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ABSTRACT

Patterns in the spatial distribution of organisms provide important information about mechanisms underlying biodiversity and
the complexity of ecosystems. One of the most well-documented spatial patterns is the distance-decay relationship, which is a
universal biogeographic pattern observed repeatedly for plant and animal communities, particularly for microorganisms in nat-
ural ecosystems such as soil, ocean, and salt marsh sediment. However, it is uncertain whether the microorganisms exhibit a dis-
tance-decay pattern in engineered ecosystems. Therefore, we measured the distance-decay relationship across various microbial
functional and phylogenetic groups in 26 biological wastewater treatment plants (WWTPs) in China using a functional gene ar-
ray (GeoChip 4.2). We found that microbial communities of activated sludge in WWTPs exhibited a significant but very weak
distance-decay relationship. The taxon-area z values for different functional and phylogenetic groups were <0.0065, which is
about 1 to 2 orders of magnitude lower than those observed in microbial communities elsewhere. Variation-partitioning analysis
(VPA) showed that the relationships were driven by both environmental heterogeneity and geographic distance. Collectively,
these results provided new insights into the spatial scaling of microbial communities in engineering ecosystems and highlighted
the importance of environmental heterogeneity and geographic distance in shaping biogeographic patterns.

IMPORTANCE

Determining the distance-decay relationship of microbial biodiversity is important but challenging in microbial ecology. All
studies to date are based on natural environments; thus, it remains unclear whether there is such a relationship in an engineered
ecosystem. The present study shows that there is a very weak distance-decay relationship in an engineered ecosystem (WWTPs)
at the regional-to-continental scale. This study makes fundamental contributions to a mechanistic, predictive understanding of
microbial biogeography.

Acentral goal of ecology is to understand how biodiversity is
generated and maintained (1). Spatial patterns of species di-

versity offer insights into the mechanisms shaping biodiversity
and are of practical importance for predicting the risk of biodiver-
sity loss by environmental changes and consequently for setting
up conservation priorities (2). Therefore, the spatial distribution
patterns of species diversity have solicited substantial attention.
Traditionally, the field of spatial distribution patterns of biodiver-
sity has focused on plants and animals. For example, it has been
well documented for plant and animal communities that commu-
nity similarity decreased with geographic distance, known as the
distance-decay relationship (3, 4). In recent years, a number of
studies have been conducted to investigate biogeographic patterns
of microorganisms, including bacteria, archaea, fungi, and other
microbial eukaryotes (3, 5–10). A growing body of research has
shown that microorganisms, like plants and animals, exhibited
distance-decay patterns in different habitats at various taxonomic
resolutions (2, 3, 11–18).

The shaping mechanisms of distance-decay patterns in micro-
bial communities can be explained by contemporary environ-
mental heterogeneity and historical events (19). If microbial com-
munities are shaped mainly by contemporary environmental
conditions, a distance-decay relationship could be observed be-
cause environmental factors tend to be spatially autocorrelated,
and microorganisms with different niche preferences are selected
from the available pool of taxa as the environment changes with

distance. This is the so-called Baas-Becking hypothesis: “every-
thing is everywhere—the environment selects” (20). However, the
distance-decay relationship can also be influenced by historical
contingences, which can be represented by geographic distance.
For example, neutral-niche models, in which the microbial com-
munity is not influenced by its environmental conditions, can also
generate a distance-decay pattern (3). Although the relative im-
portance of environmental conditions and geographic distance is
under heated debate, it is generally believed that microbial biogeo-
graphic distribution reflects the influences of both contemporary
environmental conditions and geographic distance (1, 5).

To date, all microbial biogeographic studies have been carried
out on natural ecosystems such as soil (2, 11), freshwater (13, 14),
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salt marsh sediment (3), and deep-sea surface sediments (18). The
spatial distribution of microbially diverse populations in engi-
neered ecosystems such as biological wastewater treatment plants
(WWTPs) remained unknown. Engineered ecosystems are very
different from natural ecosystems in that they are designed to
carry out a stable function(s). Therefore, we hypothesize that the
spatial distribution patterns of biodiversity in engineered ecosys-
tems could be different from those in natural ecosystems.

