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SUPPLEMENTARY TABLES 33 
 34 

Table. S1. Warming induced C4 derived-carbon (C) increases (%, mean ± standard error, n=6) in 35 

light fraction (LF), intra-aggregate particulate organic matter (iPOM) and mineral soil organic matter 36 

(mSOM) of different aggregate size classes. The significance of the increase was tested by two-tailed t 37 

tests. Asterisks indicate p < 0.05 (**) and p < 0.10 (*). 38 

 39 

Fractions by size Fraction by density Warming induced C increase (%) 
 
>2000 µm 

LF 16.44 ± 4.92** 
iPOM 5.42 ± 5.86 
mSOM 7.76 ± 5.67 

 
2000-250 µm 

LF 11.28 ± 8.10 
iPOM 8.65 ± 4.83 
mSOM 9.21 ± 4.08* 

 
250-53 µm 

LF 5.60 ± 2.47 
iPOM 4.44 ± 2.91 
mSOM 6.14 ± 3.34 
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Table S2. Overall microbial community diversity detected by GeoChip and pyrosequencing under 64 

warming and the control (mean ± standard error, n=6 for functional genes and 15 for 16S rRNA 65 

gene).    66 

 67 
Dataset Detected gene number Inverse Simpson Index (1/D)

 Warming Control Pa Warming Control Pa

Functional genes 999±194b 728±180b 0.16 993.45±192.90 724.43±179.52 0.16 

16S rRNA gene 1837±510c 1808±742c 0.920 523.60±144.58 495.02±125.48 0.565 

 68 
a p-value of two-tailed paired t test;   69 
bTotal functional gene number;   70 
cTotal OTU number.  71 
 72 
 73 
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Fig. S1.  Detrended correspondence analysis (DCA) of GeoChip data showing that warming 44 

significantly altered the soil microbial community composition and functional structure. The effects 45 

of warming on the soil microbial community composition and structure were well separated by 46 

DCA1. 47 
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Fig. S2. Detrended correspondence analysis (DCA) of pyrosequencing data showing that warming 71 

significantly affected the soil microbial community composition. The effects of warming on the soil 72 

microbial community composition and structure appeared to be well separated by the DCA2.  73 
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 86 

Fig. S3. Constrained ordination analysis. (A) Canonical correspondence analysis (CCA) of 87 

GeoChip data and environmental variables, which showed that microbial community functional 88 

composition and structure were significantly shaped by several key environmental factors: leaf area 89 

index (LAI), belowground net primary productivity (BNPP), aboveground net primary productivity 90 

(ANPP), C4 net primary productivity (C4-ANPP), soil temperature (Tm), moisture (MS), pH, total 91 

organic C (TOC) and N (TON). C1 – C6 refer control plots without warming, whereas W1-W6 92 

represent the plots under warming. The insert table showed the significances of each or subsets of the 93 

environmental variables in explaining the variations of microbial community functional gene 94 



structure based on F-test.  (B) CCA-based variation partitioning analysis (VPA) which showed the 95 

relative proportions of community structure variations that can be explained by different types of 96 

environmental factors. The circles show the variation explained by each group of environmental 97 

factors alone. The numbers between the circles show the interactions of the two factors on either side 98 

and number in the center of the triangle represents interactions of all three factors. 99 
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 121 

Fig. S4. The marginal distribution of modeled Q10 values for heterotrophic soil respiration in control 122 

plots (solid line) and warming plots (dashed line). The best estimation of Q10 is lower in warmed 123 

plots than that in control plots. The inverse analysis of Q10 was performed in a revised Terrestrial 124 

ECOsystem (TECO) model by the Markov Chain Monte Carlo (MCMC) method.  In each treatment 125 

condition, 20,000 Q10 values were inversely estimated. The figure here shows the probability 126 

density of the Q10 values for each treatment with the assumption that the best estimation of Q10 has 127 

the highest probability density. 128 
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Fig. S5. The normalized average well color development (AWCD) for soil samples incubated for 48 135 

h by BIOLOG ECO MICROPLATE to measure the substrate utilization profiles of soil microbial 136 

communities under warming and control. Error bars indicate standard error of the data (n=6). The 137 

differences between warming and the control were tested by two-tailed paired t-tests and labeled 138 

with ** when p < 0.05, and * when p < 0.10. 139 
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 141 

Fig. S6. The normalized average signal intensity of detected genes involved in lignin degradation 142 

under warming and the control in 2008. The signal intensities were the average abundances of 143 

detected genes from warming or control plots, normalized by the probe number for each gene. Error 144 

bars indicate standard error of the data (n=6). The differences between warming and control were 145 

tested by two-tailed paired t-tests and none shows a statistically significantly difference. 146 
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 158 

Fig. S7. The δ13C (A) and δ15N (B) values for soil light fraction (LF), intra-aggregate particulate 159 

organic matter (iPOM) and mineral soil organic matter (mSOM) of different aggregate (Aggre) sizes 160 

(µm) from control and warming plots in 2008. Error bars indicate standard error of the data (n=6). 161 

The differences between warming and the control were tested by two-tailed paired t-tests and labeled 162 

with *** when p<0.01, ** when p < 0.05, and * when p < 0.10. 163 
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 168 

Fig. S8. The normalized average signal intensity of the detected phosphorus utilization genes under 169 

warming and the control in 2007. Signal intensities were averaged and normalized by the probe 170 

number for each gene. Error bars indicate standard error of the data (n=6). The differences between 171 

warming and control were tested by two-tailed paired t-test and labeled with *** when p < 0.01. 172 
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SUPPLEMENTARY MATERIALS AND METHODS 29 

 30 

1. Site Description and Sampling 31 

This study was conducted at the Kessler Farm Field Laboratory (KFFL) located at the Great Plain 32 

Apiaries in McClain County, Oklahoma, USA (34°58'54"N, 97°31'14"W). This is an old field tall 33 

grass prairie that had been abandoned from agriculture for more than 30 years. The herbivores were 34 

excluded at this site in 2002 to prevent light grazing, which occurred before. The grassland is 35 

dominated by C4 grasses (Andropogon gerardii, Sorghastrum nutans, Schizachyrium scoparium, 36 

Panicum virgatum, and Eragrostis spp.), C3 forbs (Ambrosia psilostachyia and Xanthocephalum 37 

texanum), and C3 annual grass (Bromus japonicas)1,2. Based on Oklahoma Climatological Survey 38 

from 1948 to 1999, the mean annual temperature at this site was 16.3ºC with the lowest, 3.3ºC, in 39 

