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ABSTRACT
Management of soil biological resources to optimise plant
production, efficiency of nutrient inputs, and system sustainability
is an emerging opportunity for pastoral agriculture. To achieve
these goals, suitable tools that can assess the functional state of
the soil ecosystem must be developed and standardised
approaches to their application adopted. Towards this end, we
have undertaken comprehensive, high-density functional-gene
microarray analysis (GeoChip5) of environmental DNA (eDNA)
extracted from 50 pastoral soils. When combined with soil,
environmental and management metadata, the information can
be used to provide insights into soil biological processes spanning
greenhouse gas emissions, through to natural suppression of
plant root diseases. To provide an example of a structured
workflow of analysis in a pastoral system context, we analysed the
GeoChip data using a combination of approaches spanning
routine univariate methods through to more complex multivariate
and network-based analysis. Analyses were restricted to
comparing effects of land-use (dairy or ‘other’ farming systems),
and exploring relationships of the GeoChip data with the soil
properties from each sample. These exemplar analyses present a
pathway for the application of eDNA approaches (GeoChip or
others) to deliver outcomes for pastoral agricultural in New Zealand.
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Introduction

Biology and biological processes occurring in soils have many direct links to plant
productivity. Most importantly, the diversity of soil microbiology constitutes the
primary reservoir of beneficial and deleterious organisms with which plants interact.
These associations can be so important that introduction of a key microbial group to
natural and managed soil ecosystems can have major impacts on plant production and
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above-ground ecosystem productivity (van der Heijden et al. 1998; Anderson et al. 2004;
Herridge et al. 2008).

Soil biology not only directly affects plant production, but regulates soil formation,
cycling of important nutrients (carbon [C], nitrogen [N], phosphorus [P], sulphur [S]),
provides a source and sink of greenhouse gases and affects water quality (e.g. nitrate-N,
enteric pathogens) (Roper & Gupta 1995). In New Zealand, approximately 30% of the
land area is used for high-producing pastoral agriculture (Statistics New Zealand 2012).
As such, there is not only potential to increase the productive capacity of pastures
through management of soil biology, but as a consequence of the large extent of land
area under pasture, there are strong opportunities to achieve environmental outcomes
linked to the range of ecosystem services supported by soils (Coleman & Whitman
2005; Ogunseitan 2005). Given this, it is bewildering that soil ecosystem services work
to date has not explicitly studied ‘soil biology’.

Productive gains in farming systems have been achieved through genetic gain in pasture
and livestock breeding (Barrett et al. 2015; Santos et al. 2015). In both cases, advances have
been underpinned by fundamental knowledge of organisms’ genetics, physiology and phe-
notypes, which collectively allow for breeding and selection across multiple phenotypes.
For the other major biological component of farming systems, i.e. the soil biology, the
same primary requirements need to be met, but gaining this knowledge is vastly more dif-
ficult. The diversity and number of organisms in soils is massive (>104 to 105 species/g soil;
Curtis et al. 2002; Torsvik et al. 2002), traits are not usually visually scorable and pheno-
types (e.g. a soils with enhanced disease suppression or greater nitrogen-use efficiency) are
the result of the interaction of a multitude of species, often spanning phyla and/or trophic
groups. There is often an idiosyncratic relationship between species and function (Nielsen
et al. 2011) that needs to be considered alongside issues of size and scale. Furthermore, the
soil system is not static; functions such as disease suppression, nutrient cycling and eco-
system stability (resilience and resistance) are emergent properties (Cardinale et al. 2003;
Konopka 2009). Thus, an ecosystem approach is clearly required to identify opportunities
for achieving gains in soil function. Given the unique issues associated with soil biology
(species and diversity, organisms’ size, often unknown associations between biological
elements [e.g. species] and function), ecological genomics is being as an important inte-
grative tool (Nesme et al. 2016; Myrold et al. 2014; Nannipieri et al. 2014). In this
context, ecological genomics refers to analysis of the soil environmental DNA (eDNA)
as a ‘metagenome’ (harbouring the pooled DNA from many thousands of species), and
understanding relationships to both the wider abiotic and biotic environment.

The comprehensive assessment of soil ecosystems—and, more importantly, functional
genes associated with ecosystem processes—is rapidly becoming cost effective. This is
principally through the development of a range of high-throughput genomics-era tools
such as next generation DNA sequencing (NGS) and the development of various micro-
array platforms (Nannipieri et al. 2014). One such example is the GeoChip functional
microarray system (He et al. 2007). This platform allows for the simultaneous detection
of genes spanning a broad range of functions associated with biogeochemical cycling of
nutrients, through antibiotic resistance and plant growth regulation (He et al. 2007).
Thus, an assessment of the functional capacity of the soil ecosystem is obtained and
this can be compared with samples collected over time, space and/or following change
in management (and so forth). Collectively, this information can be used to understand
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how soil ecosystems vary with soil properties, environment (e.g. climate change), manage-
ment and land-use alteration (He et al. 2007; Yergeau et al. 2009; Wakelin et al. 2013a;
Paula et al. 2014). The standardised application of GeoChip (or one of a number of
other ecological genomics tools) can aid in providing a functional understanding of soil
ecosystems and deliver the productive and environmental potential underlying pastoral
faming systems.