Centralized WWTPs are ideal model systems to test the dis-
tance-decay relationship since there are now more than 400,000 of
them around the world, which together are estimated to process
more than 730 million m3 of wastewater daily (more than double
the average flow of the Nile) (21). The WWTP bioreactor is a
typical engineered system in which the functional groups of mi-
croorganisms in activated sludge are enriched to enable the effi-
cient degradation of oxygen-depleting organics and nutrients
(22). Biological WWTPs are typically similar habitats, as they of-
ten receive similar domestic wastewater and are operated under
relatively similar conditions. However, microbial communities
within these reactors are diverse, dynamic, and complex (23) and
play a vital role in determining process efficiency and stability.
Therefore, we used WWTP bioreactors to test whether and how
the spatial distribution pattern of microbial communities in engi-
neered ecosystems differs from that in natural ecosystems. We
collected 78 activated sludge samples from 26 full-scale WWTP
bioreactors distributed across China. We used GeoChip 4.2, a mi-
croarray containing 120,054 distinct probes to target 200,393 cod-
ing sequences related to various microbial functional processes, to
determine the spatial scaling of microbial functional gene diver-
sity in these WWTPs. Our results indicated that the distance-de-
cay relationship existed in WWTPs, but the turnover rate was
much lower than that of microorganisms in natural settings. Fur-
ther analyses showed that the distance-decay relationship is
shaped mainly by environmental heterogeneity, along with geo-
graphic distance.

MATERIALS AND METHODS
Wastewater treatment plants and sampling. Activated sludge samples
were collected from the aeration tanks of 26 full-scale wastewater treat-
ment systems located in 10 different cities across long transects of China.
The 26 systems used different treatment processes, including anaerobic/
anoxic/aerobic (A2O), oxidation ditch, and membrane bioreactor (MBR)
processes, etc. Details of the locations, treatment processes, influent char-
acteristics, and operational parameters for all the systems studied are
listed in Table S1 in the supplemental material.

In the summer of 2011, we collected activated sludge samples from the
end part of the aeration tank of each WWTP once a day for three consec-
utive days to generate triplicates. The samples were briefly settled on-site
to be concentrated and then fixed in a 50% (vol/vol) aqueous ethanol
solution. The fixed samples were immediately transported to the labora-
tory on ice, where 50 ml of each sample was dispensed into a sterile Ep-
pendorf tube and centrifuged at 14,000 � g for 10 min. The supernatant
was decanted, and the pellet was stored at �80°C prior to analysis.

DNA extraction and microarray hybridization. Microbial genomic
DNA was extracted from the activated sludge samples by combining
freeze-thawing and sodium dodecyl sulfate (SDS) treatment for cell
lysis as previously described (24). Crude DNA was purified by using the
Wizard SV Genomic DNA purification kit (Promega, Madison, WI, USA)
and then assessed by the ratios of the absorption at 260/280 nm and
260/230 nm measured by an ND-1000 spectrophotometer (NanoDrop
Inc., Wilmington, DE, USA), agarose gel electrophoresis, and a Quant-It
PicoGreen kit (Invitrogen, Carlsbad, CA, USA).

All purified DNA was labeled, concentrated, and resuspended in 10 �l
of hybridization solution as described previously (25). The fluorescently
labeled DNA was hybridized with a GeoChip 4.2 array on a Maui hybrid-
ization station (BioMicro, Salt Lake City, UT, USA) at 42°C with 40%
formamide for 16 h. After unbound labeled DNA was washed away, mi-
croarrays were scanned (MS200; NimbleGen, Madison, WI, USA) at a
laser power of 100%.

