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The existence of biogeographic patterns among most free-living microbial taxa has been well
established, yet little is known about the underlying mechanisms that shape these patterns. Here, we
examined soil bacterial β-diversity across different habitats in the drylands of northern China. We
evaluated the relative importance of environmental factors versus geographic distance to a distance–
decay relationship, which would be explained by the relative effect of basic ecological processes
recognized as drivers of diversity patterns in macrobial theoretical models such as selection and
dispersal. Although the similarity of bacterial communities significantly declined with increasing
geographic distance, the distance–decay slope and the relative importance of factors driving
distance–decay patterns varied across different habitats. A strong distance–decay relationship was
observed in the alpine grassland, where the community similarity was influenced only by the
environmental factors. In contrast, geographic distance was solely responsible for community
similarity in the desert. Even the average compositional similarity among locations in the desert was
distinctly lower compared with those in other habitats. We found no evidence that dispersal limitation
strongly influenced the β-diversity of bacterial communities in the desert grassland and typical
grassland. Together, our results provide robust evidence of habitat specificity for microbial diversity
patterns and their underlying drivers. Our findings suggest that microorganisms also have multiple
drivers of diversity patterns and some of which may be parallel to some fundamental processes for
explaining biodiversity patterns in macroorganisms.
The ISME Journal (2017) 11, 1345–1358; doi:10.1038/ismej.2017.11; published online 10 March 2017

Introduction

Over the past few decades, spatial patterns in
microbial biodiversity have been extensively inves-
tigated at regional (Green et al., 2004; Griffiths et al.,
2011), continental (Fierer and Jackson, 2006; Lauber
et al., 2009), and global scales (Fierer et al., 2009;
Tedersoo et al., 2012). These studies provide strong
evidence that most microbial taxa inhabiting differ-
ent habitats exhibit biogeographic patterns that are
similar to macroorganisms in spite of their micro-
scopic size and hidden diversity (Green and
Bohannan, 2006; Martiny et al., 2006). However,
our understanding of the fundamental processes that
underlie microbial biogeographic patterns remains

limited (Nemergut et al., 2013; Wang et al., 2013).
Such a knowledge gap impedes our ability to
uncover the mechanisms underlying global varia-
tions in biodiversity and, ultimately, to predict
ecosystem responses to current and future environ-
mental changes.

The decline in community similarity with increas-
ing geographic distance is a well-described pattern of
biodiversity (Soininen et al., 2007; Morlon et al.,
2008). Distance–decay curves offer a directional
measure of the variation in community composition
from site to site (that is, β-diversity; Anderson et al.,
2011), and the slope of which can reflect the rate of
species turnover over space. This commonly studied
pattern has also been observed for microorganisms
across a range of habitats at various taxonomic
resolutions (Horner-Devine et al., 2004). Generally,
two mechanisms could give rise to this pattern. First,
environmental differences are likely to increase with
increasing geographical distance. In this case, com-
munity composition thus becomes increasingly
different with environmental changes as species are
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selected from local taxa pool based on their niche
preferences (that is, niche-based or deterministic
processes; Bell, 2010). Growing evidence supports
the role of environmental factors, including soil pH,
vegetation and aridity in structuring microbial
communities (Chu et al., 2010; Maestre et al., 2015;
Prober et al., 2015). Second, distance–decay patterns
can also result from dispersal limitation, which is
independent of niche differences. For example,
neutral theory suggests that all individuals in the
communities are ecologically equivalent, and spe-
cies abundance and diversity are determined by
stochastic events (that is, neutral or stochastic
processes; Hubbell, 2001). In such a case, dispersal
is limited such that individuals tend to disperse to
nearby sites. Thus, closer sites will have more
similar communities than between those further
apart even without environmental influences (Bell,
2001). Evidence of distance–decay patterns driven
by dispersal limitation in microorganisms has also
been obtained in many studies (Cho and Tiedje,
2000; Peay et al., 2010). It is widely recognized that
both processes are important for shaping the dis-
tance–decay relationship (Martiny et al., 2011), but
the inconsistency of theoretical frameworks prevents
more detailed profiles on the relative importance of
the processes driving microbial diversity patterns.

In Vellend’s (2010) conceptual synthesis, most
mechanisms that contribute to patterns in the
composition and diversity of species can be categor-
ized into four classes of processes: selection, dis-
persal, drift and speciation. Selection is the outcome
of environmental pressures causing variation in
survival and reproduction within and among
species; dispersal mainly refers to the movements
of a species to a new location; drift reflects popula-
tion sizes fluctuating in a location owing to inherent
chance events; and speciation produces new species
that are adapted to particular conditions. We attempt
to use such a unified theoretical framework for
identifying the processes underlying microbial bio-
geographic patterns. Although it is a fact that
microbial taxa usually defined by molecular genetic
methods (for example, sequence-based OTUs) are
not the same as ‘species’ in macroorganisms, it still
makes sense to focus on the four processes for
shaping microbial biogeography in some ways. For
example, selection acts on multiple biological levels
from genes to taxa (Lewontin, 1970). Hence, it allows
us to consider selection generally for microbial taxa,
which can be defined at different levels of gene
sequence similarity. Sequence-based OTUs can offer
valuable information about whether a microbial
taxon has not dispersal at two sites rather than it
has. Yet drift will, and so will speciation, not be
easily evaluated for microbes if only sequence data is
used because the population size is not measurable
and the variation due to sequence or classification
error will be just as great as true biological variation
per se associated with sequence divergence, despite
some detectable effects of drift on community