The aim of this investigation is to demonstrate a pipeline of analysis of soil environ-
mental genomics for New Zealand’s pastoral agricultural sector based on the GeoChip5
functional microarray (Tu et al. 2014). The sample data set is comprised of eDNA from
50 well-characterised New Zealand pastoral soils. The pastoral soils were collected from
across varying soil types, geographic zones and under a range of system intensities, span-
ning high stocking rate dairy through to expansive sheep grazing systems. For simplicity,
relationships between the functional gene data and farm management were compared
only for dairy vs ‘other’ grazing systems (see later definition) in this work. A comprehen-
sive set of soil physicochemical properties and long-term environmental conditions from
the sites (Wakelin et al. 2013b) enables the assessment of the soil ecological genomics
against a set of appropriate metadata, and these can be used in future studies to assess,
for example, influences of intensification more precisely. Overall, the two sets enable
changes in functional soil biology to be interpreted alongside soil, climatic and farm-
management influences.

Materials and methods

Sample sites and eDNA

Environmental DNA was extracted from 50 representative samples of pasture soil col-
lected from across New Zealand. Soils were collected from 11 major soil groups and
spanned 10 geographic zones. There were sufficient numbers of samples taken from
Brown, Pallic and Recent soil groups to allow for structured analysis of ‘soil type’
effects. Soils were also collected from under high- and low-intensity land use. These
were arbitrarily defined as pasture being used for dairy or ‘other’ grazing purposes, and
this is supported by changes in soil nutrient status (Wakelin et al. 2013b). A full descrip-
tion of the sites, soil sampling, analysis of soil physicochemical properties, and DNA
extraction and purification are given in Wakelin et al. (2013b). The eDNA samples are
archived (−80 °C) at AgResearch, Lincoln.

GeoChip functional microarray analysis

A subsample of eDNA from each of the pasture sites was transported on dry-ice to the
Institute for Environmental Genomics, University of Oklahoma for analysis on
GeoChip5 (Yan et al. 2015). The quantity of eDNA in samples from soil sites 2, 18, 29,
33 and 35 were below minimum requirements for direct analysis (500 ng). In order to
increase the total amount of DNA in these samples, the eDNA was amplified using
whole community genome amplification (WCGA) using the phi29 enzyme system (Wu
et al. 2006; Wang et al. 2011). Processing of the DNA then followed the standard
system: labelling, hybridisation, scanning and noise reduction/quality control of the
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data. These steps have been described in full detail elsewhere (Paula et al. 2014; Tu et al.
2014; Yan et al. 2015). Briefly, DNA for all samples was labelled with Cy-3 (using random
primers) and the Klenow fragment, purified, dried and rehydrated in hybridisation sol-
ution (scaled up to 125 uL) along with Cy5-labelled universal standards. The mixtures
were hybridised to the GeoChip5 array, washed and scanned on a NimbleGen MS200
array system (Roche) and the spot intensity data recorded. Probe spots with a signal to
noise ratio <2 were removed.

Data handling and pre-treatment

The complete data set contained 87,678 variables (arrays-spot intensity values) for each of
the 50 soil samples (4.83 million values). These were log-transformed and preliminary
groupings of the samples according to similarity (Euclidean distances) were made with
hierarchical clustering (group average method). The significance of cluster groupings
was tested using the similarity profile test (SIMPROF; Clarke et al. 2008) at α = 0.05.
Samples from sites 2, 18, 29, 33 and 35 distinctly out-grouped with respect to the wider
data set. As these were the only samples pre-processed for WCGA, it is highly likely
that this was due to amplification bias when using phi29 (Wang et al. 2011). As there
was strong evidence for experimentally added bias into these samples, they were
removed from further analysis, reducing the sample size from 50 to 45.

The GeoChip5 array embodies a range of gene categories spanning nutrient cycling to
metal resistance. The underlying microbial processes affecting the distribution and abun-
dances of the different categories in soils may be dissimilar. As such, combined (total
array) analysis may result in a high degree of total ‘noise’; i.e. the responses within any
one category may possibly obfuscate others. As such, analysis was performed on six differ-
ent ‘gene set’ groupings. These included: (1) the total array data (all probe sets); and then
broad groups of functions associated with (2) nutrient cycling (C, N, P, S, etc); (3) organic
remediation; (4) metal homeostasis; (5) stress and secondary metabolism; and (6) others
(virulence, movement, phylogenetic markers, clustered regularly interspaced short palin-
dromic repeats [CRISPR], electron transfer and any others).