January and the highest, 28.1ºC, in July, while the mean annual precipitation was 967mm, which was 40 

highest in May and June (240 mm) and lowest in January and February (82 mm). The soil is silt loam 41 

(36% sand, 55% silt, and 10% clay in the top 15 cm) and part of Nash–Lucien complex, which 42 

typically has high fertility, neutral pH, high available water capacity, and a deep moderately 43 

penetrable root zone3. 44 

      The experiment was established in November 1999 with a blocked split-plot design, in which 45 

warming is a primary factor. Two levels of warming (ambient and +2ºC) were set for six pair of 1 m 46 

×1 m subplots by utilizing a “real” or “dummy” infrared radiator (Kalglo Electronics, Bethlehem, 47 

Pennsylvania) as the heating device, suspended 1.5m above the ground in warming plots. In control 48 

plots, the dummy infrared radiator is suspended to exclude a shading effect of the device itself on 49 

treatments. 50 

2. Aboveground and Belowground Net Primary Production  51 

Aboveground plant biomass (AGB) was indirectly estimated by pin-contact counts4 each year. The 52 

pin frame is 0.5 m long and holds 10 pins 5 cm apart at 30° from vertical. Pins were 0.75 m long 53 

each and could be raised within the frame to count hits up to 1 m high (hits above 1 m are negligible 54 

at this site). In each subplot, the point frame was placed four times in each of the four cardinal 55 

directions to record the contact numbers of the pins separately with green and brown plant tissues 56 

(i.e., leaves and stems). The brown tissues were considered to be dead plant materials produced in 57 

the current year. The contact numbers of both green and brown tissues were then used to estimate 58 

AGB using calibration equations derived from 10 calibration plots, which were randomly selected 59 

each season and year and located at least 5 m away from the experimental plots. Biomass in the 60 



calibration plots was clipped to the ground surface instead of 10 cm above the ground. Clipped plant 61 

materials were oven-dried and then correlated with the total contact number. A linear regression of 62 

total hits vs. total biomass was used to derive the calibration equation. The estimated AGB during the 63 

peak season in summer (July or August) was considered to be aboveground net primary production 64 

(ANPP) since our ecosystem satisfied primary criteria of virtually no carryover of living biomass 65 

from previous years due to a distinct dormant season and negligible decomposition of biomass 66 

produced during the growing season5, but a conversion factor of 2.1 was applied as the measurement 67 

was only for above 10 cm biomass. Biomass was converted to C content by a factor of 0.45. 68 

      The root biomass was measured by taking soil cores (5.2 cm in diameter and 45 cm in depth) 69 

from one unclipped subplot. The roots were oven-dried at 65 °C for 48 h. The belowground net 70 

primary production (BNPP) was estimated from root biomass and root turnover rates. Root turnover 71 

was quantified in this area of our study6,7 and correlated with temperature according to a meta-72 

analysis of 62 studies in temperate grasslands8. From the temperature–turnover relationship, we 73 

estimated a root turnover rate using a mean annual temperature of 16.3 °C at our site. The estimated 74 

turnover rate is slightly higher but within a range of the measured ones in the literature6,7. Then, 75 

deviations of the 62 observed root turnover rates in the meta-analysis database were computed from 76 

the temperature–turnover regression line as an estimate of variance for the turnover rate. 77 

3. Labile C and total organic C 78 

A two-step acid hydrolysis procedure was adopted in this study to determine the labile and 79 

recalcitrant C pools in soils as described previously9. Briefly, a 500 mg soil sample was hydrolyzed 80 

with 20 ml of 5 N H2SO4 at 105ºC for 30 min. The hydrolysate and the 20 ml water washing to the 81 

residue were recovered by centrifugations and decantations as labile pool 1, predominantly 82 

containing polysaccharides. After drying at 60ºC, the remaining residue was added with 2 ml 26 N 83 

H2SO4 overnight at room temperature, under continuous shaking. The 24 ml water were added to 84 

dilute the acid to be 2N and hydrolyzed at 105 ºC for 3 h. The hydrolysate and the 20 ml water 85 

washing to the residue was taken as labile pool 2, largely containing cellulose. 86 

      The total organic C in soils and labile pool 1 and 2 were measured by a Shimadzu TOC-5000A 87 

Total Organic Carbon Analyzer with ASI-5000A Auto Sampler (Shimadzu Corporation, Kyoto, 88 

Japan) in the Stable Isotope/Soil Biology Laboratory at the University of Georgia (Athens GA). The 89 

recalcitrant C pools were calculated as the difference between soil TOC and organic C in labile pools 90 



(1 and 2).  91 

4. Soil Carbon, Nitrogen and Stable Isotope Analyses  92 

Based on a developed protocol10, the aggregate separation and size density fractionations were 93 

performed for air-dried soil samples collected from 0-20 cm depth by soil cores (4 cm in diameter) in 94 

the fall of 2008. The large roots and stone had been removed by hand from soils.   95 

      A series of sieves (2000, 250, and 53 μm) were used to separate four aggregate sizes. A 100 g dry 96 

soil was submerged with de-ionized water for 5 minutes at room temperature on the top of the 2000 97 

μm sieve. Then the sieve with soil was manually shaken in vertical direction at a speed of 25 times 98 

min-1 for 2 min. The stable aggregates (> 2000 μm) were gently washed off into an aluminum pan. 99 

Floating organic materials (> 2000 μm) were discarded as they are not considered to be soil organic 100 

matter (SOM). These steps were repeated using the other two sieves (one at a time), but the floating 101 

material was retained. Finally four size fractions were obtained (>2000 μm, 250 - 2000 μm, 53 - 250 102 

μm and <53 μm). The aggregates were oven dried at 50°C, weighed and stored at room temperature. 103 

      The density fractionation was performed using 1.85 g cm-3 sodium polytungstate (SPT) solution, 104 

following the published protocol10. A subsample (5 g) of each oven-dried aggregate was suspended 105 

in 35 mL SPT and slowly shaken by hand. The material remaining on the cap and sides of the 106 

centrifuge tube was washed into the suspension with 10 mL of SPT. After 20 min of vacuum 107 

(138kPa), the samples were centrifuged (1250 g) at 20 oC for 60 min. The floating material (light 108 

fraction-LF) was aspirated onto a 20 μm nylon filter, subjected to multiple washings with deionized 109 

water to remove SPT, and dried at 50°C. The heavy fraction (HF) was rinsed twice with 50 mL of 110 

deionized water and dispersed in 0.5% sodium hexametaphosphate by shaking for 18 h on a 111 

reciprocal shaker. The dispersed heavy fraction was then passed through a 53 μm sieve and the 112 

material remaining on the sieve, i.e. the intra-aggregate particulate organic matter (iPOM) was dried 113 