assembly in microbial systems (Ofiteru et al., 2010;
Stegen et al., 2013). Another reason is that this
conceptual model relates many of the existing
theories and models in community ecology to each
of the four processes alone or their combinations. For
instance, the idea of species ‘niches’ (Chase and
Leibold, 2003) is synonymous with selection while
the full view of Hubbell’s neutral theory (2001)
represents the combined influence of drift, dispersal
and speciation. Owing to intimate associations
between micro- and macroorganisms and resulting
impacts on each other’s geographic distributions,
this is a practical pathway to interpret biogeographic
patterns displayed in microorganisms using a famil-
iar and classic theoretical framework, which has
been widely applied in macroorganisms (Martiny
et al., 2006). In addition, although the four processes
act in concert and quantitatively estimating the
influences of these processes is rarely achieved,
recent studies have provided evidence that some
microorganisms are likely subjected to the same
forces governing community assembly, similar to
macroorganisms (Stegen et al., 2012; Nemergut et al.,
2013). Until now, however, very little is known
about whether these processes alone or in combina-
tion could be involved in observed microbial
biogeographic patterns, and about what their relative
importance is in determining the fundamental
patterns of biodiversity. The distance–decay rela-
tionship is a well-known biodiversity pattern
observed in communities from all domains of life.
It is sensitive to critical ecological processes and thus
often considered as a powerful tool for testing
mechanistic ecological theories (Condit et al.,
2002). It has been demonstrated that the relative
role of the four processes can lead to a different
observed distance–decay curve (Hanson et al., 2012).
For instance, selection tends to produce a distance–
decay relationship while dispersal counteracts it,
and vice versa, such a curve may also provide
potential insights for disentangling the relative
importance of the four processes responsible for
taxonomic diversity. For example, relative weak
distance–decay relationship should be observed in
habitats where dispersal is high as composition
differentiation among locations will decrease
with increasing newly established colonizers
(Slatkin, 1987).

It is believed that the relative importance of these
processes to β-diversity can vary across different
spatial scales, habitat types and organisms, which
thus results in the difference of the strength of
distance–decay in ecological communities (that is,
the slope of the distance–decay curve; Nekola and
White, 1999). Many studies have shown that the
relative importance of a particular mechanism that
shapes the distance–decay pattern depends on the
spatial scales, and such scale-dependent patterns
have been observed in microorganisms (Bardgett and
van der Putten, 2014; Wang et al., 2015). Further-
more, it is notable that the relative importance of
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different processes also likely varies across- and
within-habitat types. For example, microbial com-
munity composition may differ substantially among
habitat types owing to the effects of environmental
gradients (Lozupone and Knight, 2007). Habitat
differentiation would also affect the dispersal
ability of hosting microbes, as highly aquatic
substrates should allow for more dispersal than
isolated habitats or solid substrates (Cermeno and
Falkowski, 2009). A strong role of habitat specificity
on microbial community assembly has been
observed in Earth’s major habitat types (Nemergut
et al., 2011), such as desert (Andrew et al., 2012;
Ronca et al., 2015), grassland (Zinger et al., 2011; Li
et al., 2015), permafrost (Yergeau et al., 2007) and
aquatic ecosystems (Zinger et al., 2014). Yet, few
studies to date have focused on whether there are
some associations between observed patterns in
microbial diversity and processes driving them
across different habitats.

To investigate the bacterial biogeographic patterns
and the mechanisms underlying β-diversity in
bacterial communities among habitat types, we
conducted a 4000 km transect survey across four
different habitats in China’s drylands, including
alpine grassland, desert, desert grassland and typical
grassland (Supplementary Figure S1). This transect
covered a continuous transition of four major habitat
types according to the classification of Chinese
terrestrial habitat types (Chinese Academy of
Sciences, 2001; Supplementary Table S1). In total,
545 soil samples were collected and analyzed by
sequencing 16S ribosomal RNA (rRNA) gene, the
most commonly used indicator gene for bacterial
diversity. We attempted to address the following two
hypotheses. (i) The rate of distance decay (the slope
of the distance–decay curve) will vary across
different habitats. (ii) The relative importance of
underlying factors (environmental variables or
geographic distance) contributing to distance–decay
relationships will differ across different habitats.
Meanwhile, we predicted that the differences in such
β-diversity patterns among different habitats would
reflect some differences in relative importance of the
ecological processes. For microorganisms, a detected
distance–decay relationship and its underlying
process may depend on taxonomic resolution; thus,
we used the two commonly used groupings—97%
and 99% sequence similarity—to define OTUs in
our study.

Materials and methods

Study sites and experimental design
The study was conducted across a 4000 km transect
of northern China’s grasslands from the Xinjiang
Uygur Autonomous Region to eastern Inner Mon-
golia in northern China (83.45° E to 120.36° E,
42.89° N to 49.19° N; Supplementary Figure S1).
There are four types of habitats along this transect

according to a vegetation map at a scale of
1:1 000 000 (Chinese Academy of Sciences, 2001),
including alpine grassland, desert, desert grassland and
typical grassland from west to east (Supplementary
Table S1). The dominant species in the four habitats
include Stipa spp. and Carex spp. (alpine grassland),
Calligonum spp., Alhagi spp. and Ephedra spp.
(desert and desert grassland), and Stipa spp., Leymus
spp. and Agropyron spp. (typical grassland). Domi-
nant soil types are classified as alpine steppe soil,
gray desert and sandy soil, and brown pedocals.