Data analysis. Low-quality spots were removed prior to statistical
analysis, as described previously (26, 27). Spots with a signal-to-noise
ratio of �2 and outliers of replicates were removed. The signal intensities
were normalized within and across samples based on the mean signal
intensity, as described previously (28). We then averaged the normalized
signal intensities for the three replicates for each WWTP to conduct
downstream analyses. The normalized hybridization data for individual
functional gene sequences were grouped based on gene families (e.g., nifH
and nirS) or functional groups (e.g., nitrification and denitrification) to
calculate the z values of the distance-decay relationship (2).

The Sorensen index was used to construct community similarity ma-
trices for microorganisms, whereas Euclidean distances were used to con-
struct similarity matrices for geographic distance and environmental pa-
rameters. The z values of the distance-decay relationships of the bacterial
communities were calculated as the slope of a linear least-squares regres-
sion on the relationship between geographic distances (log transformed)
and bacterial similarity (log transformed). Because the data points (pair-
wise comparisons) are not independent, the significance of the distance-
decay slope was tested by using bootstrapping with replacement; that is,
geographic distance and microbial community similarity were randomly
paired from the original data set, and the distance-decay slopes were cal-
culated 10,000 times. A one-sample t test was then used to determine
whether the observed slope was significantly different from the mean of
the randomly generated slopes, as described previously (2). The exponent
z values of the power law taxon-area relationship were calculated from the
slope of the power law distance-decay relationship by using the equation
log(Ss) � constant-2zlog(D), where Ss is the pairwise similarity in com-
munity composition and D is the distance between two samples (12).

To separate the effects of environmental heterogeneity and geographic
distance, a canonical correspondence analysis (CCA)-based variation-
partitioning analysis (VPA) was performed based on the presence or ab-
sence of each gene sequence of all individual functional gene sequences
(FGSs) (29). Spatial variables measured as latitude-longitude coordinates
were converted into projected coordinates and represented by a cubic
trend surface polynomial to capture broad-scale spatial trends (29). A
multivariate regression tree (MRT) analysis was carried out to identify
important factors in shaping microbial community compositions. A
1,000-cross-validation process was used to decrease the structure com-
plexity of the MRT. Predictive accuracy was estimated from the cross-
validated relative error, which varies from 0 for a perfect tree to close to 1
for a poor tree (8). MRT analysis was carried out with the package mvpart
in the R statistical programming environment.

RESULTS
Distance-decay relationship. To determine the distance-decay
relationship in WWTPs, a total of 78 activated sludge samples
were collected from 26 WWTPs located in 10 cities in China. A
total of 55,724 functional genes were detected by GeoChip 4.2
analysis. For individual samples, the numbers of detected genes
ranged from 19,922 to 47,153 (Table 1). Pairwise community sim-
ilarity between samples was calculated based on the presence or
absence of each functional gene by using Sorensen’s index (3). The
whole microbial community displayed a significant, negative
distance-decay relationship (P � 0.01) (Fig. 1), meaning that
WWTPs located in proximity to each other were more similar in
composition than WWTPs located farther apart.

Spatial scaling of microbial communities. The slope of the
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distance-decay relationship reflects the rate at which OTU rich-
ness increases with distance. Therefore, the slope of the power law
distance-decay relationship can be used to calculate the exponent
z value of the power law taxon-area relationships (11). As shown
in Table 1, the z value for the whole functional gene sequence was
0.0038. The mean z value was 0.0043 � 0.0009 for different func-
tional gene groups, which was similar to z values for phylogenetic
groups (0.0043 � 0.0011). In addition, it was found that the z

values varied by taxonomic resolution. For example, the z value
was 0.0038 based on all individual functional gene sequences but
was approximately four times lower based on functional genes
(z � 0.0011) (Table 1).