(50°C) and weighed.  114 

      Subsamples from all fractions and the whole soil samples were treated with 1N HCl for 24 hours 115 

at room temperature to remove soil inorganic C (carbonates). The C and N concentration and δ13C 116 

and δ15N of soil were determined at the University of Arkansas Stable Isotope Laboratory on a 117 

Finnigan Delta+ mass spectrometer (Finnigan MAT, Germany) coupled to a Carlo Erba elemental 118 

analyzer (NA1500 CHN Combustion Analyzer, Carlo Erba Strumentazione, Milan, Italy) via a 119 



Finnigan Conflo II Interface. The C and N contents of each fraction was calculated on an area basis, 120 

adjusting by soil depth and density. 121 

    The C and N isotope ratios of the soil fractions are expressed as: 122 

      (1) 123 

where X is for either C or N, h is the heavier isotope, l is the lighter isotope. The C isotope ratios (13C) 124 

are expressed relative to Pee Dee Belemnite (δ13C = 0.0‰); the N  stable isotope ratios (15N) are 125 

expressed relative to air (δ15N = 0.0‰). Standards (acetanilide and spinach) were analyzed after 126 

every ten samples; analytical precision of the instrument was ±0.13 for δ13C and ±0.21 for δ15N.  127 

5. Soil respiration measurement and Q10 estimation (Inversion analysis) 128 

a. Soil respiration measurement 129 

Soil respiration was measured once or twice a month between 10:00 and 15:00 (local time) using a 130 

LI-COR 6400 portable photosynthesis system attached to a soil CO2 flux chamber (LI-COR Inc., 131 

Lincoln, NE, USA). Measurements were taken above a PVC collar (80 cm2 in area and 5 cm in depth) 132 

and a PVC tube (80 cm2 in area and 70 cm in depth) in each plot. The PVC tubes cut off old plant 133 

roots and prevented new root from growing inside the tubes. After 5 months, the CO2 efflux 134 

measured above the PVC tubes represented the heterotrophic respiration. And the CO2 efflux 135 

measured above the PVC collars represented the total soil respiration including heterotrophic and 136 

autotrophic respiration. Aboveground parts of living plants were taken out of the PVC tubes and 137 

collars every time before the measurement.  138 

b. Q10 estimation  139 

We used the inverse analysis method to estimate the Q10 values for monthly heterotrophic soil 140 

respiration in control and warming plots. The inverse analysis is also called the data-assimilation 141 

method, which is widely used to incorporate experimental observations with the model to estimate 142 

key parameters of ecosystem processes11,12. The major advantage of this approach is that it allows us 143 

to assess heterotrophic respiration from field soil respiration data. In this case, we used a Bayesian 144 

paradigm to incorporate a priori probabilistic density functions (PDF) with above ground biomass 145 

and heterotrophic soil respiration measurements from 2000 to 2007 to generate a posteriori PDF for 146 

Q10 values for heterotrophic soil respiration. In this case, we estimated five parameters (heterotrophic 147 

soil respiration Q10, autotrophic soil respiration Q10, microbial biomass carbon residence time, fine 148 
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litter biomass residence time, and root biomass residence time) using four data sets (heterotrophic 149 

soil respiration, autotrophic soil respiration, aboveground biomass, and belowground biomass) in a 150 

revised terrestrial ecosystem (TECO) model13, which is a process-based model developed to examine 151 

critical ecosystem processes regarding plant responses to climate changes. The TECO model has four 152 

major components: canopy photosynthesis sub-model, soil water dynamic sub-model, plant growth 153 

(allocation) sub-model, and soil C transfer sub-model. The model was calibrated for the warming 154 

experiments in Kessler Farm Field Laboratory. The result is a constructed marginal distribution of 155 

the PDFs. The peak of each line represents the Q10 with the highest possibility in that treatment, thus 156 

it also represents the best estimation of Q10, and it will generate least error between the model 157 

simulated soil respiration and the soil respiration data.  158 

      To apply Bayes’ theorem, we specified the prior PDFs p(c) of parameters as a uniform 159 

distribution. The interval for Q10 values are between 2 and 5. The lower and higher limits were 160 

chosen based on previous studies of Q10 values on the same site using regression methods14,15 as our 161 

prior knowledge of the parameter. Then we constructed the likelihood function p(Z|c) based on the 162 

observation errors across all observation times. The fewer errors there are between the modeled 163 

results and observations are, the higher the likelihood of the parameter. At last, with Bayes’ theorem, 164 

the posterior PDF p(c|Z) is given by  165 

p(c|Z) ∝ p(Z|c) p(c). 166 

       The parameters were sampled by the Metropolis-Hastings (M-H) Algorithm16,17. The M-H 167 

algorithm is a Markov Chain Monte Carlo (MCMC) technique to reveal the PDF of the parameter via 168 

a sampling procedure. In short, to generate Markov Chain, the two steps in M-H algorithm, a 169 

proposing step and a moving step, were run repeatedly. Each proposing step generates a new set of 170 

parameters based on the previously accepted set of parameters, and then in the moving step the 171 

newly generated parameters are tested against the Metropolis criterion to decide whether it should be 172 

accepted. In our case, we ran the TECO model with each proposed parameter, and then we compared 173 

modeled data (soil respiration and biomass) with the data observed in the field. If newly proposed 174 

parameters produce less error between the modeled and observed data than previous parameters, they 175 

will always be accepted. If they are worse than the previous parameters, they will be accepted at a 176 

possibility that is dependent on the relative performance of the old and the new parameters. If newly 177 

proposed parameters are rejected, a new set of parameters will be proposed from the parameters that 178 

are accepted in the previous step. The sampling began with a randomly selected starting point from 179 

the prior PDF, and then 50,000 sampling procedures were performed for each treatment: control or 180 

warming. The first 1,000 accepted parameter sets were discarded, and the remaining accepted 181 



parameter sets were used for each treatment.  182 

      We constructed the a posteriori PDF of heterotrophic Q10 based on the posterior distribution of 183 

Q10 obtained in the previous steps. The maximum likelihood estimates were identified by observing 184 

the parameter values corresponding to the peaks of their PDF. 185 

6. Laboratory Incubation for N processes 186 

Soil sample were collected by soil cores (4 cm in diameter and 20 cm in depth) from the field in Oct 187 

