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Abstract: 33 
Tropical smallholder agriculture supports the livelihoods of over 900 million of the world’s 34 
poorest people. This form of agriculture is undergoing rapid transformation in nutrient cycling 35 
pathways as international development efforts strongly promote greater use of mineral fertilizers 36 
to increase crop yields. These changes in nutrient availability may alter the composition of 37 
microbial communities with consequences for rates of biogeochemical processes that control 38 
nutrient losses to the environment. Ecological theory suggests that altered microbial diversity 39 
will strongly influence processes performed by relatively few microbial taxa, such as 40 
denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether 41 
this theory helps predict nutrient losses from agriculture depends on the relative effects of 42 
microbial community change and increased nutrient availability on ecosystem processes. We 43 
find that mineral and organic nutrient addition to smallholder farms in Kenya alters the 44 
taxonomic and functional diversity of soil microbes. However, we find that the direct effects of 45 
farm management on both denitrification and carbon mineralization are greater than indirect 46 
effects through changes in the taxonomic and functional diversity of microbial communities. 47 
Changes in functional diversity are strongly coupled to changes in specific functional genes 48 
involved in denitrification, suggesting that it is the expression, rather than abundance, of key 49 
functional genes that can serve as an indicator of ecosystem process rates. Our results thus 50 
suggest that widely used broad summary statistics of microbial diversity based on DNA may be 51 
inappropriate for linking microbial communities to ecosystem processes in certain applied 52 
settings. Our results also raise doubts about the relative control of microbial composition 53 
compared to direct effects of management on nutrient losses in applied settings such as tropical 54 
agriculture.  55 
 56 
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1. Introduction 60 
Agricultural management, such as mineral nutrient addition, can lead to marked changes in the 61 
taxonomic composition of soil microbial communities (Ramirez et al., 2010; Fierer et al., 2011; 62 
Ramirez et al., 2012; Wood et al., in revision). The pairing of mineral and organic nutrient 63 
addition to agriculture can significantly impact the ability of soil microbial communities to 64 
catabolize a range of carbon (C) substrates as well as affect the abundance of microbial 65 
functional genes involved in multiple aspects of C, nitrogen (N), and phosphorus (P) cycling 66 
(Wood et al., in revision). Some of the microbially driven processes associated with these 67 
changes in functional capacity, such as denitrification and decomposition, determine the 68 
retention and loss of nutrients in ecosystems and are thus important to managing agriculture for 69 
crop production while minimizing nutrient losses to the environment (Vitousek et al., 2009). 70 
There is thus keen interest in whether changes in microbial community composition can directly 71 
impact rates of ecosystem processes (e.g. Wessén et al., 2011; Wallenstein and Hall, 2012; 72 
Philippot et al., 2013; van der Heijden and Wagg, 2013; Krause et al., 2014). 73 
 74 
Certain ecosystem processes are likely to be more sensitive to changes in microbial community 75 
composition than others. Narrow processes are most likely to be affected by changes in 76 
community composition because they require a specific physiological pathway and/or are carried 77 
out by a phylogenetically clustered group of organisms (Schimel and Schaeffer, 2012). Thus, 78 
processes can be either physiologically narrow, phylogenetically narrow, or both. In this 79 
manuscript we use the term “narrow” to refer to physiologically narrow processes that require 80 
specific physiological pathways, regardless of their distribution in the microbial phylogeny. For 81 
instance, we refer to denitrification as a narrow process because it requires particular genes that 82 
code for enzymes capable of reducing various forms of nitrogen. Because a relatively small 83 
proportion of microorganisms carry these genes, changes in community composition that lead to 84 
a shift in the relative abundance of denitrifiers—or changes in the abundances of the relevant 85 
functional genes—should have significant impacts on rates of denitrification (Pett-Ridge and 86 
Firestone, 2005; Philippot et al., 2013; Powell et al., 2015). Mineralization of soil C to CO2, by 87 
contrast, is a broad process because the ability to mineralize and respire C substrates is relatively 88 
simple and shared by many microbial taxa (Schimel and Schaeffer, 2012). We thus expect that 89 
carbon mineralization would not respond strongly to changes in the composition of microbial 90 