Field sampling
We conducted this field sampling during July and
August in 2012 near the period of highest plant
aboveground biomass. We attempted to take the
plant and soil samples at the same period of
phenology, and therefore, we started to sample from
the west to the east along this transect that had a
decreasing trend of temperature in this direction.
A total of 61 sites with an interval of 50 ~100 km
were selected along the transect (Supplementary
Figure S1). According to our whole sampling regime,
there were only four sites in the alpine grassland
because it had narrow spatial distribution relative to
other habitat types across the transect. The minimum
distance of sampling locations from human habita-
tions was approximately 60 km, and each sampling
site was representative of the local natural vegeta-
tion. Ten 1m×1m quadrats were selected at each
sampling site. Samples in bags that were broken
were abandoned for use. Finally, we used only 545
samples for this study, with each site having 8–10
samples. In each quadrat, samples of living above-
ground plants were clipped, sorted into species and
stored in paper bags for biomass measurement and
plant richness estimation (Supplementary Table S1).
Soil samples per quadrat were collected from five
soil cores (2.5 cm diameter × 10 cm depth) of the
upper 10 cm of soil. Four soil cores were collected
from four corners 10 cm away from the border line of
the quadrat and one core was collected from the
center of that quadrat. The five cores consisting of
the soils from four corners and center of each quadrat
were then mixed thoroughly. Composite soils were
sieved through a 2.0 mm mesh to remove roots and
rocks, homogenized by hand and separated into two
parts: one was preserved for subsequent character-
ization of soil chemistry and the other was placed
into a sterile plastic bag and immediately stored at
−40 °C for later DNA extraction.

Climate data and geographic distance
Climate attributes, including the mean annual pre-
cipitation and mean annual temperature of each
sampling site were obtained from the WorldClim
global climate data set (Hijmans et al., 2005). Extracted
data were processed in ArcGIS version 9.3 using
Spatial Analysis tool (ESRI, Redlands, CA, USA).
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At each site, spatial geographical coordinates and
elevations were recorded by a handheld GPS (eTrex
Venture, Garmin, Olathe, KS, USA). The pairwise
geographic distance between sites was calculated
using the Imap package in R v.3.1.0 according to the
GPS coordinates of each site. We then created a
geographic distance matrix corresponding to sites
distributed in each habitat type.

Soil physicochemical analysis
Total organic carbon and total nitrogen for soil
samples from each quadrat were determined using
wet oxidation and a modified Kjeldahl procedure
(Wang et al., 2014). Total P was measured by
colorimetric analysis with ammonium molybdate
and persulfate oxidation (Kuo, 1996). Soil pH was
measured after creating a 1: 2.5 (volume) fresh soil to
water slurry. Soil moisture was determined gravime-
trically after drying in an oven at 105 °C for 12 h.

Illumina sequencing analysis of 16S rRNA gene
amplicons
Microbial genomic DNA was extracted from 0.5 g of
well-mixed soil for each sample using the MoBio
PowerSoil DNA isolation kit (MoBio Laboratories,
Carlsbad, CA, USA) according to the manufacturer’s
protocol. The quality of the extracted DNA was
assessed based on 260/280 nm and 260/230 nm
absorbance ratios obtained using a NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technolo-
gies Inc., Wilmington, DE, USA). The final DNA
concentration was quantified using a PicoGreen (Life
Technologies, Grand Island, NY, USA) assay (Ahn
et al., 1996) with a FLUOstar Optima (BMG Labtech,
Jena, Germany), stored at −20 °C until use.

To determine the soil bacterial community com-
position and diversity in each soil sample, an
amplicon survey of a portion of the 16S rRNA gene
was performed. The primers 515F (5′-GTGCCA
GCMGCCGCGGTAA-3′) and 806R (5′-GGACTACH
VGGGTWTCTAAT-3′) targeting the V4 hypervari-
able regions of microbial 16S rRNA gene were
selected (Caporaso et al., 2012). Both primers were
tagged with adaptor, pad and linker sequences. The
reverse primer contains a barcode sequence (12 mer)
unique to each sample for pooling of multiple
samples in one run of Miseq sequencing. All primers
were synthesized by Eurofins/MWG (Huntsville,
AL, USA).

PCR amplification was performed in triplicate
using a Gene Amp PCR-System 9700 (Applied
Biosystems, Foster City, CA, USA) in a 25 μl reaction
volume, which contained 2.5 μl of 10 × PCR buffer II,
0.5 unit of AccuPrime Taq DNA Polymerase High
Fidelity (Invitrogen, Carlsbad, CA, USA), 0.4 μM of
each primer and 10 ng of purified template DNA.
Thermal cycling conditions were as follows: an
initial denaturation at 94 °C for 1min followed by
30 cycles at 94 °C for 20 s, 53 °C for 25 s, 68 °C for

45 s and ended with a final extension step at 68 °C
for 10min.