In addition, for each gene set, the data were considered at three ‘aggregation levels’: the
probe level (e.g. probe #365896421; this is for the nirK gene from Bradyrhizobium sp.
strain STM 3843); up to the gene level (e.g. all probe spots covering detection of nirK
genes); and subcategory 1 (all metabolic genes associated with denitrification).

The aggregation of data to higher levels may potentially result in unintended bias. For
example, for some processes (usually not well understood at a DNA level), only a few
probe sets are represented on the array. The aggregation of these data has little total
effect, and adds bias when compared with the aggregation of processes for which many
probe sets are represented. To deal with this, the data were put on equivalent scales
using normalisation (x = o, σx = 1).

The relative effects of grouping data to gene sets and at different levels of aggregation
were investigated. For the data at the ‘probe set’ aggregation level, the data were compared
with and without normalisation of the variables. For each of the 24 data sets, a distance
matrix of functional gene similarity between the soil samples was generated using Eucli-
dean distances. Correlations were made among these distance matrices using Spearman’s
rank method, and a 2nd stage resemblance matrix generated (Clarke et al. 2006). Distances
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among samples (2nd stage) were visualised by non-metric multidimensional scaling
(nMDS) ordination. The importance of ‘gene set’ and aggregation were formally tested
by two-way analysis of similarities (ANOSIM; Clarke 1993), with effects tested for signifi-
cance against a permutation generated null-distribution (999 times).

In subsequent analysis, the data for the 45 soil samples were investigated at probe, gene
and subcategory aggregation levels for each of the six gene sets. When testing was con-
ducted with the associated soil edaphic and environmental properties, this was conducted
on the entire set of 43 variables described by Wakelin et al. (2013b). The following vari-
ables were corrected for skewing by ln-transformed prior to analysis: Olsen P, sulphate-S,
Al (CaCl extractable), C:N ratio, eMn, eZn, eCu, eCo, total P, total Ca, total Cu, total Co, K,
Mg, Na, rainfall and elevation (elev). The variables were normalised as before.

The generation of resemblance matrices, clustering, SIMPROF testing, 2nd stage analy-
sis, ANOSIM and nMDS ordination were conducted in PRIMERv7 (PRIMER-E).

Analysis approach

The latest versions of the GeoChip array (generation 5) have 161,962 probe sets covering
more than 150,000 genes and spanning 410 gene categories from nutrient cycling to anti-
biotic resistance (Tu et al. 2014). As such, the information provided through analysis of
various subsets of the GeoChip data can provide information for a wide range of different
studies, several of which are under way. In order to describe a structured approach for data
analysis, spanning multiple levels (probe, gene and family), analysis of GeoChip data
within this study was deliberately generalised for the analysis of the alpha and beta com-
munity diversity. Then, a specific subset of genes associated with microbial production of
plant growth regulatory compounds (e.g. hormones) was used to model abundance-based
and network analysis.

Alpha diversity

Alpha diversity effectively reduces the entire data for each sample (many thousands of data
points) into a single ‘diversity’ value, generally indicative of ecosystem richness, evenness
or a composite value. The resulting statistic can then be evaluated using univariate
approaches. To demonstrate this, alpha diversity for each sample was measured
through calculation of the Shannon (H’; log e) and Simpson’s (1-λ) indices; these were
derived from the total GeoChip data sets. Unbalanced ANOVAs were used to test
whether alpha diversity varied between levels of land-use intensification and soil type.
For land-use intensification, there were 18 dairy and 27 ‘other’ samples. Testing for
soil-type influences was conducted only on soils that were represented with a reasonable
level of replication: Brown (13), Pallic (7) and Recent (16) (Hewitt 1998).

Environmental and edaphic variables that explain the most variation in the Shannon
index were selected using stepwise linear regression, for a maximum of 10 steps. At
each step, variables were added or dropped based on the ratio of residual mean squares.
Stepwise regressions were performed for each of the gene-set groupings and at each
level of aggregation, and the results synthesised into a summary probabilities table.
These analyses were conducted in Genstat 17 (VSN International 2014).
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Beta diversity

In comparison with alpha diversity, beta diversity considers the multivariate composition
(assemblage of species or functions) within the ecosystem. Resemblance matrices (Eucli-
dean distance on normalised variable data) were generated for each of the gene sets across
the aggregation levels. Permutational, multivariate analysis of variation (PERMANOVA)
was used to determine the influence of land use and soil type on beta diversity (i.e. com-
positional variation) in functional genes across the samples. The model included land use
and soil type as fixed factors, and tested for main and interactive effects of these under a
reduced model with type III sums of squares and fixed effects sum set to zero for mixed
terms. A full description of the approach is outlined by Anderson et al. (2008).