communities.  91 
 92 
Whether this framework of broad and narrow processes helps predict nutrient losses from 93 
agriculture depends on the relative importance of the multiple potential drivers of ecosystem 94 
process rates, including microbial community composition, nutrient availability, and soil and 95 
environmental properties. Though several studies have found support for microbial influence on 96 
narrow processes, such as denitrification, such studies often focus on identifying whether 97 
microbial community composition is related to ecosystem processes, but stop short of 98 
quantifying the relative contribution of the multiple controls on ecosystem processes (e.g., 99 
Philippot et al., 2013). Understanding the importance of biodiversity requires assessing the 100 
influence of composition relative to other biotic and abiotic controls (Laliberté and Tylianakis, 101 
2012; Bradford et al., 2014). 102 
 103 
Following theory (Schimel, 1995; Schimel and Schaeffer, 2012), we hypothesize that changes in 104 
microbial diversity will have a stronger effect on denitrification than will the direct effect of 105 
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nutrient addition—measured as both N addition and the inclusion of seasonal legume rotations 106 
(henceforth agroforestry) to increase soil C—if changes in diversity correspond with changes in 107 
the relative abundance of denitrifying taxa and the abundances of functional genes involved in 108 
denitrification. Because C mineralization is a broad process, we expect that nutrient addition will 109 
have a stronger effect on process rates than changes in the microbial community. 110 
  111 
2. Material and methods 112 
2.1 Site selection 113 
We examine our hypotheses on 24 smallholder farms in western Kenya participating in the 114 
Millennium Villages Project (MVP) site in Sauri, Kenya (Figure 1; Wood et al., in revision). The 115 
center of the study area is located at 0°06’04.88 N, 34°30’40.12 E at an elevation of 1450 m. The 116 
mean annual temperature and precipitation for the study region are 24°C and 1800 mm, 117 
respectively. Annual precipitation is distributed bi-modally with 1120 mm in a long rainy season 118 
from March to June and 710 mm in a short rainy season from September to December. The soils 119 
are classified as Oxisols and are well drained sandy clay loams (on average 53.75% sand, 120 
12.59% silt, 33.54% clay) with a mean pH of 5.45 and C:N of 11.52 (0-20 cm). The study zone 121 
was originally part of the moist broadleaf forest area in eastern and central Africa, but is now a 122 
mixed-maize agricultural system, with most farmers cultivating maize in both the long and short 123 
rainy seasons. Some farmers, however, replace the short rain maize crop with a seasonal legume 124 
rotation that fixes nitrogen and builds soil organic matter. 125 
 126 
The MVP was designed to meet the Millennium Development Goals at the village scale in Sub-127 
Saharan Africa and includes an agricultural component that focuses on increasing crop yields 128 
through mineral and organic nutrient addition to redress negative soil nutrient balances (Sanchez 129 
et al., 2007). This is primarily achieved by subsidizing mineral fertilizers (primarily 130 
diammonium phosphate and urea). Farmers are also trained in seasonal legume rotations to fix 131 
nitrogen and build soil organic matter. In Sauri, rotational legume trainings have been promoted 132 
since the early 1990s (Kiptot et al., 2007) and fertilizer subsidy programs were active from 2005-133 
2008. 134 
 135 
We selected farms to participate in the study based on two years of household surveys. We 136 
determined nutrient inputs and outputs for each of these farms through a combination of 137 
interviews, on-farm crop harvests, and biomass estimations. Farms were classified into three 138 
categories: low fertilizer, high fertilizer, and high fertilizer + agroforestry (specifically, seasonal 139 
legume rotations). Low fertilizer farms have applied less than 10 kg mineral N ha-1 y-1 since 140 
2005; high fertilizer farms have applied at least 60 kg N ha-1 y-1 over the same time period. High 141 
fertilizer + agroforestry farms (henceforth agroforestry) apply amounts of mineral N comparable 142 
to high fertilizer farms, but also use agroforestry techniques to build soil organic matter. These 143 
agroforestry techniques replace short-rain maize crops with fast-growing leguminous tree, shrub, 144 
or herbaceous species that are planted from seed and cut each year for organic inputs to crop 145 
fields. These techniques are referred to generally as agroforestry, though agroforestry is a general 146 
term that captures different practices not studied here (e.g., wind breaks, live fencing, etc.). Our 147 
results, therefore, apply to agroforestry strategies that seasonally incorporate legume rotations. 148 
 149 
We estimated the amount of N added to farms with farmer-reported data on the quantity of N 150 
