolution (23). Mi-
croarray scanning and image processing were accomplished as
described in ref. 25.

Data Processing and Analysis. Microarray data preprocessing. Microar-
ray data preprocessing was carried out as described (20, 25) to
remove poor spots and outliers. Hybridization spots with a
signal-noise ratio (SNR) � 2.5 were removed from further
analysis. When three technical replicates were combined, only
those spots that showed �2 positive hybridizations were used.
The normalization among slides was done based on summed
signal intensity of positive spots excluding control spots. Outliers
were removed among three technical replicates with � � 0.01 by
Grubbs’s test (26). The normalized hybridization data for indi-
vidual functional gene sequences was then reorganized based on
functional genes, such as nifH and nirS, and functional groups,
such as nitrification, denitrification for estimating z values.
Gene–area relationships. The hybridization intensity data were
transformed into binary data as presence or absence, which were
then used to estimate richness in each sample. The power-law
exponent z was estimated directly with linear regression ap-
proach, using the equation logS � logc 	 zlogA, where S is the
observed gene richness, and A is the area in the nested design (2,
50, 200, 2,500, 125,000 and 500,000 m2). This equation was fitted
separately based on the richness of all individual functional gene
sequences and the richness of functional genes to obtain the z
values at the level of individual gene sequences and the level of
functional genes (Table 1). This equation was also fitted based
on individual gene sequences within each functional group (e.g.,
carbon degradation, nitrification, nitrogen fixation, N reduction,
metal resistance, and organic contaminant degradation) or
phylogenetic group (e.g., fungi, archaea, bacteria, Gram-positive
bacteria, Gram-negative bacteria, �-, �-, �-, and �-proteobacte-
ria) to examine how the z values change among different
functional or phylogenetic groups (Table 1).

Due to the nested sampling design, the data points in indi-
vidual areas were not independent. Thus, the significance of
regression coefficient (z value) was tested by using bootstrapping
with replacement. First, area and richness were randomly paired
from the original dataset and the regression coefficients (z
values) were calculated 10,000 times in each of the situations
described above. Then, one-sample t test was used to determine
whether the observed slope was significantly different from the
mean of the randomly generated slopes as described in ref. 3. As
widely used in phylogenetics and other areas, bootstrapping is a
technique for obtaining standard errors and confidence limits of
various statistics by randomly resampling the original popula-
tions.

One interesting question is that whether all observed z values
were significantly different among various functional or phylo-
genetic groups. However, no standard deviations were available
for the estimated z values for individual groups, standard t test
or ANOVA could not be implemented. Thus, bootstrapping
(1,000 times) was used to estimate the variances of z values,
followed by pairwise t test with Bonferroni correction to deter-
mine whether the observed z values for individual groups were
significantly different from each other.
Variation partitioning analysis. Various similarity matrices were
calculated for microbial community, plant composition, envi-
ronmental chemistry and geographic distance. First, the binary
hybridization data were used to calculate community similarity
matrices with Sørensen index. The hybridization intensity data
were also used to calculate community similarity matrices with
Bray-Curtis index, which is a quantitative version of Sørensen
index (27). When two types of similarity matrices were used, the
results were very similar to each other (rM � 0.95), thus the
Sørensen index was used for analysis with BIO-ENV and Mantel
test. Also, Euclidean distances were used to construct similarity
matrices for geographic distance and soil properties. In addition,
presence-absence data of overstory tree species were converted
into distance matrix by Sørensen index as well.

Partial Mantel tests (10,000 permutations) and partial CCA
were performed as described in refs. 28–30 to determine the
effects of environmental heterogeneity or tree diversity on
microbial community composition by treating geographic dis-
tance constant and vice versa based on individual functional
genes and each functional or phylogenetic group. Then function
‘‘mantel’’ in the packages of vegan (v. 1.7–67) and ecodist (v.
1.01) of R (v.2.2.0, www.r-project.org) were used to perform the
tests. The partial CCA used for variation partition was carried
out as described in ref. 30, using the function ‘‘cca’’ in vegan
(version 1.7–67) and the package CANOCO for verification
purpose (31).