3, 2010. Laboratory incubations were conducted to measure the denitrification potential. Soil 188 

samples (20 g, oven dry weight equivalent) were placed into 74 ml bottles, 9 mg K15NO3-N (98 189 

atom % 15N, Sigma-Aldrich, St. Louis, MO, USA) was added, and adjusted to 70% water holding 190 

capacity. After evacuation, the headspace of each bottle was filled by unlabeled N2 (Airgas Inc., 191 

Radnor, PA, USA). At 1, 3 and 6 days after the initiation of incubation at room temperature, a 12 ml 192 

gas sample from the headspace of each bottle was collected into evacuated Exetainers with plastic 193 

screw-caps (Labco Ltd, High Wycombe, UK). After each sampling time point, the bottles were 194 

evacuated and filled by unlabeled N2 again. The gas samples were sent to the Stable Isotope Facility 195 

at the University of California, Davis (Davis, CA) to determine the concentration of 15N2 and 15N2O 196 

by the ThermoFinnigan GasBench + PreCon trace gas concentration system interfaced to a 197 

ThermoScientific Delta V Plus isotope-ratio mass spectrometer (Bremen, Germany). The 198 

denitrification potential was represented by the 15N2O and 15N2 products generated during the 199 

incubation.   200 

7. Soil sampling for molecular analyses 201 

Twelve soil samples were taken from the 0-15 cm layer of 6 warming and 6 control plots both in 202 

April 2007 and October 2008. Each sample was composited from four soil cores (2.5 cm diameter × 203 

15 cm deep) after being sieved by 2mm sieves to have enough samples for soil chemistry, 204 

microbiology and molecular biology analyses. All samples were transported to the laboratory 205 

immediately and stored at -80oC.  206 

      To determine whether long-term warming affects microbial community structure, several 207 

metagenomic and conventional microbial analyses were performed, including (i) Phospholipid fatty 208 

acid (PLFA) analysis19 for 2008 samples, which provides information on the physiological activity of 209 

microbial communities20; (ii) Enzyme activity21,22 for 2008 samples; (iii) BIOLOG analysis to 210 

examine substrate utilization profile patterns; (iv) Labile C and total soil organic C analyses9 for 211 

2008 samples; (v) Functional gene array (i.e., GeoChip 3.0)23 for 2007 samples, which measure the 212 

functional structure of microbial communities; and (vi) 16S rRNA gene-based targeted 213 

pyrosequencing24 for 2007 samples, which assesses the phylogenetic composition of microbial 214 

communities. Since the microbial communities in the experimental site has been warmed for more 215 



than 8 years, DNA-based microbial population abundance changes should be more appropriate to 216 

reflect microbial activity changes than mRNA-based analysis due to their very short half life (~ 3 217 

min). Thus, in this study, we rely on DNA-based analysis to measure population changes. 218 

  219 

a. Phospholipid fatty acids (PLFA)  220 

Microbial biomass was estimated by PLFA analysis. The PLFAs were extracted from 3.0 g soil by a 221 

modified25 technique as previously described19 and analyzed by a Hewlett-Packard Agilent 6890A 222 

gas chromatograph (GC) (Agilent Tech. Co., USA) equipped with an Agilent Ultra-2 (5% phenyl)-223 

methylpolysiloxane capillary column (25 m by 0.2 mm by 0.33 mm) and flame ionization detector 224 

(FID). All PLFAs were used for estimating total microbial biomass.  225 

      The PLFAs selected to represent bacteria biomass included a15:0, i15:0, 15:0, a17:0, cy17:0, 226 

i17:0, 17:0, 16:1ω5c, 16:1ω9c, 18:1ω5c, while the fungal biomass was calculated only based on 227 

18:1ω9c4,26,27. The detected PLFAs were notablly low in sample 2UW and too many missing values 228 

occurred for PLFAs that are commonly observed in other soils samples. In this way, 2UW was 229 

excluded from any further data analysis related to PLFAs. 230 

b. Enzyme activity 231 

Extracellular enzyme activities of phenol oxidase and peroxidase involved in lignin decomposition 232 

were analyzed as described previously21,22 with modifications. Both enzymes were assayed 233 

spectrophotometrically using 3, 4-dihydroxy-L-phenylalanine (L-DOPA) as the substrate, followed 234 

by quantification of a red oxidation product of L-DOPA. The activities were standardized using a 235 

commercial L-DOPA oxidase, mushroom tyrosinase (Sigma T3824).  Briefly, a soil suspension was 236 

prepared by adding 1 g of soil to 125 mL modified universal buffer (MUB) (50 mM, pH 5.5) in a 237 

300-mL Pyrex tall-form beaker and then mixed with a magnetic stir bar for 30 min for complete 238 

homogenization. Following settling for 30 min, 150 µL of suspension was dispensed into each well 239 

of a 96-well microplate using a 0-250 µL multi-channel pipette with wide orifice tips. For phenol 240 

oxidase assays, 50 µL of 10 mM L-DOPA was added to each microplate well as the substrate. For 241 

peroxidase assays, 50 µL of 10 mM L-DOPA plus 10 µL of 0.3% H2O2 were added to each 242 

microplate well. The reactions were mixed by pipetting up and down several times before incubating 243 

in the dark at 25ºC for 18 hours. Triplicate analyses were performed for each sample and its control, 244 

for which the substrate solution was added upon completion of the incubation. The enzyme activities 245 

were quantified by measuring absorbance at 450 nm using a Benchmark microplate reader with an 246 

auto-mixing feature (Bio-Rad Laboratories, Hercules, CA, USA) based on the following formula: 247 

Phenoloxidase (mM) = Abs450/εl 248 

Peroxidase (mM) = Abs450/εl-phenoloxidase activity 249 



where ε is the extinction coefficient, which is 1.79 mM-1 cm-1 for L-DOPA under the conditions of 250 

this assay and l is the wavelength path, which is 0.52 cm.   251 

      The ε value was determined by adding a known quantity of mushroom tyrosinase to completely 252 

oxidize a known amount of L-DOPA and then measuring the absorbance of the reaction product.  253 

Briefly, 50 μL of a 10 mM solution of L-DOPA was incubated in the dark at 25oC with 150 μL of 1 254 

mg mL-1 mushroom tyrosinase solution for at least 6 h (indicated by maximum absorbance at 450 255 

nm).  Subsequently, absorbance of the solution was measured.  The extinction coefficient was 256 

calculated according to Beer’s law with the assumption of quantitative oxidation of L-DOPA to 257 

quinine under the assay conditions. The wavelength path for 200 µL of reaction mixture in the 258 

microplate well used was 0.52 cm.  The ε value was calculated using the equation described below: 259 