added through mineral and organic sources (diammonium phosphate, urea, biological N2-151 
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fixation, and manure). For agroforestry farms, we also estimated the amount of N added through 152 
N2-fixation based on both literature-reported values and field-reported biomass estimates. To 153 
estimate the amount of N added through N2-fixation we collected data on legume species 154 
planted, original planting density, thinning practices, wood harvesting, and legume management. 155 
We used plant density to estimate the amount of aboveground biomass N for each species 156 
present and then used literature data on the percent of total N derived from biological N2-fixation 157 
for each species to calculate the amount of N derived from fixation (Gathumbi et al., 2002a; 158 
2002b; Ojiem et al., 2007). Because farmers tend to remove woody stems but incorporate fresh 159 
leaves, we removed the amount of N stored in woody biomass from this value to estimate the net 160 
N contribution from the legume species to the farm fields. We conservatively estimate that N2-161 
fixation contributed between 30 to 50 kg N ha-1 year-1 during the short rain fallow (Gathumbi et 162 
al., 2002), up to 30 kg of which may be due to the presence of Mucuna pruriens, an annual 163 
climbing legume (Ojiem et al., 2007). Planting densities, however, can vary widely from year-to-164 
year with low-density years being as low as an order of magnitude less than those assumed in 165 
this estimate. Thus, depending on the year, actual fixation rates may be as low as 5 to 30 kg N ha-166 
1 short rainy season-1. We use the term ‘nutrient addition’ to refer to both N addition on low- and 167 
high-fertilizer and agroforestry farms as well as C addition through agroforestry. The final farms 168 
included in the study are distributed across the Sauri village cluster, but are clustered by 169 
treatment (Figure 1) on similar underlying soils.  170 
 171 
2.2 Sample collection and measurement 172 
Soil sampling was conducted in June 2012, in the middle of the long rains, two weeks after 173 
fertilizer application. On the farm fields, we took 15 2-cm diameter soil cores from the top 20 cm 174 
of bulk soil. Cores were taken at regular intervals throughout the entire farm field and 175 
homogenized and aggregated to a composite sample. At each core location we recorded 176 
temperature and volumetric soil moisture content using a soil thermometer and a HydroSense 177 
moisture probe (Campbell Scientific, Logan, UT, USA). We sieved soils to 2 mm and stored soil 178 
for DNA extraction at -20° C. Soils for DNA extraction were transported to the U.S. within one 179 
week of sampling. Subsamples of sieved field soil were stored at 4° C, transported to the U.S. 180 
within one week of sampling, and used to determine pH, gravimetric soil moisture, and water 181 
holding capacity. Gravimetric soil moisture and water holding capacity (after wetting soils to 182 
field capacity) were determined by drying soil at 105°C for 24 h. Soil pH was determined using a 183 
benchtop meter of a 1:1 slurry of soil:H2O by volume.  184 
 185 
A subsample of sieved soil was air-dried and used to determine total C and total N by 186 
combustion with an Elementar Vario Macro CNS analyzer. Total extractable P was assessed by 187 
combining a 5-g soil sample with 20 mL of Mehlich I extraction solution and shaking for 5 min 188 
followed by inductively coupled plasma spectrometry (Varian Vista MPX Radial ICP-OES). Soil 189 
nutrient assays were performed at the Auburn University Soil Testing Laboratory (AL, USA). 190 
Sieved, air-dried soil was also used to determine soil texture using the hydrometer method that 191 
uses sodium hexametaphosphate to complex the anions that bind to clay and silt particles into 192 
aggregates and suspend organic matter in solution. The density of the soil suspension is 193 
determined using a hydrometer after the sand particles settle and then after the silt particles settle 194 
(Bouyoucous method). 195 
 196 
Denitrification and C mineralization assays were performed in Kenya on fresh soils at the MVP 197 
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regional office in Kisumu, Kenya. Denitrification potential was estimated based on N2O 198 
emissions during denitrifying enzyme activity (DEA) assays (Smith and Tiedje, 1979). In a 125-199 
mL flask, we combined 20 g of soil with 20 mL of a 1-mM sucrose and 1-mM KNO3

- solution. 200 
We fit each flask with a #5 stopper, which was inserted with a 22G needle capped with a 201 
stopcock. We then brought the headspace of the flask to 10% acetylene (C2H2) concentration by 202 
volume (to inhibit the reduction of N2O to N2 via denitrification). At the beginning of the 203 
incubation we closed the stopcocks and placed the flasks onto a shaker table at 125 rpm; flasks 204 