Following amplification, 2 μl of the PCR product
was used for agarose gel (1%) detection. The
triplicate PCR reactions for each sample were
combined and quantified with PicoGreen. From each
sample, 200 ng of the PCR product was collected and
pooled together with other samples in equimolar
concentrations for one sequencing run. Primer and
primer dimers were then separated out by electro-
phoresis on a 1% agarose gel. The pooled mixture
was finally purified and recovered with a QIAquick
gel extraction kit (QIAGEN Sciences, Valencia, CA,
USA) and requantified with PicoGreen. Sequencing
was conducted on an Illumina Miseq sequencer at
the Institute for Environmental Genomics, University
of Oklahoma.

Processing of sequencing data
After assigning each sequence to its sample accord-
ing to its barcode, the sequences were quality
trimmed using Btrim with threshold of average
quality scores higher than 30 over a 5 bp window
size and a minimum length of 100 bp (Kong, 2011).
Paired-end reads with at least a 50 bp overlap and
o5% mismatches were joined using FLASH v1.2.5
(Magoc and Salzberg, 2011). After removing the
sequences with ambiguous bases, the sequences with
lengths between 245 and 258 bp were subjected to
chimera removal by U-Chime (Edgar et al., 2011)
against 16S ‘Gold’ database (reference database in
the Broad Microbiome Utilities, version microbio-
meutil-r20110519). Sequences were clustered into
operational taxonomic units (OTUs) using the 97
and 99% sequence similarity threshold with
UPARSE, respectively (Edgar, 2013) and singleton
OTUs (with only one read) were removed. Final
OTUs were generated based on the clustering results,
and taxonomic annotations were assigned to each
OTU’s representative sequence by the Ribosomal
Database Project (RDP) 16S Classifier (Wang et al.,
2007). To correct for sampling effort (number of
analyzed sequences per sample), the samples were
rarefied at 11 612 sequences for the 97% resolution,
and 19 992 sequences for the 99% resolution per
sample for subsequent bacterial community analysis
(Supplementary Figure S2). The above-mentioned
steps were performed using an in-house pipeline that
was built on the Galaxy platform at the Institute for
Environmental Genomics, University of Oklahoma
(http://zhoulab5.rccc.ou.edu:8080/).

Statistical analysis
We created four pairwise subsets of samples
corresponding to the categorization of each habitat
type. Each subset included matrices of the pairwise
taxonomic distance (Bray–Curtis) and geographical
distance that were constructed using the program R.
The composite environmental distance matrix was
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generated with a normalized combination of the
variables selected by the BioEnv (Clarke and
Ainsworth, 1993). It is widely accepted that environ-
mental variables usually covary with the changes of
geographic distance. To disentangle their separate
influences on the community composition, we used
partial Mantel tests with 9999 permutations within
the vegan R package (Oksanen et al., 2013) to
examine the correlations between bacterial commu-
nity similarity and geographic distance (Spearman
correlation) while controlling for environmental
distance, and between bacterial community similar-
ity and environmental distance (Spearman correla-
tion) while controlling for geographic distance in
each subset (Martiny et al., 2006).

Patterns of community dissimilarity among
samples were determined by nonmetric multi-
dimensional scaling (Bray–Curtis distance, two
dimensions; Kruskal, 1964). A dissimilarity test of
the bacterial community composition was performed
using nonparametric multivariate statistical tests and
analysis of similarities (999 permutations; Clarke
and Ainsworth, 1993). Both nonmetric multidimen-
sional scaling and analysis of similarities were
performed in the R software package using the vegan
package. To investigate the differences of the
bacterial taxonomic composition in different habitat
types, we chose 24 dominant genera based on the
taxonomic abundance data (average abundance 450
across all soil samples). Multivariate data analysis
was then conducted with FactoMineR R package
(Lê et al., 2008). The methods implemented in the
package are conceptually similar with classical
multivariate data analysis like principal component
analysis or correspondence analysis, but this pack-
age can take into account different types of variables
(quantitative or categorical) and different types of
structure on the data (a partition on the variables and
individuals, and a hierarchy on the variables). The
graphical outputs including variables factor map and
individuals factor map can thus display clearer
distribution of the dominant bacterial taxa across
different habitats than using the traditional principal
component analysis method. To further exhibit the
variation of the relative abundance of dominant
bacterial genera across different habitats, we selected
12 most abundant genera based on the taxonomic
abundance data and plotted all samples correspond-
ing to each habitat with ggplot2 R package. Statistical
analyses (one-way analysis of variance, Po0.05)
were performed to test significance of group differ-
ences among the four habitat types.

To investigate the spatial structure of the habitats,
integrated soil physicochemical parameters (total
organic carbon, total nitrogen, TP, C/N ratio, N/P
ratio, soil pH and moisture) and plant data (plant
richness and aboveground net primary productivity)
in each habitat were analyzed respectively using
semivariograms (Rossi et al., 1992). We first con-
verted the coordinate of longitude and latitude to
UTM (Universal Transverse Mercartor Grid System)

by setting the EPSG to 32748 for WGS 84, Northern
Hemisphere with the rdgal R package. We then
transformed environmental variables into vectors by
principal components analysis. We only chose the
first principal components for analyzing semivario-
grams, which explained 62.67 and 99.71% of
variation in soil physicochemical parameters and
plant data, respectively. Semivariograms for soil
chemistry PC1 and plant PC1 were calculated using
the geoR package in R and the appropriate model
function was fit to the semivariograms. We found
evident anisotropy in the directional semivariograms
for both the soil chemistry PC1 and plant PC1.
Therefore, models for the semivariograms were fitted
using linear least-squares regression analysis. Gen-
erally, the nugget semivariance expressed as percen-
tage of the total semivariance enables comparison of
the relative nugget effect among soil properties
(Trangmar et al., 1985). We therefore used this ratio
to define distinct classes of spatial dependence for
the soil chemistry PC1 and plant PC1 as follows: if
the ratio was less than 25%, the variable had a strong
spatial dependent; if the ratio was between 25 and
75%, the variable had a moderate spatial depen-
dence; otherwise, the variable was considered ran-
dom (pure nugget effect; Cambardella et al., 1994).