Links between the GeoChip data sets to soil and environmental variables were made
using multivariate stepwise analysis, BVSTEP (Clarke & Warwick 1998). BVSTEP uses
a combination of forward selection and backward elimination to stepwise select combi-
nations of explanatory variables that maximise correlation (Spearman’s rho) to the
fixed GeoChip resemblance data matrix. As for the alpha-diversity stepwise regression,
summary output tables were generated by identifying variables contributing to each of
the final models. Analyses were conducted in PRIMERv7 (PRIMER-E).

Gene abundance analysis: plant growth regulatory genes

The abundance of the plant growth regulatory genes (PGRGs) was used as an example
gene set for analysis. The genes comprising these include sped (spermidinie synthase),
Ipya (indole-3-pyruvate decarboxylase), spe (spermine), Eth (ethylene cycling), Nep
(necrosis- and ethylene-inducing protein-inducing proteins) and Cks (xanthine dehydro-
genase). The 257 probe intensity values for the individual genes were aggregated
(summed) to a single PGRG value from each soil.

Assessment of soil group and land-use effects on PGRGs was conducted in GenStat 17
using unbalanced ANOVAs. For the soil group test, only comparisons between Pallic,
Brown and Recent soils were made as the other groups had low representation. Associ-
ations between plant hormone genes with individual soil and environmental variables
were made using linear regresssion (as before).

Molecular ecological network analyses

Ecological networks are an interpretation of biological interactions where the nodes
(species/biological component) are connected according to strength of association.
These are often used for analysis of among-species relationships, but are increasingly
used for functional interpretation of ecosystem networks, including those generated by
molecular approaches (summarised in Deng et al. 2012). As a demonstration of functional
molecular ecological network (fMEN) analysis, the gene set associated with plant growth
regulatory genes was analysed (see previous section) and comparison between the two
farming systems (dairy vs ‘other’) undertaken.

For analysis, genes were excluded that were not present in >50% of the samples. An
adjacency matrix was created based on random matrix theory (Deng et al. 2012) with
threshold (cut off) of 0.81 for ‘other’ and 0.89 for dairy. These thresholds were then
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used to cut off over the correlation matrices. The network plots were produced in Cytos-
cape (Shannon et al. 2003) and spaced according to the Spring-Electric algorithm of the
AllegroLayout app.

Results

We demonstrate a range of methods for the analysis of functional molecular ecology data
with the focus on application to pastoral (and other agricultural) farming systems. The
analysis approach spans simple reduction of the complex data sets to a single (univariate)
statistic (e.g. a diversity index) for each sample (and the relatively straightforward analy-
sis of this datum), through to more complex analysis that preserves the inherent multi-
variate nature of the data and explores relationships among the various functional
elements (probes to gene families) of the system. Combined with a thorough understand-
ing of the farming system and monitoring of the desired functions (e.g. disease suppres-
sion or nutrient-use efficiency), the approach provides a structured pathway in which
functional soil molecular ecology can increase on-farm profitability and sustainability
(Figure 1).

To demonstrate the approach, we undertook exemplar analysis of GeoChip5 data from
50 New Zealand pasture soils (Wakelin et al. 2013b). Given the importance of ecosystem-
based approaches in translating soil functional ecology to impacts on ecosystem processes,
analysis pipelines that can preserve the complexity of the ecosystem and map this against
soil and environmental variables will have far greater power than less complex analysis. A
conceptual approach to ecological genomics for pasture farming systems is presented in
Figure 1. This needs to be underpinned by appropriate considerations of data handling
and pre-treatment.

Data handling and pre-treatment

Clustering of the entire GeoChip5 data set showed the samples pre-treated for WCGA sig-
nificantly out-grouped from the wider data set (P < 0.05; Figure 2A). As the influence of
the phi29 amplification was highly significant (P < 0.01) there was justification for
removal of these five samples from ongoing analysis.

Gene sets and aggregation level were both significant factors affecting similarity in the
GeoChip data sets. PERMANOVA analysis indicated that the aggregation of
the data from probe through to subcategory level was a stronger driver (√CV = 0.127,
P = 0.001) than partitioning the entire data set into separate gene sets (√CV = 0.033,
P = 0.032). The influences of these can be seen in the 2nd stage nMDS ordination
(Figure 2B). The influence of aggregation separates the data across the ‘x-axis’, and the
separation of data into different gene sets has an influence within each aggregation
group (diagonal separation).

The order of separation among the gene sets was conserved among the ‘gene’ and ‘sub-
category’ aggregation groups; it is likely that analysis of the functional array data at either
of these levels will result in similar outcomes. At the probe level of aggregation, there was
little influence of separation of the data into gene groups. An approach based on analysis
of the data at gene and/or subcategory levels, with separation into the different gene
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families, provides the greatest separation among samples and allows for analysis with the
most power to discriminate effects.