 ε = Abs450 / [substrate volume (50 µL) x substrate concentration (10 mM) / total volume (200 260 

µL)] / wavelength path (0.52 cm) 261 

c. BIOLOG analysis 262 

The substrate utilization patterns of soil microbial communities was analyzed by ECO 263 

MICROPLATE™ (BIOLOG, CA, USA). Soil (5 g) was put into a 50 ml centrifuge tube and 50 ml 264 

sterile deionized water was added. The mixture of soil and water was shaken at 200 rpm for 45 min 265 

and allowed to settle for 30 min at 4oC. Then the mixture was serially diluted (10-1, 10-2, 10-3), and 266 

the 10-3 dilution was loaded into the wells of the ECO MICROPLATE. The plates were incubated in 267 

a Biolog OmniLog PM System at 25oC for 48 hours. The color change of each well was captured by 268 

the moving camera and the average well color development (AWCD) was calculated by averaging 269 

the optical densities (OD) in all wells containing various C sources and normalized by the detection 270 

in control wells.  271 

d. DNA extraction 272 

Soil DNA was extracted by freeze-grinding mechanical lysis as described previously28 and was 273 

purified using a low melting agarose gel followed by phenol extraction for 12 soil samples collected 274 

in 2007. DNA quality was assessed based on the ratios of 260 /280 nm and 260/230 nm absorbance 275 

by a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE), while 276 

final soil DNA concentrations were quantified by PicoGreen29 using a FLUOstar Optima (BMG 277 

Labtech, Jena, Germany). 278 

8. GeoChip analysis 279 

GeoChip 3.0 was used for this study for 12 samples taken in 2007. The GeoChip 3.0 contains 280 

approximately 28,000 probes and covers about 57,000 gene sequences in more than 292 gene 281 



families30. GeoChip analyses were performed as described previously31,32 with the following steps: 282 

a. Template amplification  283 

In order to produce consistent hybridizations from all samples, a whole community genome 284 

amplification (WCGA)32 was used to generate approximately 2.5-4.0 µg of DNA with 50 ng purified 285 

DNA as the template using the TempliPhi Kit (GE Healthcare, Piscataway, NJ) following the 286 

manufacturer’s instructions. In addition, single-strand binding protein (267 ng μL-1) and spermidine 287 

(0.1 mM) were added to the reaction mix to improve the amplification efficiency and representation. 288 

The reactions were incubated at 30°C for 3 hours and stopped by heating the mixtures at 65°C for 10 289 

min. 290 

b. Template labeling 291 

After amplification, 2.5 µg DNAs were labeled with the fluorescent dye Cy-5 using random priming 292 

as follows. First, the amplified DNAs were mixed with 20 μL random primers, denatured at 99.9°C 293 

for 5 min, and then immediately chilled on ice. Following denaturation, the labeling master mix 294 

containing 2.5 μL dNTP (5 mM dAGC-TP, 2.5 mM dTTP), 1 μL Cy-5 dUTP (Amersham, 295 

Piscataway, NJ), 80 U of the large Klenow fragment (Invitrogen, Carlsbad, CA), and 2.5 μL water 296 

were added and then incubated at 37°C for 3 hours, followed by heating at 95°C for 3 min. Labeled 297 

DNA was purified using the QIA quick purification kit (Qiagen, Valencia, CA) according to the 298 

manufacturer’s instructions, measured on a NanoDrop ND-1000 spectrophotometer (NanoDrop 299 

Technologies Inc., Wilmington, DE), and then dried down in a SpeedVac (ThermoSavant, Milford, 300 

MA) at 45°C for 45 min. 301 

c. Hybridization and imaging processing 302 

The labeled target DNA was resuspended in 120 µl hybridization solution containing 50% 303 

formamide, 3 x SSC, 10 µg of unlabeled herring sperm DNA (Promega, Madison, WI), and 0.1% 304 

SDS, and the mix was denatured at 95°C for 5 min and kept at 50°C until it was deposited directly 305 

onto a microarray. Hybridizations were performed with a TECAN Hybridization Station HS4800 Pro 306 

(TECAN, US) according to the manufacturer’s protocol. After washing and drying, the microarray 307 

was scanned by ScanArray Express Microarray Scanner (Perkin Elmer, Boston, MA) at 633 nm 308 

using a laser power of 90% and a photomultiplier tube (PMT) gain of 75%. The ImaGene version 6.0 309 

(Biodiscovery, El Segundo, CA) was then used to determine the intensity of each spot, and identify 310 

poor-quality spots. A total of 5537 functional genes were detected by GeoChip hybridization.  311 

d. Data pre-processing 312 

Raw data from ImaGene were submitted to Microarray Data Manager on our website 313 

(http://ieg.ou.edu/microarray/) and analyzed using the data analysis pipeline with the following 314 

major steps: (i) The spots flagged as 1 or 3 by ImaGene and with a signal to noise ratio (SNR) less 315 



than 2.033 were removed as poor-quality spots; (ii) After removing the bad spots, the normalization 316 

was performed at three levels: individual sub-grids on a single slide, technical replicates among 317 

samples and across the whole data set. First, the mean Cy3 intensity of the universal standards in 318 

each sub-grid was used to normalize the Cy5 intensity for probes in the same sub-grid. Second, the 319 

Cy5 intensity after the first normalization was normalized again by the mean value of three technical 320 

replicates. In addition, the data was normalized by the mean intensity of universal standards (Cy3 321 

channel) in all slides for Cy5 intensity of samples; (iii) If any replicates had (signal–mean) more than 322 

two times the standard deviation, this replicate was removed as an outlier. This process continued 323 

until no such replicates were identified; (iv) At least 0.34 time of the final positive spots (probes), or 324 

a minimum of two spots was required for each gene to be considered for data analysis; and (v) If a 325 

probe appeared in only one sample among the total of six for warming or control, it was removed for 326 

all further analyses. After that, the relative abundance in each sample was calculated by dividing the 327 

individual signal intensity of each probe by the sum of original signal intensity for all detected 328 

probes in that sample. Then the relative abundance was multiplied by the mean value for the sums of 329 

original signal intensity in all samples. A natural logarithm transformation was performed for the 330 

amplified relative abundance plus 1. Altogether, a total of 2357 functional genes were detected.  331 

9.  454 pyrosequencing analysis 332 

a. Sample tagging and PCR amplicon preparation 333 

Based on the V4-V5 hypervariable regions of bacterial 16S rRNA (Escherichia coli positions 515-334 