The rate of distance–decay of the bacterial com-
munities was calculated as the slope of ordinary
least-squares regression on the relationship between
geographic distance (ln transformed) and community
similarity (ln transformed). The significance of the
relationship between community dissimilarity and
geographical distance in each grassland type was
assessed by using the Mantel test (Jackson and
Somer, 1989) for each data subset. To test whether
the slopes of the distance–decay curve (least squares)
at the four grassland types were significantly
different from zero or different from the slope of
the overall distance–decay curve, we used matrix
permutations to compare the slopes of each data
subset against slopes in the randomized data sets
based on 9999 permutations (Nekola and White,
1999). Owing to the scale dependence of distance–
decay relationship and the existence for the differ-
ences in spatial scales among the four different
habitats in our study, we chose two subsets of data
(OTUs defined at the 97% resolution) from desert,
desert grassland and typical grassland so as to
further test our hypothesis about habitat-specific
β-diversity patterns. For each data subset, there were
also only four neighboring sites that had similar
spatial scales with that in the alpine grassland. The
rate of distance–decay of the bacterial communities
and the significance test of such a relationship were
also analyzed using the same method as above
mentioned.

To determine the relative importance of
geographic and local environmental factors in
structuring bacterial communities, we conducted
multiple regression analysis using multiple regres-
sion on matrices (MRM) approach, which can offer

Habitat-specific patterns of bacterial β-diversity
X-B Wang et al

1349

The ISME Journal



advantages over the traditional partial Mantel
analysis to investigate linear, nonlinear or non-
parametric relationships between a multivariate
response distance matrix and any number of expla-
natory distance matrices (Legendre et al., 1994;
Lichstein, 2007). Because there was strong collinear-
ity among particular environmental factors, before
applying MRM, we used variable clustering to assess
the redundancy of the environmental variables by
the varclus procedure in the Hmisc R package. The
variables with higher correlation (Spearman’s
ρ240.7) were removed from the MRM analysis
(for example, total nitrogen, total organic carbon,
N/P, mean annual temperature; Supplementary
Figure S3), but kept all other variables in the models.
We then implemented a matrix randomization
procedure with standardized predictor variables
using ecodist R package (Goslee and Urban, 2007).
To account for zero similarity values, bacterial
community similarity (1 minus Bray–Curtis dis-
tance) was ln transformed and geographic distance
was ln (x+1) transformed (Green et al., 2004; Talbot
et al., 2014). To reduce the effect of spurious
relationships between variables, we ran the MRM
test twice. The first run was to remove the non-
significant variables; we then reran the tests. We
reported the model results from this second run.

Results

Across all the samples, we identified a total of
6 433 048 and 12 417 313 high-quality bacterial
sequences, which were grouped into 30 792 and
124 024 OTUs using the 97 and 99% sequence
similarity cutoff, respectively. Desert soils showed
the lowest OTU richness (with an average of
1747± 46 OTUs) compared with that in the alpine
grassland (with an average of 1911± 27), desert
grassland (with an average of 2259± 14) and typical
grassland (with an average of 2335± 15) at the
97% resolution (Supplementary Table S2). Pairwise
community similarity between the samples was
calculated based on the abundance of each OTU
(defined at the 97% identity) using a rarefied
Bray–Curtis index, which was highly correlated with
the incidence-based Jaccard index (Mantel test:
r=0.968, P=0.001).

The overall pattern of community composition
across the transect is delineated on the first two
coordinates of the nonmetric multidimensional scal-
ing ordination based on the Bray–Curtis dissimilarity
index. A distinctly different pattern was both
observed among samples between groups for the
97 and 99% sequence identity (Supplementary
Figure S4). This result was confirmed by the
dissimilarity analysis of community composition,
which showed that the bacterial community struc-
tures were significantly different (analysis of simila-
rities: R=0.268 and 0.332, Po0.001, respectively).
Within a single habitat (for example, desert grassland

or typical grassland), the close clustering of samples
indicated that there was similar community compo-
sition, whereas strong compositional variability was
found among the desert samples (Supplementary
Table S3).