Alpha diversity

For all six gene set groupings, there was a very high degree of correlation (Pearson)
between Simpson’s and Shannon diversity indices. The mean correlation (r) among the

Figure 1. Pipeline of analysis of environmental genomics for applied pastoral productive and environ-
mental outcomes. Collection of soil for environmental genomics can (and should) be made alongside
analysis of other soil properties (pH, C, N, P, S, etc). Standard field sampling (corer with numerous sub-
samples across the field) and homogenisation of the soil sample allows for representative ‘DNA’ to be
extracted. Extraction of eDNA from soils is now routine, with commercially available kits and service
providers. Analysis of eDNA can be conducted using a range of different methods, most of which
are accessible through service providers. Routine analysis, such as qPCR, can be conducted by most
biologically focused research institutes. The approach for data will be highly dependent on the
intended use for the researcher or farmer. For example, understanding how farm management path-
ways result in emergence of soil-borne disease suppression; this will require highly complex analysis
based on ecosystem reconstruction. Many farmers, however, maybe interested in detection of key
genes of interest for their farming system; e.g. are there sufficient rhizobia in the soil to enable
clover nodulation, or what is the disease and pathogen load of a soil before pasture renovation (allow-
ing for targeted pesticide use)? These analyses, therefore, enable ‘informed decision making’ that takes
into consideration soil biological resources. The use of this approach builds, over time, an understand-
ing of the normal operating range of farming systems, identifies new opportunities to alter the trajec-
tory of emergence of functions, and provides a basis to benchmark performance and ideally build
genetic gain.
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comparisons was 0.972 and all were highly significant (P < 0.0001). As such, only the data
for the Shannon index (H’) were considered.

The effect of land-use intensification (dairy vs ‘other’) on Shannon’s diversity was com-
pared across the six gene sets at the probe levels. There was no evidence of land-use effects
on diversity for 17 of the 18 tests. The exception was stress and secondary metabolism at
the subcategory level, where a P value of 0.077 was calculated. However, the differences in

Figure 2. A, Clustering (group average, hierarchical agglomerative method) of samples showing the
very strong effect of whole community genome amplification on the similarity and grouping of
samples; B, second-stage nMDS ordination showing effects of separation of the data into different
gene sets, and aggregation from probe values to subcategories. Treatments with an ‘N’ suffix indicate
the data have been normalised. SC1, subcategory level 1 aggregation of the data.
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mean diversity between the dairy (H’ = 2.634) and ‘other’ (H’ = 2.633) were trivial. Simi-
larly, there was no evidence for soil-type influences on Shannon’s diversity. Indeed, the
average P value across the 18 tests was 0.839.

The summary results for the regressions of the Shannon index to soil and environ-
mental variables are given in Table S1. Of the 43 variables, there was a highly consistent
relationship with total cobalt (Co) and solar radiation to diversity (H’) across the gene sets
and aggregation levels (Table S1). These relationships were positive; i.e. diversity increased
with total Co and sunlight (a driver of plant growth and below ground potential
productivity).

Beta diversity

The summary influences of land use, soil type and their interaction on GeoChip array data
are given in Table 1. There was strong support for the influence of land use type (dairy
compared with other input systems) on functional genes (Table 1). This effect was
weakest when the entire data set was considered, however when partitioned into different

Table 1. Summary PERMANOVA results table testing the influence of land use and soil group on
similarity in function (GeoChip5 data) of pasture soil ecosystems.
All Subcategory Gene Probe

√CV P(perm) √CV P(perm) √CV P(perm)

Land use 5.239 0.116 13.586 0.109 80.272 0.069
Soil group −1.200 0.525 1.487 0.457 32.008 0.314
Interaction 5.670 0.012 13.883 0.116 77.853 0.099
Residual variance 10.812 30.131 225.030
Nutrients
Land use 2.547 0.079 6.227 0.088 40.984 0.067
Soil group −0.595 0.492 −1.813 0.529 14.360 0.358
Interaction 2.737 0.111 6.500 0.118 39.505 0.103
Residual variance 4.848 13.228 114.940
Metal homeostasis
Land use 2.528 0.094 5.115 0.091 41.533 0.069
Soil group −0.632 0.483 −1.505 0.531 16.557 0.303
Interaction 2.797 0.117 5.473 0.108 40.228 0.090
Residual variance 4.916 10.465 116.750
Organic remediation
Land use 1.612 0.102 4.791 0.081 24.065 0.072
Soil group −0.487 0.544 −0.579 0.463 8.414 0.333
Interaction 1.424 0.145 4.561 0.118 22.967 0.113
Residual variance 2.901 9.624 65.184
Stress and 2nd metabolism
Land use 2.485 0.113 5.866 0.087 33.733 0.075
Soil group −0.384 0.461 0.443 0.431 14.483 0.317
Interaction 2.737 0.108 6.263 0.086 33.063 0.091
Residual variance 4.947 11.526 94.457
Other
Land use 2.408 0.126 7.892 0.090 36.358 0.077
Soil group −0.549 0.469 2.811 0.360 16.237 0.263
Interaction 2.746 0.112 7.779 0.104 35.518 0.104
Residual variance 6.028 19.948 103.090