were only removed from the table for sampling. We sampled the headspace five times: at 30, 205 
150, 210, and 270 min, by removing 30 mL of gas from the headspace and then replacing the 206 
volume of headspace that was removed with 30 mL of 10% C2H2 room air (fluxes were corrected 207 
for N2O molecules removed at each sampling period). DEA headspace samples were stored in 208 
pre-evacuated vials.  209 
 210 
Water-amended soil incubations were used to measure CO2 efflux and, thus, actual C 211 
mineralization. These incubations were performed identically to the DEA incubations with three 212 
exceptions: (1) 20 mL of deionized water was added to soil in place of the sucrose and KNO3

- 213 
solution; (2) no C2H2 was added to the headspace; and (3) headspace samples were taken at only 214 
two time points (240 and 360 min). We also sampled room air at the beginning and end of each 215 
incubation and included travel standards to accompany samples, in order to correct for any 216 
sample loss during transport and storage. DEA and CO2 headspace samples were transported to 217 
the U.S., where we determined N2O and CO2 concentrations by gas chromatography using a 218 
Shimadzu GC-14 GC with electron capture (for N2O) and thermal conductivity (for CO2) 219 
detectors at the Cary Institute (Millbrook, NY). 220 
 221 
To measure taxonomic diversity, we performed 16S rRNA amplicon sequencing of bacteria and 222 
archaea following standard protocols of the Earth Microbiome Project using an Illumina MiSeq 223 
instrument (www.earthmicrobiome.org/emp-standard-protocols/; Gilbert et al., 2010; Caporaso 224 
et al., 2012). Briefly, we extracted DNA using a MoBio PowerSoil 96-well extraction kit and we 225 
amplified the 16S rRNA V4 gene from bacterial and archaeal genomes using the primers 515F 226 
(forward) and 806R (reverse) (Caporaso et al., 2012). The 16S rRNA gene is a well-conserved 227 
gene in bacteria and thus captures evolutionary relationships among bacterial taxa. Quality 228 
filtering was performed by comparing input sequences with Phred scores (Q >= 20). Sequences 229 
shorter than 75% of the Phred score were discarded as well as sequences with ambiguous base 230 
call characters. All quality filtering and demultiplexing were performed using the 231 
split_libraries_fastq.py algorithm in QIIME and its associated default parameters 232 
(www.earthmicrobiome.org/emp-standard-protocols/; Caporaso et al., 2010). Sequence reads 233 
were were binned into operational taxonomic units (OTUs) at a 97% similarity threshold. OTUs 234 
were then compared to GenBank to identify bacterial lineages. A total of 3,462,835 bacterial 235 
sequences were generated across all samples, representing 29,195 OTUs. Sequence lengths 236 
averaged 150.63±2.93 per sample. Rarefaction was used to compare samples at depth of 40 237 
sequences per sample. We calculated taxonomic diversity as Shannon diversity (H’) of all OTUs. 238 
We calculated other diversity metrics, such as Faith’s PD, and found similar patterns. All data 239 
checks and processing were done using QIIME (Caporaso et al., 2010). 240 
 241 
To estimate microbial functional diversity, we measured the abundance of key functional genes 242 
using GeoChip 4.0 to analyze DNA samples that were extracted following the protocol for 243 
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taxonomic assessment. GeoChip is a functional gene array of bacteria, archaea, and fungi 244 
covering 401 gene categories involved in major biogeochemical and ecological processes, as 245 
previously described (He et al., 2007; Yang et al., 2013; Tu et al., 2014). GeoChip examines the 246 
abundance of thousands of functional gene variants simultaneously through a fluorescent 247 
procedure. DNA samples were labeled with a fluorescent dye and purified using a QIA quick 248 
purification kit (Qiagen, Valencia, CA, USA) following He et al. (2007) and Tu et al. (2014). 249 
DNA was then dried in a SpeedVac (ThermoSavant, Milford, MA, USA) and labeled DNA was 250 
resuspended in a hybridization solution before hybridization of DNA was carried out on a MAUI 251 
hybridization station (BioMicro, Salt Lake City, UT, USA). GeoChip microarrays were scanned 252 
by a NimbleGen MS200 scanner (Roche, Madison, WI, USA). Poor quality spots were removed 253 
when flagged as one or three by ImaGene (Arrayit, Sunnyvale, CA, USA) or with a signal-to-254 
noise ratio of less than 2.0. Signal-to-noise ratio indicates the amount of luminescence from the 255 
sample compared to background noise. Average signal-to-noise ratios are often greater than 50 256 
(He et al., 2007), so 2.0 represents high noise to signal. Processed data were subjected to the 257 
following steps: (i) normalize the signal intensity by dividing the signal intensity by the total 258 
intensity of the microarray followed by multiplying by a constant; (ii) transform by the natural 259 
logarithm; (iii) remove genes detected in only one out of three samples from the same treatment. 260 