Community similarity versus geographic distance
for each pairwise set of samples clearly displayed a
significant distance–decay relationship for bacterial
communities (at both the 97 and 99% resolutions)
(Figure 1 and Supplementary Figure S5). However,
the slopes of distance–decay that were estimated by
linear regression models varied across different
habitats. The slope in the alpine grassland was
significantly steeper than those in the desert (slope =
−0.017, Po0.001), desert grassland (slope =− 0.014,
Po0.001) and typical grassland (slope =− 0.017,
Po0.001; Supplementary Table S4). Compared with
each habitat, the slope of the distance–decay curve
over whole transect was highest (slope =− 0.046),
which was similar to that of the alpine grassland
(slope =− 0.041). In addition, overall lower similarity
(average similarity = 0.436) in bacterial community
composition was found in the desert. We also found
similar among-habitats differences of the distance–
decay slopes for four dominant taxonomic groups
(Actinobacteria, Acidobacteria, Alphaproteobacteria
and Verrucomicrobia; Supplementary Figure S6,
Supplementary Table S5). Although the estimated
slopes for all sequences at the 99% resolution were
not significantly different from those estimated at the
97%, the intercept (t=11.70, Po0.001) and average
compositional similarity (t=2.69, P=0.05) at the
99% resolution were significantly lower than that of
at the 97% resolution across all the habitats.
Furthermore, the slopes of the distance–decay curve
estimated using a couple of subset data from
desert (slope =− 0.014 and − 0.016, Po0.0001,
respectively), desert grassland (slope =− 0.014 and
−0.010, Po0.0001, respectively) and typical grass-
land (slope =− 0.017 and − 0.012, Po0.0001, respec-
tively), which shared the similar spatial scales with
the alpine grassland was similar to those estimated
across the entire scales of the three habitats
(Supplementary Table S6).

The soil chemistry PC1 and plant PC1 in different
habitats displayed difference in their spatial depen-
dence as determined by linear semivariograms
(Supplementary Figure S7, Supplementary Table S7).
Semivariance calculated from the soil chemistry PC1
and plant PC1 significantly increased with increasing
distance lags in the alpine grassland (R=0.655 and
0.840, Po0.001, respectively), desert grassland
(R=0.479 and 0.305, Po0.001, respectively) and
typical grassland (R=0.365 and 0.224, Po0.001,
respectively), and showed strong (nugget, o25%) or
moderate (nugget, 25B75%) spatial dependence for
environmental variables in these habitats. However,
semivariance for both environmental vectors in the
desert showed completely random changes with
increasing lags (P40.05), and thus the environmental
variables were not spatially autocorrelated.
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Figure 1 Distance–decay curves of similarity for the bacterial communities (OTUs defined at the 97% sequence identity). The red lines
denote the ordinary least squares linear regression across all samples in each habitat and the whole transect: (a) alpine grassland,
(b) desert, (c) desert grassland, (d) typical grassland and (e) the whole transect. Statistics are derived from regression analysis
(Supplementary Table S4). Asterisks represent significance of correlation (***Po0.0001).
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Across all the habitats, both environmental factors
and geographic distance significantly influenced
bacterial β-diversity (Table 1). Partial Mantel tests
revealed that the similarity in bacterial community
composition among samples (at both the 97% and
99% resolutions) was strongly correlated with
environmental distance (ρ=−0.295 and − 0.333,
P=0.0001, respectively) and geographic distance
(ρ=−0.289 and − 0.305, Po0.001, respectively).
Within each habitat type except the desert, bacterial
community similarity was highly correlated with
environmental distance, but was not or just weakly
correlated with geographic distance for each pair-
wise set of samples. In contrast, community similar-
ity was strongly correlated with geographic distance
in the desert (ρ=− 0.140 and − 0.183, P=0.0001,
respectively).

MRM was used to further identify the relative
contributions of environmental factors versus geo-
graphic distance to bacterial community similarity
(at both the 97 and 99% resolutions; Table 2).
A large and significant proportion of the variability
in bacterial community similarity can be explained
by the MRM model in most habitat types except
desert. In the alpine grassland, the MRM model
explained up to 75% of the variability in community
similarity (Po0.001), with soil moisture and plant
species richness being the most important variables
explaining community similarity (partial regression
coefficient b=0.40 and 0.23, respectively, Po0.001).
In contrast, only 5% of the variability in community
similarity in the desert was explained by the MRM
model (Po0.001), with geographic distance showing
a sole effect on community similarity (b=0.11,
Po0.001). In the typical grassland, soil pH and TP
contributed the larger partial regression coefficient
(b=0.10 and 0.06, Po0.001, respectively), with other
factors such as geographic distance, mean annual
precipitation, altitude and plant species richness
contributing to smaller but significant partial regres-
sion coefficient (b=0.01–0.02, Po0.01). Over the
whole transect, mean annual precipitation and
geographic distance showed a strong effect on
community similarity (b=0.41 and 0.12, respec-
tively, Po0.001). Similar results were found when
we used a taxon resolution of 99% sequence
similarity.

The distribution of dominant bacterial genera in
the four different habitats showed that GP4, GP6,
GP7, Gemmatimonas and so on were dominant in
the alpine grassland, Aciditerrimonas, Blastococcus,
Sphingomonas and so on were dominant in the
desert, Fervidicoccus, Solirubrobacter, Rubrobacter
and so on were dominant in the desert grassland, and
GP4, GP6, Bradyrhizobium and so on were dominant
in the typical grassland (Figure 2). We further
investigated the changes of the relative abundance
of dominant bacterial genera across different habitats
(Figure 3), which all showed significant group
differences among the four habitat types (one-way
analysis of variance, Po0.001). T
ab
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Discussion