To determine whether the z values were significantly different
among various functional or phylogenetic groups, bootstrapping
was performed to estimate the variances of z values, followed by a
pairwise t test with Bonferroni correction. The results showed that
the estimated z values were significantly different among various
functional or phylogenetic groups (P � 0.005), except for the z
values between the sulfur group and the metal resistance group
and between Chloroflexi and Epsilonproteobacteria. For instance,
the z value for nitrification genes was 0.0062, a value much higher
than that for denitrification genes (0.0035) (Table 1). Also, the z
value for bacteria was 0.0037, which was lower than those for
archaea (0.0050) and fungi (0.0051), suggesting that bacteria had
a lower turnover rate in space than archaea and fungi in WWTPs.
In addition, among the Proteobacteria, the z value for the Gamma-
proteobacteria (0.0049) was higher than those for the Alphaproteo-
bacteria (0.0030), Betaproteobacteria (0.0030), and Epsilonproteo-
bacteria (0.0033).

z values for individual genes varied considerably. For C-cycling
genes, the z value of amyX was 0.0084, which was approximately
four times higher than that of the cadherin (CDH) gene (0.0021)
(see Table S2 in the supplemental material). Considerable varia-
tions were also observed for N cycling, S cycling, and organic
remediation genes (see Tables S3, S4, and S5 in the supplemental
material).

In order to obtain general insights into spatial scaling across
different organisms, we compared the z values obtained in this

TABLE 1 z values for taxon-area relationships for various functional and phylogenetic groupsa

Group z t n P Lower 95% CI Upper 95% CI

Individual functional gene sequences 0.0038 �112.321 999 �0.01 �1.4E�05 1.95E�05

Functional genes 0.0011 �215.321 999 �0.01 �1.7E�05 1.83E�05

Functional groups
Organic remediation 0.0032 �225.783 9,999 �0.01 �1.3E�05 0.000018
Carbon cycling 0.0041 �393.523 9,999 �0.01 �2.2E�05 1.11E�05
Nitrogen 0.0040 �267.513 9,999 �0.01 �8.3E�06 0.000027

Nitrogen fixation 0.0055 �120.825 9,999 �0.01 �3.4E�05 8.93E�06
Ammonification 0.0036 �268.735 9,999 �0.01 �1.8E�05 1.33E�05
Denitrification 0.0035 �225.846 9,999 �0.01 �9.5E�06 2.52E�05
Nitrification 0.0062 �178.323 9,999 �0.01 �2.1E�05 4.52E�05

Phosphorus 0.0044 �280.387 9,999 �0.01 �5.3E�06 0.000031
Sulfur 0.0046 �258.977 9,999 �0.01 �1.7E�05 2.41E�05
Metal resistance 0.0035 �265.63 9,999 �0.01 �3E�05 1.46E�06

Phylogenetic groups
Fungi 0.0051 �286.756 9,999 �0.01 �1.8E�05 2.46E�05
Archaea 0.0050 �345.7347 9,999 �0.01 �5.5E�06 3.13E�05
Bacteria 0.0037 �278.4152 9,999 �0.01 �2.2E�05 1.02E�05

Bacteroidetes 0.0065 �305.237 9,999 �0.01 �1.8E�05 3.33E�05
Chloroflexi 0.0046 �254.281 9,999 �0.01 �1.6E�05 2.49E�05
Proteobacteria 0.0035 �251.315 9,999 �0.01 �8.7E�06 2.33E�05

Alphaproteobacteria 0.0030 �227.715 9,999 �0.01 �5.9E�06 2.23E�05
Betaproteobacteria 0.0030 �211.723 9,999 �0.01 �2.7E�05 2.02E�06
Gammaproteobacteria 0.0049 �284.513 9,999 �0.01 �3.1E�05 9.82E�06
Epsilonproteobacteria 0.0033 �264.024 9,999 �0.01 �1.8E�05 1.16E�05

a CI, confidence interval.

FIG 1 Distance-decay relationship for activated sludge microbial communi-
ties in WWTPs. Pairwise similarities are plotted as a function of the distance
between WWTPs. Each circle represents the pairwise similarity of a microbial
community (Bray-Curtis index). S means community similarity, and D means
geographic distance.