(√)CV is the square root of the component of variation, which is a dataset-dependent measure of the effect of size in units
of the community dissimilarities (i.e. increasing positive values); negative values indicate zero components (Anderson
et al. 2008)

P(perm) is the probability estimate (P) of the effect occurring by chance. Probabilities were estimated by permutation
(perm); unique permutations exceed 998 in all tests.

Bold values are P < 0.1
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gene sets, a consistent influence of land-use intensification was observed across the soil
functional groups (Table 1). Furthermore, the likelihood of land use having a significant
effect on the soil gene groups (Pperm values) was generally greater when tested at probe or
gene level compared with data aggregated to subcategory level (Table 1). Across all data
sets analysed, the treatment factor ‘soil type’ did not contribute to explaining a significant
component of the variation (Table 1).

A subset of soil and environmental variables were found to be correlated with variation
in GeoChip data (Table 2). The most frequently contributing variables were total calcium,
total cobalt and sulphate sulphur. The total correlations declined as the data were aggre-
gated from probe to subcategory level, indicating loss of connection of the data with
environmental properties.

Gene abundance analysis: plant growth regulatory genes

The abundance of PGRGs genes did not vary between the major soil types (Pallic, Brown
or Recent; P = 0.91), nor between high- and low-intensity land uses (P = 0.419)

Table 2. Summary of multivariate stepwise selection of environmental and soil properties that best
explain (Spearman correlation) variation in the GeoChip5 data among gene groups and with
increasing level of aggregation.

All
data

Nutrient
cycling

Metal
homeostasis

Organic
remediation

Stress and 2nd

metabolisma Other Total

Subcategory 1
Total Calcium ✓ ✓ ✓ ✓ ✓ ✓ 6
Total cobalt ✓ ✓ ✓ ✓ ✓ ✓ 6
Sulphate-S ✓ ✓ ✓ ✓ ✓ 5
AMN:Total Nb ✓ ✓ ✓ ✓ ✓ 5
Potassium ✓ ✓ ✓ ✓ ✓ 5
Solar
radiation

✓ 1

Correlation
(ρ)

0.204 0.200 0.196 0.202 0.186 0.192

Gene
Total Calcium ✓ ✓ ✓ ✓ ✓ ✓ 6
Total cobalt ✓ ✓ ✓ ✓ ✓ ✓ 6
Sulphate-S ✓ ✓ ✓ ✓ 4
AMN:Total N ✓ ✓ ✓ 3
Potassium ✓ ✓ ✓ 3
C:N ratioc ✓ ✓ 1
Correlation
(ρ)

0.214 0.214 0.205 0.187 0.188 0.225

Probe
Total Calcium ✓ ✓ ✓ ✓ ✓ ✓ 6
Sulphate-S ✓ ✓ ✓ ✓ ✓ ✓ 6
TBS ✓ ✓ ✓ ✓ ✓ ✓ 6
Elevation ✓ ✓ ✓ ✓ ✓ ✓ 6
C:N ratio ✓ ✓ ✓ ✓ ✓ 5
Total cobalt ✓ ✓ ✓ ✓ ✓ 5
AMN:Total N ✓ ✓ 2
Correlation
(ρ)

0.250 0.260 0.257 0.238 0.247 0.24

aStress and secondary metabolism related genes.
bRatio of anaerobically mineralisable nitrogen (organic N) and total N.
cCarbon to nitrogen ratio.
TBS, total base saturation.
✓ indicates that the associated variable was included as part of the explanatory selection.
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(Figure 3A). However, there was a significant (P = 0.034), albeit weak, positive relationship
between PGRG abundances and the total cobalt content of soils (P = 0.034; Figure 3B).

Molecular ecological network analysis

Analysis of the functional molecular ecological networks showed strong differences in
connectivity (association) of the plant growth regulatory genes between the two land
uses. The genes in pastoral farming systems other than dairy (‘other’) co-occurred in
samples to a much greater degree than those in dairy soils (Figure 4). These differences
in degree of fMEN associations are supported by various metrics, such as average connec-
tivity and total links among each network.