907), the PCR primers, F515: GTGCCAGCMGCCGCGG, and R907: 335 

CCGTCAATTCMTTTRAGTTT were selected. Both primers were then checked with the ribosomal 336 

database34, and covered > 98% of the 16S gene sequences in the database (July 2007). To pool 337 

multiple samples for one run of 454 sequencing, a sample tagging approach was used35,36. In this 338 

study, 2-3 unique 6-mer tags were used for each of 12 DNA samples. Each tag was added to the 5’-339 

end of both forward and reverse primers, and those tag-primers were synthesized by Invitrogen 340 

(Carlsbad, CA) and used for the generation of PCR amplicons. The amplification mix contained 10 341 

units of Pfu polymerase (BioVision, Mountain View, CA), 5 µl Pfu reaction buffer, 200 µM dNTPs 342 

(Amersham, Piscataway, NJ), and a 0.2 µM concentration of each primer in a volume of 50 µl. 343 

Genomic DNA (10 ng) was added to each amplification mix. Cycling conditions were an initial 344 

denaturation at 94°C for 3 min, 30 cycles of 95°C 30 s, 58°C for 60 s, and 72°C for 60 s, a final 2-345 

min extension at 72°C. Normally, multiple (5-10) 50-µl reactions were needed for each sample, and 346 

the products were pooled together after amplification and purified by agarose gel electrophoresis. 347 

The amplified PCR products were recovered and then quantitated with PicoGreen29 using a 348 

FLUOstar Optima (BMG Labtech, Jena, Germany). Finally, amplicons of all samples were pooled in 349 



an equimolar concentration for 454 pyro-sequencing. Each sample was labeled with multiple (two or 350 

three) but unique tags. 351 

b. 454 pyrosequencing 352 

The fragments in the amplicon libraries were repaired and ligated to the 454 sequencing adapters, 353 

and resulting products were bound to beads under conditions that favor one fragment per bead. The 354 

beads were emulsified in a PCR mixture in oil, and PCR amplification occurred in each droplet, 355 

generating millions of copies of a unique DNA template. After breaking the emulsion, the DNA 356 

strands were denatured, and beads carrying single-stranded DNA clones were deposited into wells on 357 

a PicoTiter-Plate (454 Life Sciences) for pyrosequencing37 on a FLX 454 system (454 Life Sciences, 358 

Branford, CT). For this study, we recovered both forward and reverse reads of 12 samples with an 359 

average length around 240 bp. All pyrosequencing reads were initially processed using the RDP 360 

pyrosequencing pipeline (http://pyro.cme.msu.edu/pyro/index.jsp)34. 361 

c. Removal of low-quality sequences  362 

To minimize effects of random sequencing errors, we eliminated (i) sequences that did not perfectly 363 

match the PCR primer at the beginning of a read, (ii) sequences with non-assigned tags, (iii) 364 

sequence reads with < 200 bp after the proximal PCR primer if they terminated before reaching the 365 

distal primer, and (iv) sequences that contained more than one undetermined nucleotide (N). Only the 366 

first 240 bp after the proximal PCR primer of each sequence was included since the quality of 367 

sequences degrades beyond this point.  368 

d. Assignment of sequence reads to samples  369 

The raw sequences were sorted and distinguished by unique sample tags and each sample had 2 or 3 370 

unique tags as replicates. The tag and primers were then trimmed for each replicate. There were 15 371 

replicate datasets for each treatment, warming or control. For all 30 replicates, the number of 372 

sequence reads ranged from 1033 to 5498. A total of 65,736 effective sequences were obtained. 373 

e. Classification of 454 sequences and assignment of phylotype OTUs 374 

All sequences of the 12 samples were aligned by RDP Infernal Aligner that was a fast secondary-375 

structure aware aligner38 and then a complete linkage clustering method was used to define OTUs 376 

within a 0.03 difference39. The singleton OTUs (with only one read) were removed, and the remained 377 

sequences (S) were sorted into each sample based on OTU. The relative abundance (RA) was 378 

calculated as following equation:  379 

         380 


=

= N

j
ij

ij
ij

S

S
RA

1



where i is the ith  sample (1 to m), and j is the jth OTU (1 to n). The sequences of OTUs were then 381 

assigned to a taxonomy by the RDP classifier40 with a confidence cutoff of 0.8. The lineage of each 382 

OTU was summarized with all phylogenetic information. 383 

      If an OTU only appeared in three or fewer samples among the total 15 datasets for each treatment, 384 

it was removed, resulting in 2561 OTUs used further analysis. The number of detected OTUs at 385 

different levels of classification was counted for warming or control. Then the average of OTUs 386 

among replicated tags for each plot was used for statistical analysis.  387 

10. Statistical analysis 388 

The matrices of microarray data resulting from our pipeline were considered as ‘species’ abundance 389 

in statistical analyses. For pyrosequencing data, the relative percentage of each OTU, or the sum of 390 

OTUs at a specific taxonomic (phylum, class, order, or family) level was used as the relative 391 

abundance of OTU, family, order, class, or phylum. The microbial diversity indices were analyzed 392 

by R software version 2.9.1 (The R foundation for Statistical Computing). 393 

      Detrended correspondence analysis (DCA) was employed to determine the overall functional 394 

changes in the microbial communities by R software version 2.9.1 as well. DCA is an ordination 395 

technique that uses detrending to remove the arch effect, where the data points are organized in a 396 

horseshoe-like shape, in correspondence analysis41.  397 

Different datasets of microbial communities generated by different analytical methods were used 398 

to examine whether elevated temperature has significant effects on soil microbial communities. 399 

Typically, it is difficult for all datasets to meet the assumptions (e.g. normality, equal variances, 400 

independence) of parametric statistics. Thus, in this study, three different complementary non-401 

parametric analyses for multivariate data were used: analysis of similarity (ANOSIM)42, non-402 

parametric multivariate analysis of variance (adonis) using distance matrices43, and multi-response 403 

permutation procedure (MRPP). We used the Bray-Curtis similarity index to calculate a distance 404 

matrix from GeoChip hybridization data for ANOSIM, adonis and MRPP analyses. MRPP is a 405 

nonparametric procedure that does not depend on assumptions such as normally distributed data or 406 

homogeneous variances, but rather depends on the internal variability of the data44,45. All three 407 

methods are based on dissimilarities among samples and their rank order in different ways to 408 

calculate test statistics, and the Monte Carlo permutation is used to test the significance of statistics. 409 