Wang et al.
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study and all available previously reported data (715 data sets)
(Fig. 2). The average z value was 0.27 for mammals, whereas it was
0.32 for plants. The average z value (data from this study were not
included) was 0.09 for microbes, which was 2 to 4 times lower than
those observed for plants and animals, but it was 20 times higher
than that observed in this study.

Effects of environmental heterogeneity and geographic dis-
tance. Environmental heterogeneity and demographic processes
(e.g., dispersal, colonization, speciation, and extinction) are im-

portant for determining the biogeographic distribution of mi-
crobes (30).

To determine whether environmental variables affected mi-
crobial community composition, partial Mantel tests were per-
formed. When the effects of geographic distance were removed,
partial Mantel tests indicated a significant correlation between the
measured environmental variables and microbial functional com-
position (P � 0.05). Similarly, partial Mantel tests revealed a sig-
nificant correlation between geographic distance and microbial
functional composition (P � 0.05) (Table 2). The results of the
Mantel test also showed that there was no significant correlation
between treatment process and most of the functional and phylo-
genetic groups except for the functional groups involved in C
cycling (correlation coefficient in Mantel’s test [rM � 0.166;] P �
0.05), N cycling (rM � 0.164; P � 0.05), and organic remediation
(rM � 0.161; P � 0.05), which exhibited a significant correlation
with treatment process (Table 2).

Because partial CCA has been shown to be more appropriate to
correctly partition the beta diversity values among sites than the
partial Mantel test (31), a CCA-based VPA was further performed
to separate the effects of environmental heterogeneity and geo-
graphic distance. Environmental heterogeneity was further split
into wastewater characteristics (chemical oxygen demand [COD],
total nitrogen [TN] level, ammonia level, total phosphorus [TP]
level, pH, and conductivity) and operational parameters (dis-
solved oxygen [DO], temperature, hydraulic retention time
[HRT], and mixed-liquor suspended solids [MLSS]). As shown in
Table 3, 41.5% of the variance could be explained by these three
components. Wastewater characteristics, operational parameters,
and geographic distance could independently explain 10.7, 9.2,
and 16.3% of variations, respectively. Therefore, both environ-
mental heterogeneity (including wastewater characteristics and

FIG 2 Comparison of z values for macrobial and microbial taxonomic groups.
Most of the data were reported previously by Drakare et al. (43). A total of 715
recent data sets for macrobial and microbial communities are included. The
bars represent average z values, and error bars represent standard deviations.

TABLE 2 Influence of geographic distance and environmental heterogeneity on microbial community composition

Group

Effect of environmental
similarity, controlling for
geographic distance

Effect of geographic
distance, controlling for
environmental similarity

Effect of treatment process,
controlling for
environmental similarity

r P r P r P

Functional genes 0.13 0.013 0.14 0.037 �0.03 0.664

Functional groups
C cycling 0.21 0.001 0.05 0.043 0.170 0.010
N cycling 0.21 0.001 0.05 0.041 0.16 0.014

Denitrification 0.22 0.001 0.05 0.036 �0.06 0.820
Nitrification 0.03 0.286 0.05 0.031 �0.06 0.841

P cycling 0.14 0.017 0.04 0.073 �0.03 0.671
Sulfur cycling 0.15 0.008 0.04 0.045 �0.02 0.551
Organic remediation 0.22 0.001 0.05 0.048 0.16 0.012

Metal resistance 0.13 0.019 0.05 0.079 �0.06 0.798

Phylogenetic groups
Archaea 0.14 0.009 0.07 0.071 0.00 0.506
Fungi 0.15 0.004 0.09 0.005 0.01 0.457
Bacteria 0.13 0.013 0.09 0.04 �0.04 0.682

Alphaproteobacteria 0.11 0.027 0.09 0.02 �0.06 0.853
Betaproteobacteria 0.12 0.026 0.09 0.002 �0.07 0.868
Gammaproteobacteria 0.15 0.008 0.09 0.05 0.01 0.424
Epsilonproteobacteria 0.12 0.025 0.06 0.02 �0.07 0.839

Distance-Decay Relationship for WWTPs
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operational parameters) and geographic distance played impor-
tant roles in shaping microbial biogeographic patterns in biolog-
ical WWTPs.