We found robust evidence for distance–decay rela-
tionships of bacterial communities across each
habitat, and most importantly, such a pattern of
β-diversity was habitat specific. The data sets from
those of the four dominant taxonomic groups further
verified our findings (Supplementary Figure S6,
Supplementary Table S5). We noted that the slopes
of the distance–decay relationship (z-values) in our
study ranged from 0.01 to 0.05, which is remarkably
similar to those previously reported for bacteria
(Horner-Devine et al., 2004). But the estimated slope
z for bacteria reported here was much lower than
that for macroorganisms (from B0.1 to 0.5), this may

arise from the smaller body sizes of microbes and
their higher dispersal rate relative to larger organ-
isms (Woodcock et al., 2006). A steep distance–
decay slope in the alpine grassland suggests that
the turnover of bacterial communities within which
may be higher than that in other habitats. Although
such a difference of distance–decay slope among
habitat types might result from the different spatial
scales among habitats due to scale dependence of
distance decay (Nekola and White, 1999), the
subsets of data in other three habitats, which
covered the similar spatial scales with alpine
grassland provide further evidence for the existence
of habitat-specific patterns, independent of spatial
scales (Supplementary Table S6). It is worth

Table 2 Results of the multiple regression analysis on matrices analysis (MRM) for each of the four habitats and the whole transect in the
drylands of northern China

Alpine grassland Desert Desert grassland Typical grassland The whole transect
R2 = 0.75 (0.78)

Po0.001
R2 = 0.05 (0.09)

Po0.001
R2 = 0.34 (0.39)

Po0.001
R2 = 0.46 (0.43)

Po0.001
R2 = 0.34 (0.40)

Po0.001

Log(Geographic distance (km)+1) NS (NS) 0.11*** (0.14***) 0.01* (NS) 0.01 (0.01) 0.12*** (0.19***)
MAP NS (NS) NS (NS) 0.02*** (0.03**) 0.02*** (0.02**) 0.41*** (0.44***)
MAT ND (NS) ND (ND) ND (ND) ND (ND) ND (ND)
Altitude NS (NS) ND (ND) NS (NS) 0.01* (NS) ND (ND)
Soil total P ND (ND) NS (NS) 0.03***(0.05***) 0.06*** (0.06***) 0.05* (0.06**)
C/N ratio ND (ND) NS (NS) 0.01 (NS) ND (ND) 0.08** (0.05**)
Soil pH ND (ND) NS (NS) 0.02** (0.03**) 0.10*** (0.08***) 0.07** (0.10***)
Soil moisture 0.40*** (0.54***) ND (ND) 0.02*** (0.02*) ND (ND) ND (ND)
Plant richness 0.23*** (0.35***) ND (ND) 0.02** (0.04***) 0.02 (0.01*) ND (ND)
ANPP ND (ND) NS (NS) ND (ND) ND (ND) ND (ND)

Abbreviations: ANPP, aboveground net primary productivity; MAP, mean annual precipitation; MAT, mean annual temperature; ND, not
determined (removed by the varclus results); NS, not significant.
The variation (R2) of ln community similarity (1 minus Bray–Curtis distance) that is explained by the remaining variables. The partial regression
coefficients (b) and associated P-values of the final model are reported from permutation test (nperm=9999) if its significance level is o0.05.
*P⩽ 0.01, **P⩽0.001 and ***P⩽0.0001.
In brackets, we indicate the corresponding values at the 99% resolution.

Figure 2 Variables and individuals graph in principal component analysis using PCA function in FactoMineR package. We used
taxonomic abundances data (OTUs defined at 97% sequence similarity) from 24 bacterial dominant genera (average abundance 450
across all soil samples) as quantitative variables, which were used to perform the PCA. Individuals were colored from the categorical
variables, habitat types: black, red, green and blue plots represent samples from alpine grassland, desert, desert grassland and typical
grassland, respectively. The percentage of variability explained by two dimensions was given: 22.56% for the first axis and 12.54% for the
second axis. PCA, principal component analysis.
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pointing out that we did not observe an increase in
slope z with increasing taxonomic resolution when
we estimated it using a taxon resolution of 99%
sequence similarity for both bacterial communities
and dominant taxonomic groups (Supplementary
Tables S4 and S5). This result is inconsistent with
that observed for macroorganisms (Harcourt, 1999),
possibly because of the differences of spatial scales
or different methods adopted to define ‘species’
among studies. Instead, the intercept and average
compositional similarity of the distance–decay
regression varied with taxonomic resolutions,
decreasing with increasing taxonomic resolution
for bacterial communities, suggesting the initial
dissimilarity of bacterial communities would pos-
sibly increase at finer resolutions.

Given the spatial heterogeneity in different habi-
tats, variation of distance–decay slopes may also
strongly relate to the variability of spatial structure
among habitats (Soininen et al., 2007). For example,
the spatial configuration and context (for example,
size or isolation of habitats) have important effects
on the resistance to the movement of organisms, and
therefore the dispersal abilities in different taxo-
nomic groups (Tuomisto et al., 2003). Our result of
linear semivariograms clearly showed spatial depen-
dence for environmental variables such as soil and
plant properties in the alpine grassland, desert
grassland and typical grassland (Supplementary
Figure S7, Supplementary Table S7). Meanwhile,
such a linear relationship probably reflects large-
scale continuous gradients over space (Ettema and

Figure 3 Variation of relative abundance of the dominant bacterial genera in soils across different habitats. Ag, alpine grassland; D,
desert; Dg, desert grassland; Tg, typical grassland. Points represent the samples in each habitat, and boxplot show quartile values for
ecah taxon.
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Wardle, 2002), which is to some extent in accor-
dance with our sampling schemes along this trans-
ect. All the sampling sites in each habitat were
located in a relatively homogenous landscape, with
few patches within these habitats. The result also
suggests that spatial patterns of soil microorganisms
observed in these habitats may be related to
environmental heterogeneity caused primarily by
soil and plant properties (Crist, 1998). In contrast, we
found no significant increases of semivariance with
increasing lags in the desert for both soil chemistry
PC1 and plant PC1, suggesting that the variation of
spatial structure at the sampling scales in this habitat
is completely random (Cambardella et al., 1994). In
this case, the spatially heterogeneous distributions of
soil microorganisms might be mainly governed by
stochastic events (for example, random changes in
taxa abundance) rather than by environmental
variables of spatially autocorrelated.