All three procedures (anosim, adonis and mrpp) were performed with the Vegan package (v.1.15-1) 410 

in R software version 2.9.1 (The R foundation for Statistical Computing). 411 

      Canonical correspondence analysis (CCA) was performed to determine the most significant plant 412 

and soil variables shaping microbial community composition and structure31,46,47.  For constructing 413 

the CCA model, the maximum number of constrained variables used must be less than the number of 414 



samples (m), i.e., m-1. Since the measured plant and soil variables (37 variables) were more than the 415 

number of samples (12 samples), several approaches were used to select the most significant 416 

variables. One is to use the Mantel test to examine the correlation between community structure and 417 

each variable. Only significant variables by the Mantel test (p<0.1) (8 variables) were considered for 418 

further analysis. Using automatic forward selection in CCA, 11 variables were selected. Then the 16 419 

selected plant and soil variables from the Mantel test and CCA were combined. However, some 420 

important variables in terms of biology were still missing. The soil pH value, which was not selected 421 

by these two methods, was also included for constructing CCA models. According to the variance 422 

inflation factors (VIF) values, some redundant variables (VIF>20) have been removed from the CCA 423 

model. Finally, a total of 9 environmental factors were selected, including leaf area index (LAI), 424 

belowground net primary productivity (BNPP), aboveground net primary productivity (ANPP), C4 425 

aboveground net primary productivity (C4-ANPP), soil temperature (Tm), moisture (MS), pH, total 426 

organic C (TOC) and N (TON). All CCA and partial CCA were performed by the vegan package in 427 

R48, except the forward selection from Conoco software49.   428 

      To test the significance of the differences between warming and control treatment for various 429 

variables, two-tailed paired t tests was employed by Microsoft Excel 2010 (Microsoft Inc., Seattle, 430 

WA). For gene abundances, we did not adjust p-values of statistic tests using the Bonferroni 431 

procedure due to its overly conservative nature as following Moran’s opinions50,51. 432 

      One-tailed paired tests were also performed to improve the power of the t-test52 for certain 433 

ecosystem parameters which are expected to increase or decrease under warming based on our 434 

previous knowledge. These parameters were: belowground net primary productivity, litter input to 435 

soil, bacterial and fungal gene abundance detected by GeoChip, soil NH4 content, soil N availability, 436 

and δ15N. One tailed paired t-tests appeared to be appropriate for these variables because the 437 

directions of change for these parameters can be predicted based on our previous knowledge. Our 438 

plant biomass data demonstrated that above ground biomass increased significantly and plant species 439 

composition has shifted toward C4 dominance. Thus, it is expected that the belowground net primary 440 

productivity and litter input to soil increase rather than decrease under warming. Second, due to more 441 

C input to soil, an increase of soil microbial biomass is expected, reflected by detected gene 442 

abundances of bacteria and fungi. Third, increases in plant biomass under warming could increase N 443 

uptake by plants, which could lead to lower soil NH4 content and N availability under warming. In 444 

addition, the genes involved in N cycling, including denitrification, were significantly higher under 445 

warming, it is anticipated that δ15N decreases due to the possibly accelerating N process rates and 446 

more N product from microbially mediated processes escaping from the soil system, like N2O and N2 447 

from denitrification. 448 



      The one-tailed statistical test is often used in ecology, animal behavior and social sciences53. It 449 

has an advantage of increasing the power of a test52. Although using a one-tailed t-test potentially 450 

increases Type I errors (the rejection of a true null hypothesis), it could potentially lead to a decrease 451 

Type II error (acceptance of a false null hypothesis). In most practical applications, one goal is to 452 

keep both of these errors small because a null hypothesis should be not rejected when it is true or it 453 

should not be accepted when it is wrong. Although a one tailed test is not preferred, we believe that it 454 

still has merit if it is carefully used and the results are appropriately interpreted. 455 
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SUPPLEMENTARY TEXT 29 

 30 

1. Microbial functional gene diversity 31 

Our metagenomic and conventional microbial analyses suggested that long-term experimental 32 

warming dramatically altered the composition and structure of microbial communities. A total of 33 

2,357 functional genes were detected by GeoChip hybridization, and 1,136 (48.2%) genes were 34 

overlapped between warming and control treatments. No significant differences were observed for 35 

the functional gene number and the diversity, as measured by Simpson Reciprocal index (1/D), 36 

between the warming and control samples (Table S2). Pyrosequencing recovered 2,561 OTUs 37 

(operational taxonomic units) with 1,200 (47%) OTUs overlapped between the warming and control 38 

plots. The detected number of OTUs and diversity were also not significantly different between 39 

warming and control samples (Table S2).  40 

      However, detrended correspondence analysis (DCA) showed that the samples from warming 41 

plots were clustered together and well separated from control plots based on both GeoChip (Fig. S1) 42 

and pyrosequencing (Fig. S2) data, suggesting that the microbial community composition and 43 

structure were markedly different between warming treatment and the control. To examine if those 44 

observed differences are statistically significant, three complimentary non-parametric multivariate 45 

statistical tests (ANOISM, adonis, and MRPP) were performed. The functional community structure 46 

revealed by GeoChip was significantly different between the warming and control plots with all three 47 

methods (Table 1). The phylogenetic community structure based on the 16S rRNA gene was also 48 

significantly different with at least one of the three methods (Table 1). Altogether, these results 49 

indicated that the composition, structure and potential functional activity of the microbial 50 

communities under experimental warming were significantly different from those in the control.  51 

2. Linking microbial community composition and structure to aboveground and belowground 52 

processes  53 

A total of 27 plant and soil variables were measured in this study. Based on forward selection and 54 

variance inflation factors (VIF < 15) with 999 Monte Carlo permutations, as well as Mantel test and 55 

biology, the following 9 variables were selected for linking microbial community composition and 56 

structure to aboveground and belowground processes: the average soil temperature, moisture (MS) 57 

and pH, total soil organic C, total soil N (TN), aboveground net primary production (ANPP), C4 58 

aboveground net primary production (C4 ANPP), belowground net primary production (BNPP), and 59 

leaf area index (LAI). Statistical analysis showed that microbial community functional composition 60 



and structure were significantly (F = 1.19, p = 0.025) shaped by these selected key plant and soil 61 

physical and chemical variables (Fig. S3A). Most significant variables were soil temperature (F=1.89, 62 

p = 0.001); soil pH (F=1.38, p=0.056), C4 ANPP (F=1.68, p=0.008) and BNPP (F=1.58, p=0.034).  63 