MRT analysis was further used to determine which environ-
mental factors were important in shaping microbial community
compositions. We showed that the most important factor in ex-
plaining the variances of microbial community components in the
26 samples was pH (Fig. 3). The coefficient of variation (CV) error
and standard error (SE) for the MRT analysis were 0.506 and
0.007, respectively, indicating greater reliability of the model. The
samples were divided into two main groups: group A, with a pH
lower than 7.22, and group B, with a pH higher than 7.22. Group
A was further split by conductivity into samples with high con-
ductivity levels (�1,235 �S/cm) and those with low conductivity
values (�1,235 �S/cm). Group B was then split into two groups by
TN. Finally, all the samples were further split into six subgroups by
temperature and latitude.

DISCUSSION

A central goal in community ecology is to determine the distribu-
tion patterns of microorganisms and the relative influence of con-
temporary environmental factors versus the legacies of historical
events on distribution patterns (8). Today, several studies have
demonstrated that there are biogeographic patterns for microbes
in natural habitats such as soil, freshwater, and the ocean. How-
ever, no previous studies have focused on the microbial distribu-
tion patterns in engineered ecosystems.

In this study, we showed that the microbially diverse popula-
tions in activated sludge in WWTPs exhibited a significant but

very weak distance-decay relationship. The z value for different
functional and phylogenetic groups was �0.0066, which is 1 to 2
orders of magnitude lower than those reported in previous studies
(3, 11–18). For example, Martiny et al. (3) demonstrated that z
values for Nitrosomonadales in salt marsh sediments varied signif-
icantly among spatial scales, with z values of 0.02 within marshes,
z values of 0.14 within regions (across marshes), and no significant
z value at the continental scale (across regions), using 16S rRNA
gene-based PCR cloning and sequencing approaches. Zhou et al.
(2) suggested that, based on data from GeoChip analysis, the z
value for microbial communities in forest soil was 0.0624, and the
z values varied considerably across different functional and phy-
logenetic groups (z � 0.0475 to 0.0959). Other studies also
showed that the z values are typically between 0.01 and 0.1 for
microorganisms in various habitats (2, 3, 11–17). Activated sludge
is a unique microbial ecosystem, and it has high diversity, with
over 700 genera and thousands of OTUs (32, 33). Given the high
diversity of bacterial communities in activated sludge systems, the
turnover rate (z value) in this study is so low that it could be
negligible. Actually, WWTPs are always designed to be predictable
and reproducible independent of geographical distance.

Why are the z values in this study much lower than those re-
ported in previous studies? One explanation is that our samples
were from WWTPs with similar functions, resulting in lower spa-
tial turnover rates for taxa. All the WWTPs in this study treated
domestic wastewater, and they had similar influent characteris-
tics. The operational conditions among the WWTPs were also
relatively similar. For example, the concentration of dissolved ox-
ygen in all bioreactors was kept above 2 mg/liter. This relatively
low environmental heterogeneity may explain the low z values.
Another explanation is that biological WWTPs are nutrient rich
because the influent COD levels of most of the plants were �300
mg/liter. This environment may cause high functional redun-
dancy that reduced the z values.

A theme of biogeography is the relative influence of contem-
porary environmental factors versus the legacies of historical
events on distribution patterns. In this study, the biogeography of
microorganisms reflects the influence of both contemporary en-
vironmental variation and geographic distance. Our results ap-
pear to be consistent with data from previous studies on natural
ecosystems (5). Hanson et al. (5) conducted a review of 56 studies
that attempted to disentangle the relative effects of contemporary

TABLE 3 Variation-partitioning analysis of all FGSs

Groupa % of explained variation

W 10.7
O 9.2
G 16.3
W � O 0.3
W � G 0.7
O � G 2.9
W � O � G 1.4
a W, wastewater characteristics; O, operational parameters; G, geographic location;
W � O, interactions of wastewater characteristics and operational parameters; W � O
� G, interactions of all three factors.