Our results showed that the relative importance of
environmental factors versus geographic distance to
community similarity also varied across different
habitats (Tables 1 and 2). The environmental factors
appear to have a sole effect on bacterial community
similarity in the alpine grassland (ρ=− 0.785 and
− 0.812, respectively). This finding was further
supported by the result of the MRM model, in which
variation in bacterial community similarity was well
explained by the environmental factors such as soil
moisture and plant species richness (R2 = 0.75 and
0.78, respectively). These results suggest that
the variation in community composition in this
habitat was probably driven by the spatial environ-
mental heterogeneity, as displayed by semivario-
grams, which showed strong spatial autocorrelation
for soil and plant properties (Supplementary
Figure S7, Supplementary Table S7). Therefore,
selection is likely to have dominant roles in driving
bacterial β-diversity pattern in the alpine grassland.
The process of selection represents the differences
of relative fitness among taxa under surrounding
environmental pressures (Chesson, 2000). It will
differentiate microbial composition among locations,
and thus produce a significant distance–decay
relationship (Figure 1a). In this case, the composi-
tional variation over space will become stronger with
more environmental differences, which tends to
strengthen such a relationship (that is, steepen the
slope of the distance–decay curve). This is
exactly coincident with the result of distance–
decay relationship in this habitat, in which the
estimated distance–decay slope was ~ 2.5 times
higher than those in other habitats (Supplementary
Tables S4 and S5).

Bacterial community similarity was weakly related
to environment distance in the desert (ρ=− 0.099 and
− 0.074, respectively), and was only influenced by
the geographic distance according to the results of
MRM model (Tables 1 and 2). One possible explana-
tion is that we may have missed some spatially
autocorrelated abiotic or biotic factors that strongly

affect bacterial community composition (Martiny
et al., 2011). The result of semivariograms in the
desert also showed no spatial autocorrelation at
sampling scales for measured environmental vari-
ables (Supplementary Figure S7, Supplementary
Table S7). Actually, over such a broad-scale field
survey, addressing the effect of all potentially
important environmental variables is impractical,
as the parameters that we measured only explained
o10% of the variability in community similarity.
Another possible explanation is that inherent
stochastic processes such as drift and dispersal
limitation may have a much greater role in driving
bacterial β-diversity pattern in the desert (Legendre
et al., 2009). Sole influences of geographic distance
on the community composition suggest that bacterial
dispersal in this area was limited probably because
very few plants and animals can survive in such
harsh environmental conditions, which thus reduce
a chance for passive dispersal of microorganisms
through their transportation. With a consequence of
restricted dispersal, chance events would likely
produce more compositionally similar communities
between nearby locations than between those further
apart. Thus, this spatial variation in composition
leads to a negative relationship between community
similarity and geographic distance (Morlon et al.,
2008). Indeed, we found a significant distance–decay
relationship for bacterial communities in this
habitat (Figure 1 and Supplementary Figure S5).
Furthermore, the height of the distance–decay curve
in the desert was distinctly low (Figure 1,
Supplementary Table S4). This result was consistent
with that in the nonmetric multidimensional scaling
analysis, implying great variability in the initial
dissimilarity of bacterial communities.

There was no evidence that dispersal limitation
strongly influenced the β-diversity of bacterial com-
munities in the desert grassland and typical grass-
land owing to lack of the effect of geographic
distance on the community similarity at both
habitats (Tables 1 and 2). In addition, strong effects
of environment on the bacterial community compo-
sition were found in most habitats, indicating that
selection may have a prominent role in shaping
microbial biogeographic patterns in drylands. This is
consistent with many previous studies which have
shown that environmental factors generally interact
with taxa traits to determine which and how many
taxa occur in different areas (Lawton, 1999; Hollister
et al., 2010). In fact, the abundance and distribution
of dominant taxonomic groups varied across habitats
(Figures 2 and 3). Given the possible differences of
biotic and abiotic characteristics among different
habitats, the distribution of bacterial taxa structured
by habitats should be associated with their ecological
characteristics such as physiological capabilities or
habitat preferences (Fierer et al., 2007; Pointing
et al., 2009).

It is a challenge for ecologists and biogeographers
to uncover and evaluate the processes that create and
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maintain the observed patterns in microbial diver-
sity. It is also difficult to disentangle the relative
importance of ecological processes by only analyzing
distance–decay patterns. However, our study repre-
sents an important attempt to investigate microbial
diversity patterns with a unique large-scale transect
survey across continuous habitat types in the dry-
lands and importantly, understand its intricate
mechanism with basic processes in theoretical
ecological models for macroorganisms.
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