      The relationships between microbial community structure and plant and soil variables are shown 64 

as a Biplot (Fig. S3A). The first two axes explained 35.7% of the constrained variations of the 65 

microbial community structure in which the first axis explained 21.5% of the variation while the 66 

second axis explained 14.2%. The samples from warming plots were most positively correlated with 67 

soil temperature, C4 aboveground net primary production, belowground net primary production, total 68 

soil organic C and N whereas the samples from the control plots showed the opposite. These results 69 

suggested that temperature, C4 aboveground net primary production, and belowground net primary 70 

production had most significant impacts on microbial community composition and structure. 71 

      To better understand how much each environmental variable influences the functional 72 

community structure, variation partitioning analysis (VPA)1 was performed. The same variables used 73 

for CCA were used for VPA (Fig. S3B). A total of 32.0% variations of microbial communities can 74 

be explained by plant variables while soil variables can explain about 25.7% of the variations in 75 

community structure. In contrast to many other studies1-3, considerably smaller portion (16%) of the 76 

community variations could not be explained by the selected plant and soil variables. These results 77 

implied that soil microbial community composition and structure at this site were primarily shaped 78 

by deterministic factors of plants and soils. 79 

3. Substrate depletion vs acclimation 80 

One of the greatest challenges in projecting future scenarios of climate warming is the uncertainty of 81 

the sensitivity of microbially mediated soil C decomposition to climate warming4-6. Whether the 82 

decline in the response of soil respiration to warming is due to microbial adaptation or substrate 83 

depletion is under intensive study and debate4,5,7-9. Most global climate models that couple climate 84 

change with C cycles for assessing carbon-climate feedback use constant Q10 values of ~ 210,11. 85 

However, in contrast to modeling predictions, numerous field studies indicate variable Q10 with 86 

positive responses of soil respiration to warming declining over time7,12-15. The decreased 87 

temperature sensitivity in response to warming is termed acclimation12.  88 



      The phenomenon of respiratory acclimation is of critical importance because it could weaken the 89 

positive feedback between C cycle and climate warming12. It can be explained by two major 90 

contrasting hypotheses: substrate depletion5,7,15,16 and microbial adaptation12.  The former 91 

hypothesizes that soil labile C becomes depleted by the increased respiration in response to warming, 92 

which leads to subsequent reduction in the rate of soil respiration. The latter hypothesizes that 93 

respiratory acclimation results from the adaptive changes of microbial community structure12,17. 94 

These two contrasting hypotheses may lead to opposite consequences in terms of soil C dynamics 95 

and global warming7. If the reduced temperature sensitivity of soil respiration under warming is due 96 

to changes in microbial community structure, then relatively more C may still be preserved in soils 97 

under warming than in the scenario of non-acclimation or acclimation induced by substrate limitation. 98 

This may diminish the positive feedback between C cycling and climate warming. However, if the 99 

substrate limitation is the main reason for the reduced temperature sensitivity of soil respiration, the 100 

increased plant-derived C under warming will exacerbate the positive feedback by releasing more C 101 

into the atmosphere through soil respiration.  Therefore, understanding the mechanisms underlying 102 

the respiratory acclimation phenomenon is critical to improving the quantitative framework of 103 

carbon-climate models and hence to projecting future climate warming. 104 

      To determine whether substrate limitation contributes to the decreased temperature sensitivity, 105 

total soil organic C and labile C were measured and the recalcitrant C was calculated for soils 106 

collected in 2008. Three strong points of evidence indicated that the decreased temperature 107 

sensitivity of soil respiration was not due to substrate depletion. (i). The labile C (labile C pool 1 plus 108 

labile C pool 2) was slightly (7.2%) higher in warmed plots than control plots (Fig 1B) although they 109 

were not statistically different. Warming significantly increased soil labile C for samples collected in 110 

200218. If substrate depletion is the main factor, one would have expected that the labile C content 111 

would be substantially lower under warming. Thus, this strongly suggests that C substrate is not 112 

depleted under warming, or at least that the substrate may not be more limited in warmed plots than 113 

in control plots. (ii). If the substrate is depleted under warming, microbial biomass would have been 114 

expected to decrease. However, the microbial biomass measured by phospholipid fatty acid (PLFA) 115 

analysis in 2008 was significantly higher under warming (Fig. 1C). (iii) The bacterial and fungal 116 



abundances based on GeoChip were marginally significantly higher by a one-tailed paired t test 117 

under warming than in the control, which also implies that C substrate might be not limited under 118 

warming. Overall, the above results implied that the decreased temperature sensitivity of soil 119 

respiration was not due to substrate depletion, but likely attributed to the changes in microbial 120 

community composition and structure though further studies will be required to confirm it and 121 

establish a mechanistic link. 122 

  123 

4. Fungi/bacteria biomass 124 

A previous study examined the bacterial and fungal biomass based on a phospholipid fatty acids 125 

(PLFAs) profile19. Three fatty acids (16:1ω5c, 18:2ω6.9c and 18:1ω9c) were selected to represent 126 

the fungal group. For all three sampling points, warming did not affect the bacteria or fungal biomass 127 

significantly. However, its interaction with clipping was a significant factor for bacteria and fungi 128 

biomass in September, 2001 and 2002, respectively19, and for the ratio between fungi and bacteria 129 

biomass in both years. Without clipping, the ratio between fungal and bacterial biomass was 130 

significantly higher under warming than in the control21 (Fig.4 in that paper). Based on these data, 131 

the authors concluded that warming induced microbial community to shift towards a higher fungal 132 

biomass. However, in this study, no such shifts towards more abundant fungi were observed as 133 

indicated by three complementary analyses: (i) PLFAs, (ii) GeoChip hybridization abundance signals, 134 

and (iii) soil enzyme activities (Fig 1). 135 

      There are two main possible reasons to explain this discrepancy. One is that the shift of microbial 136 

communities to fungi observed in 2001 could be transient. Also, it could be due to methodological 137 

differences. One of the fatty acids used (16:1ω5c) is not specific to fungi and has been used as a 138 

signature for bacteria in some studies20,21. Since the fatty acid, 18:2ω6.9c, was not detected in our 139 

study, only a single fatty acid (18:1ω9c) was used. Such methodological differences could contribute 140 

to the discrepancy observed between these two studies. Since three different but complementary 141 

approaches were used to estimate fungal abundance and activities in this study (see above), we 142 

believe that the conclusion drawn in this study should be reliable.   143 

5. Phosphorus utilization  144 



Phosphorus is an essential plant nutrient. GeoChip has many probes derived from the genes involved 145 

in phosphorus utilization. Our analysis showed that the key gene encoding polyphosphate kinase 146 

involved in phosphorus utilization increased significantly under warming (Fig. S8). These results are 147 

also consistent with the general notion that warming enhances nutrient cycling6.  148 

  149 
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