Discussion

We describe a pathway of analysis that may be adopted to provide structured analysis of
functional soil molecular data, and identify important points of consideration when con-
ducting the analysis. The exemplar data were based on a high-density, DNA microarray

Figure 3. A, Influence of soil type and land use on abundance of genes associated with production and
catabolism of microbially produced plant growth regulatory genes (PGRGs). Error bars represent SEM;
B, linear regression between soil total cobalt concentration and PGRGs. The 95% confidence interval is
given in the shaded area.
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system; these data provide a wealth of information on the functional properties of New
Zealand pastoral soil ecosystems. The analysis of this data set can be used to provide
insights into soil functions associated with productivity and environmental sustainability
of pastoral agriculture. In addition to understanding the responses of individual gene sets
of interest to a research project, the approach can be used to benchmark the health of soil
ecosystems, and following from this build genetic gain in soil ecosystems. Given the extent
of pastoral agriculture as a percentage of New Zealand’s total land area (c. 30%), even
minor gains will translate to large influences if widely adopted. Furthermore, benchmark-
ing and managing soil ecosystems for optimal outcomes can provide the evidence base to
support the use of environmental provenance as a value-enhancing attribute for export
markets.

While GeoChip is used as the research tool in this study, there are a range of ecological
genomics methods available. These include various next generation sequencing platforms
through to high-density oligonucleotide arrays for phylogenetic or other functional analy-
sis (van Straalen & Roelofs 2007; Nannipieri et al. 2014). The various advantages,
limitations and opportunities afforded by these have been widely described (Thomas
et al. 2012; Myrold et al. 2014; Nesme et al. 2016). These include technology accessibility,
coverage (e.g. number or range of genes detectable), various bias (e.g. detection limited to
gene present on an array platform), through to generated data quality, and ability to
manage, analyse, interpret and share data.

The GeoChip, for example, is currently not well suited for high-throughput or routine
diagnostic use; it has a single provider of the technology and the per-array costs are

Figure 4. Network analysis of plant growth regulatory genes (PGRGs) in soils from under dairy or ‘other’
land use. Each node signifies a PGRG. The correlation (heat maps) underpinning the network graphs,
with hierarchical clustering of the genes, are given below.
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relatively high. However, as a research tool it is excellent as a single provider ensures high
consistency of data quality generated among samples, allowing for valid comparisons both
within and among studies. Furthermore, being an array-based technology, the GeoChip is
restricted to detection of the range of genes present on the array; detection of novel func-
tions is not possible and care must be taken to statistically control for bias associated with
over-representation of well-characterised or highly common genes. However, using an
array-based system expedites analysis of the data as the probes, genes and functions are
already characterised. Accordingly, the bioinformatic analysis has a clear path, is fast
and produces consistent results. Overall, the most appropriate platform for pasture soil
ecological genomics will depend on multiple factors and there are significant trade-offs
among the various technology platforms. Regardless of the platform used, a highly stan-
dardised approach to the analysis and processing of data within an experimental study is
critical. We provide an example of this (Figure 1); however, it requires validation across
other data sets and may require adaptation based on application of different technology
platforms (e.g. NGS).

The analysis of large multivariate data sets can be daunting. However, we show that a
range of methods can be used, from simple reduction of the complex data sets to a single
(univariate) statistic (e.g. a diversity index) for each sample and the relatively straightfor-
ward analysis of this, through to more complex analysis that preserves the inherent multi-
variate nature of the data and explores relationships among the various functional
elements (probes to gene families) of the system. The data analysis in this paper is
aimed at providing examples of the approach in a structured manner. However, while
not a specific goal of this work, the results from the indicative analysis pathways reveal
some interesting insights into soil ecosystem function. In particular, we demonstrate
the importance of farm system intensification (land use) as a key factor linked with
shifts in soil functional ecology. The groupings of samples by land use were simply
based on dairy or ‘other’ grazing systems (Wakelin et al. 2013b). This is a reasonably arbi-
trary surrogate for high- and low-input systems, but is reflected by a general trend for
increased nutrients (primarily N and P) in dairy classified soils (Wakelin et al. 2013b).
There is, however, a continuum of intensification between low- and high-input systems,
where high rates of stock grazing and inputs occur outside of dairy and vice versa. As
such, the emergence of consistent ‘land-use’ effects from this preliminary analysis is
important, as it demonstrates how farm management directly impacts on below-ground
ecosystem functional composition. The challenge is to link these data to processes
within the soil ecosystem and then develop models based on these relationships within
a farming-systems context.

Another key outcome was the complete lack of association of ‘soil group’ as a driver of
soil ecosystems (although not formally investigated for the fMEN analysis). Although soil
functions did not consistently vary between groups, the results should be interpreted with
caution. Only three major soil groups were assessed (Brown, Pallic and Recent), as these
had suitable levels of representation among the total samples which comprised 11 soil
groups. Although soil functions were similar when tested among the three soil groups,
differences are likely to be evident when comparisons are made between soils that strongly
differ in pedogenesis, such as Allophanic, Pumice or organic soils.