Signal intensities were quantified and processed using a previously described data analysis 261 
procedure (He et al., 2007; Yang et al., 2013). We calculated functional diversity as Shannon 262 
diversity (H’) of the signal intensity for all of the genes reported from the array. We also 263 
analyzed the response of individual denitrification genes to changes in functional diversity. 264 
These include genes involved in nitrite reduction (nirK, nirS), nitrate reduction (narG), and nitric 265 
oxide reduction (norB). GeoChip also includes nosZ, which is involved in nitrous oxide 266 
reduction, but we do not analyze this gene because it is involved in a later stage of denitrification 267 
than represented by the denitrification potential assay. 268 
 269 
2.3. Data analysis 270 
We used structural equation models to simultaneously estimate each of the pathways among 271 
nutrient addition, soil and environmental properties (pH, texture, and moisture), microbial 272 
communities, and ecosystem processes while accounting for correlations between multiple 273 
response variables (Grace, 2006). Structural equation modeling is increasing used in ecology and 274 
environmental sciences to assess the relative impacts of multiple variables on each other and a 275 
set of response variables (Grace, 2006). This technique has been applied to a wide range of 276 
issues in ecology and environmental sciences (e.g., Byrnes et al., 2011; Flynn et al., 2011; 277 
Laliberté and Tylianakis, 2012). Relevant to our study, it was used by Colman and Schimel 278 
(2013) to determine the drivers of microbial respiration and N mineralization at continental 279 
scales.  280 
 281 
To test our hypotheses about the relative importance of nutrient addition and microbial 282 
composition, we first fitted models including both nutrient addition and microbial diversity 283 
variables. Soil pH was the only significant environmental control and was thus the only 284 
environmental variable retained in the final models. We then fitted models to optimize goodness-285 
of-fit and do not include variables that do not contribute strongly to model goodness-of-fit. 286 
Different models were fitted for each of the two response variables (denitrification potential and 287 
C mineralization). For each response variable, constrained (microbial + nutrient addition) and 288 
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unconstrained models were compared based on change in AIC values. The final, unconstrained 289 
model retained nutrient addition and pH, but did not include microbial diversity. 290 
 291 
We report standardized path estimates that allow for comparison of the relative magnitude of 292 
variables within the same model (Grace and Bollen, 2005). For model goodness-of-fit, we report 293 
X2 and root mean square error of approximation (RMSEA). These measures assess the similarity 294 
between the covariance matrix of the observed data and the covariance matrix implied by the 295 
specified model. A X2 P-value greater than 0.05 implies significant overlap between the observed 296 
and implied data, and thus adequate model fit. We report Sartorra-Bentler X2 correction factors 297 
to improve estimates based on violations of multivariate normality. Because the X2 test is based 298 
on large sample theory, we also report RMSEA, which is a goodness-of-fit measure weighted by 299 
sample size. We use an RMSEA value below 0.1 to represent good model fit because for sample 300 
sizes less than 50, the conventional RMSEA cut-off value of 0.05 is overly conservative (Chen et 301 
al. 2008). Individual paths were estimated using maximum likelihood and we considered paths to 302 
be significant at P < 0.05 and marginally significant at P < 0.10 (Hurlbert and Lombardi, 2009). 303 
Insignificant paths were excluded from models unless they significantly improved overall model 304 
fit, based on X2 and RMSEA values as well as assessment of modification indices (Grace, 2006). 305 
All models were fitted using the lavaan package in R (Rosseel, 2012). 306 
 307 
3. Results 308 
We hypothesized that changes in microbial diversity would have a stronger effect on 309 
denitrification than would the direct effect of nutrient addition if changes in diversity correspond 310 
with changes in the relative abundance of denitrifying taxa and/or the abundance of associated 311 
genes involved in denitrification. We also hypothesized that nutrient addition would be a 312 
stronger predictor of C mineralization, a broad process, than microbial diversity.  313 
 314 
We find that farm management—through N addition and agroforestry—impacts the taxonomic 315 
and functional diversity of soil microbial communities. Specifically, taxonomic diversity 316 
decreases by 2.40% from low-to-high N addition (Table 1), though this effect is weaker than the 317 
effect of pH, which is also associated with lower taxonomic diversity (Figure 2A, B). We did not 318 