BIO-ENV and CCA were also used to identify the abiotic
factors most important to microbial community composition,
and they were used to construct soil property matrix for the
Mantel test and CCA. BIO-ENV identified the best subset of
geochemical variable set [ammonium concentration, C/N ratio
and fraction of C in particulate organic matter (fPOM-C)] based
on Spearman rank correlation. The selected variables were
confirmed by significance of the CCA model based on 1,000
times of permutation, using eigenvalues of constrained and
unconstrained correspondence axes. Euclidean distances were
used to construct similarity matrices based on these identified
abiotic factors, which were then used to test the effects of these
factors on microbial community composition in conjunction with
geographic distance.
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Fig. S1. A schematic map of sampling locations.
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Fig. S2. The gene-area relationships of individual phylogenetics groups based on measurement from the GeoChip hybridization.
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Fig. S3. Variation partitioning based on canonical correspondence analysis (CCA) for all functional gene sequences (FGSs).
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Fig. S4. Multivariate spatial autocorrelogram based on Mantel’s r. Significant spatial autocorrelation (by permutation and progressive Bonferroni correction)
at each distance class is represented by filled circle.
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Table S1. Calculated t statistics between pairs of functional groups

Functional group

Functional group

C degradation Nitrification N fixation N reduction Organic contaminant degradation

Nitrification 21.67 — — — —
N fixation 47.09 36.80 — — —
N reduction 32.72 62.78 75.77 — —
Organic contaminant degradation 16.06 48.26 65.08 21.09 —
Metal resistance 5.70 39.23 59.11 34.84 14.46

�� � 0.00333 (0.05/15). A two-sample t test was done between all possible pairs of functional and phylogenetics groups based on variances estimated by
bootstrapping (1,000 times without replacement). Bootstrapping was done in R, and the t test was done in Excel manually. Significance levels were adjusted by
Bonferroni correction (�� � �/k), and all pairs were significantly different from each other (P � 0.001) except between Gram-positive bacteria and and
�-proteobacterium subdivision (P � 0.008) (degree of freedom � 1,998). Critical value of t statistics at � � 0.001 with df � 1,998 is 3.291.
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Table S2. Calculated t statistics between pairs of phylogenetics groups

Phylogenetic group

Phylogenetic group

Fungi Archaea Gram-positive � � �

Archaea 50.88
Bacteria 54.79 22.47
Gram-positive bacteria 13.19 44.25
Gram-negative bacteria 61.79 24.23 46.36
�-proteobacteria 66.81 15.77 53.79
�-proteobacteria 12.99 39.65 2.64 40.89
�-proteobacteria 69.86 19.74 54.70 6.90 38.70
�-proteobacteria 160.77 37.92 147.92 93.88 119.12 111.19

�� � 0.00192 (0.05/26). For further details, see Table S1.
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Table S3. The effects of soil geochemistry and geographic distance on microbial community composition

All individual
gene sequences

In association with

Soil geochemistry Geographic distance Vegetation

Controlling for

Geographic distance Soil geochemistry Soil geochemistry

rM P1 P2 rM P1 P2 rM P1 P2

0.002 0.489 0.818 0.064 0.301 0.310 �0.004 0.510 0.861

Functional genes 0.293 0.043* 0.764 �0.120 0.762 0.231 0.055 0.330 0.825
Functional groups
C degradation �0.006 0.481 0.962 0.099 0.234 0.151 0.010 0.449 0.780
Nitrification �0.038 0.645 0.841 0.004 0.478 0.278 �0.062 0.749 0.911
N fixation �0.138 0.810 0.920 0.037 0.387 0.333 �0.098 0.728 0.854
N reduction 0.113 0.119 0.901 0.169 0.040* 0.146 0.142 0.057 0.502
Organic cont. degr. 0.029 0.406 0.848 0.029 0.410 0.331 �0.018 0.555 0.884
Metal resistance �0.007 0.506 0.947 0.028 0.396 0.310 0.028 0.392 0.815
Phylogenetic groups
Fungi �0.053 0.628 0.741 0.014 0.391 0.402 �0.048 0.620 0.771
Archaea 0.029 0.348 0.935 0.085 0.232 0.293 0.062 0.291 0.969
Bacteria �0.009 0.529 0.873 0.065 0.283 0.183 0.003 0.483 0.882
Gram-positive bacteria 0.062 0.273 0.792 0.069 0.265 0.141 0.028 0.388 0.784
Gram- bacteria �0.030 0.568 0.851 0.046 0.364 0.340 �0.021 0.565 0.831
�-Proteobacteria �0.045 0.615 0.855 0.005 0.486 0.402 �0.074 0.714 0.790
�-Proteobacteria 0.006 0.429 0.701 0.028 0.368 0.268 0.061 0.288 0.692
�-Proteobacteria �0.024 0.559 0.912 0.061 0.315 0.332 �0.086 0.759 0.831
�-Proteobacteria �0.062 0.699 0.792 0.100 0.186 0.233 0.100 0.175 0.521

rM and P1 represent the partial Mantel test statistic and the P value. P2 values are based on F test on canonical axes of partial CCA. *, P � 0.05.
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