FIG 3 MRT analysis of environmental and spatial variables and GeoChip data for 78 samples. A, B, C, D, E, F, G, H, I, and J are clusters.

Wang et al.
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environmental factors versus historical processes on the distance-
decay relationship, and they found that most studies reported that
both contemporary environmental factors and geographic dis-
tance shaped microbial biogeographic patterns. However, some
researchers thought that the distance effect was probably almost
overestimated if any spatially autocorrelated environmental fac-
tors were not accounted for by the measured environmental vari-
ables (5, 34). In fact, a complete quantification of all environmen-
tal variables is practically impossible to achieve.

In our study, about 58.5% of the functional gene variance
could not be explained by environmental heterogeneity and geo-
graphic distance. It is possible that some unmeasured biotic or
abiotic environmental variable plays an influential role in affect-
ing the microbial community in WWTPs. Previous studies
showed that protozoan grazing (20) and phage predation (8)
played vital roles in shaping microbial communities. Alterna-
tively, stochastic processes (35, 36) might play a major role in
shaping microbial communities.

The treatment process could be one of the factors influencing
the microbial community structures in WWTPs. In our study, the
26 wastewater treatment systems used different treatment pro-
cesses, including A2O, oxidation ditch, and MBR processes, etc.
Different treatment processes are usually operated with different
operational parameters. For example, compared to conventional
activated sludge, an MBR is typically operated at high MLSS con-
centrations, long sludge retention time, and high DO concentra-
tions to control membrane fouling. Previous studies showed that
different treatment processes could harbor distinct microbial
community structures (37–40). However, our study revealed that
treatment process was not significantly correlated with most of the
functional and phylogenetic groups except for the functional
groups involved in C and N cycling and organic remediation. One
of the main reasons for this could be that in the partial Mantel test,
the effects of some operational parameters (such as DO, temper-
ature, HRT, and MLSS) underlying treatment processes were re-
moved. We think that operational conditions underlying the
treatment process, rather than the treatment process itself, affect
the bacterial community structures in wastewater treatment sys-
tems.

In this study, a microarray hybridization-based approach
(GeoChip) was used to determine the spatial scaling of microbial
functional gene diversity in WWTPs. The GeoChip array has sev-
eral advantages for examining microbial biogeographic patterns
by minimizing sampling artifacts such as undersampling, unequal
sampling, random sampling, and taxonomic lumping (2, 41).
Specifically, the GeoChip array contains 84,000 probes targeting
152,000 genes involved in major microbial biogeochemical pro-
cesses so that many microbial populations and functional groups
can be simultaneously detected at the whole-community-wide
scale, which could ameliorate the undersampling problem. An-
other main advantage of the GeoChip approach is that it can
generally provide high resolution in differentiating various mi-
croorganisms (42), and hence, the lumping problem can be
ameliorated. However, as with other microarray hybridization-
based approaches, the GeoChip approach has disadvantages. It is a
closed-format detection approach and provides information only
for the genes included on the microarrays (41). Also, most func-
tional genes could provide less robust information on phyloge-
netic relationships among various organisms if they are distantly

related, especially because many functional genes are susceptible
to horizontal gene transfer.

In conclusion, understanding the spatial scaling of organisms
and the underlying mechanisms shaping communities is a central
goal in community ecology. Our results illustrate that microbial
communities of activated sludge in WWTPs exhibit a significant
but very weak distance-decay relationship. The negligible z values
across different functional and phylogenetic groups in activated
sludge were �0.0065, which is 1 to 2 orders of magnitude lower
than those observed in natural environments such as soil, fresh-
water, and salt marsh sediment. It appears that the spatial scaling
of activated sludge microbial communities was driven by both
environmental heterogeneity and geographic distance.
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