find that these changes in taxonomic diversity were coupled with changes in the relative 319 
abundance of select groups of denitrifying taxa (Figure 3). Agroforestry was the strongest driver 320 
of functional diversity, which increased 1% between high fertilizer and agroforestry farms and 321 
2% between low fertilizer and agroforestry farms (Table 1; Figure 2A, B). We did find that 322 
greater functional diversity is significantly related to greater abundances of several genes 323 
involved in denitrification: nirK, nirS, norB, and narG (Figure 4). 324 
 325 
We did not, however, find that changes in taxonomic and functional diversity were related to 326 
rates of either denitrification or C mineralization. Instead, ecosystem process rates were most 327 
strongly linked to the direct effect of farm management. Denitrification decreased by 21.31% 328 
from low-to-high N and increased by 63.93% from low N to agroforestry (Table 1). The path 329 
estimate for agroforestry on denitrification (0.63) is three times greater than the coefficient for 330 
either taxonomic diversity (-0.24) or functional diversity (-0.18). The agroforestry coefficient is 331 
also twice the magnitude of the coefficient for N addition (-0.33). We find support for our 332 
hypothesis that C mineralization will be more influenced by nutrient addition than microbial 333 
community composition. C mineralization rates were 4.81% lower on high-vs.-low N farms and 334 
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22.12% greater under agroforestry (Table 1). The path coefficient for the effect of agroforestry 335 
on C mineralization (0.47) is more than twice as great as the coefficient for taxonomic diversity 336 
(-0.23) and N addition (0.16) and around five times the effect of functional diversity (-0.08).  337 
 338 
4. Discussion 339 
Our results reveal that shifts in microbial taxonomic and functional diversity due to farm 340 
management are not significantly related to either denitrification or C mineralization on 341 
smallholder farms in western Kenya. This finding supports our hypothesis that C mineralization 342 
would not be sensitive to changes in microbial communities because it is a broad process that can 343 
be carried out by many microbial taxa. However, we did not find support for our hypothesis that 344 
denitrification would be sensitive to community change because it is a narrow process carried out 345 
by relatively few taxa.  346 
 347 
This unexpected result may be explained by the fact that changes in taxonomic diversity were 348 
not coupled with decreases in the relative abundance of denitrifying taxa. Our hypothesis was 349 
built on the expectation that diversity would relate to denitrification rates if changes in diversity 350 
were paired with changes in the relative abundance of taxa able to carry out denitrification. 351 
Because denitrifying taxa are found widely through the microbial phylogeny, it is difficult to 352 
identify groups of taxa that are all denitrifiers. However, we found that groups that broadly 353 
contain denitrifiers do not change in relative abundance with changes in diversity. This finding 354 
may explain why taxonomic diversity was not a significant predictor of denitrification. 355 
 356 
We also expected that functional diversity would be a significant control on denitrification if 357 
changes in functional diversity were coupled with changes in the abundances of key denitrifying 358 
genes. We did find a strong coupling between our functional diversity metric (Shannon diversity 359 
of all functional genes from GeoChip) and the abundances of four particular genes key to 360 
denitrification: nirK, nirS, narG, and norB. Thus, our finding that functional diversity was not 361 
significantly related to rates of denitrification was unexpected. However, the finding fits with 362 
recent meta-analysis showing that microbial functional gene abundances are rarely strongly 363 
correlated with corresponding process rates (Rocca et al., 2014). Our lack of observed 364 
relationship between gene abundances and process rates may be explained by the fact that our 365 
measure of functional diversity is based on the presence of functional genes using DNA. Because 366 
DNA only indicates the presence of a gene, rather than whether that gene is expressed, our 367 
measure of functional diversity only represents a coarse picture of microbial functional capacity. 368 
Our results thus suggest that rates of denitrification are more strongly controlled by the 369 
expression of functional genes, rather than their overall abundance. This finding suggests that 370 
coarse measures of microbial communities based on DNA—whether taxonomic or functional—371 
may be insufficient to understanding the changes in the functional contributions of these 372 
communities under certain types of land management (Rocca et al., 2014).  373 
 374 