The results showed a consistent association between a few soil properties and variation in
ecosystem function. Of interest was the link with sulphate-S. When comparing the influence
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of grassland intensification on soil ecosystem function (using GeoChipV3), Wakelin et al.
(2013c) also identified sulphate-S as one of the key edaphic properties linked with alteration
of the soil ecosystem. The consistency of findings across these two studies builds strength
that these associative findings may have a true mechanistic basis.

The association between the functional genes data and sulphate-S maybe a general indi-
cator of land-use intensification and concomitant increases in fertiliser inputs. However, to
support this we would expect strong associations between sulphate-S and other indicators of
fertiliser use, particularly phosphorus. Indeed, while we find a reasonable association
between total P and total S (R2 = 0.45), the link between total P and sulphate-S is very
weak (R2 = 0.08), as is the association between total S and sulphate-S (R2 = 0.28). As such,
although considerable total sulphur has been added to farming soils through anthropogenic
inputs, and is therefore a useful indicator of system intensification, these inputs have not
linearly translated to increased soil sulphate-S, the biologically available form that is associa-
tively linked with wider functional genomics of the soils. As such, the association with the
GeoChip data and sulphate-S indicates that soil biogeochemical processes affecting sulphur
availability may affect wider nutrient cycling processes.

Environmental properties had little associative links with the soil biology under pas-
tures. However, key variables associated with rainfall (e.g. soil moisture deficit) con-
founded inputs of irrigation into many of the farms. Detailed information on these
inputs, along with stocking rate, botanical composition, pasture age and rotation, and fre-
quency and types of other farm inputs will add essential knowledge to support further
studies. Indeed, the inclusion of as much metadata as practicable will be key to increasing
interpretability of future eDNA data from soils. In order to provide opportunities for the
pastoral sector, the ecologists, bioinformaticians and statisticians must use farming system
knowledge and work alongside farmers.

The coupling of GeoChip data with network analysis provides a powerful means to
assess functional interactions with soil ecosystems. In the example given, analysis was
made within a single set of genes associated with production of plant growth regulating
hormones. Strong changes in network topology, along with differences in degree of
network connectivity, were evident between soils from dairy and ‘other’ land uses.
These results show the importance of farming management (intensification) on this
single set of genes potentially influencing plant growth. However, the wider analysis of
the data set will provide much deeper insights into soil ecosystem function. A particularly
important goal is understanding interactions among a number of gene families (e.g. all
nutrient cycling genes) to assess how a wider ecosystem state, such as reduced emissions
of N2O, develops as an emergent property of many interactions. Currently, for example,
quantification of individual N-cycling genes is used to infer the potential of soils to deni-
trify and release N2O (e.g. Cui et al. 2016). However, the activity of organisms responsible
for these N-cycling processes is also directly integrated with the wider flux of C, P and
other elements in the soil ecosystem, and may even be particularly sensitive to microele-
ments such as copper (Cu) (Sullivan et al. 2013) that are essential components of several
N-cycling metalloenzymes. Understanding the ecology of N-cycling taxa using N-cycle
specific genes thus provides only a relatively narrow view of the wider ecology associated
with the N-cycle. It is how these organisms exist and function within a wider ecosystem
context that is important. By understanding interactions at this level, critical links
(genes or gene families) within networks can be identified that are sensitive to farm

NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH 347

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

kl
ah

om
a 

L
ib

ra
ri

es
] 

at
 0

9:
58

 0
7 

Se
pt

em
be

r 
20

17
 



management (Figure 1). Given the level of complexity within soil ecosystems, and the low
current level of understanding that has focused on individual components, such critical
interactions may currently be entirely unpredictable without application of such
approaches.

Conclusion

Analysis of eDNA offers many opportunities for farmers to monitor and then manage
soils for increased system productivity and/or sustainability. The adoption of such tools
requires careful application of standardised approaches, extending from the gene-
assessment technology, analytical approach, through to interpretation of the genetic
data as a predictor of ecosystem function. An approach based on DNA microarrays,
such as the GeoChip tool addresses several of these issues, in particular the standard-
isation of the gene-assessment technology. Based on this, a range of analytical
approaches can be used for analysis of the data (as described) and, given the standar-
dised technology basis, a generic pipeline developed. This will enable robust compari-
son of results across samples, thereby increasing the ability to interpret results against
a large database. Currently the array technology described is prohibitively expensive for
routine assessment of farm soils. However, given the potential benefits of the approach,
the development of an inexpensive ‘open-array’ system for New Zealand would be of
much benefit.

Supplementary data

Table S1. Association between soil and environmental variables and the Shannon Index (GeoChip5
dataset).
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