Though understanding when microbial communities should impact ecosystem process rates is 375 
well established, we show that actual changes in microbial communities observed in a tropical 376 
agroecosystem are not a strong predictor of denitrification rates because changes in microbial 377 
communities are relatively minor in magnitude. Our findings, however, do not invalidate the 378 
hypothesis that narrow processes are sensitive to community composition and broad processes 379 
are not, which has been supported in previous work (e.g., Philippot et al., 2013; Powell et al., 380 
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2015; Salles et al., 2012; Schimel and Schaeffer, 2012). Instead, our findings raise doubts about 381 
the relative importance of microbial community composition compared to direct effects of 382 
nutrient addition on nutrient losses in agricultural settings. This is because the magnitude of 383 
change in microbial diversity induced by land management was not large enough to significantly 384 
impact ecosystem process rates. As a result, the direct effect of farm management (rather than 385 
the indirect effect through changes in microbial communities) was the dominant control of both 386 
denitrification and C mineralization. Whether changes in microbial community composition 387 
translate into changes in rates of ecosystem processes controlled by soil microbes is of great 388 
interest in soil ecology (e.g., Torsvik and Øvreås, 2002; Philippot and Hallin, 2005; Van Der 389 
Heijden et al., 2008), but remains an ongoing debate (Schimel and Schaeffer, 2012). Our study is 390 
unique, however, in that few studies have connected changes in microbial communities to 391 
ecosystem process rates in a framework that assesses the relative importance of the multiple 392 
drivers of these ecosystem processes. 393 
 394 
Although we focus on smallholder farms in western Kenya, there is a widespread effort to 395 
increase crop yields across sub-Saharan Africa and in tropical smallholder agriculture more 396 
generally (Wiggins et al., 2010). Because seventy-five percent of the world’s 1.2 billion poorest 397 
people are engaged in smallholder, making up 500 million farms of less than 2 ha (Wiggins et 398 
al., 2010), our findings may help inform understanding of drivers of nutrient loss in tropical 399 
smallholder agriculture due to increased attention from international development organizations. 400 
 401 
It is becoming widely recognized that agricultural sustainability requires agricultural practices 402 
that maximize multiple ecosystem services while minimizing nutrient losses to the environment 403 
(Foley et al., 2011; Bommarco et al., 2013). This is particularly important in tropical ecosystems 404 
that are undergoing large-scale modifications of nutrient cycling pathways due to intense efforts 405 
by the international development community to increase fertilizer use by tropical smallholder 406 
farmers. Further work should focus on understanding how management-induced shifts in 407 
microbial communities impact not just potential nutrient loss, but the multiple ecosystem 408 
services provided by soil and how such understanding can be integrated into sustainable 409 
agricultural strategies.  410 
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Figure legends 548 
 549 
Figure 1. Maize production in western Kenya mainly occurs on smallholder farms of around 1 550 
hectare (A). Map (B) shows the study farms and their distribution across the Millennium 551 
Villages Project site area in western Kenya. Farm types are coded by color. 552 
 553 
Figure 2. Path diagrams for structural equation models of the relationship between farm 554 
management, microbial diversity, and (A) denitrification enzyme activity or (B) carbon 555 
mineralization. Models (A, B) show the relative effect of management and microbial diversity. 556 
Solid paths are statistically significant at p < 0.10. Dashed paths are insignificant, but were 557 
included for hypothesis testing or overall model fit. Line color represents effect direction (light 558 
green = positive, deep red = negative). Path widths are proportional to standardized regression 559 
coefficients, which are shown next to each path. Results and model statistics are in Table 2. 560 
 561 
Figure 3. Taxonomic diversity is not related to changes in the relative abundances of select 562 
denitrifying taxa. These groups do not represent all categories of denitrifying taxa and not all 563 
taxa within these categories are able to carry out denitrification. These groups were selected 564 
because they broadly represent evolutionary lineages that are capable of denitrification and had 565 
relatively high relative abundances in our samples. 566 
 567 
Figure 4. Functional diversity is positively correlated with changes in the abundances of specific 568 
genes involved in denitrification. These genes are involved in nitrite reduction (A: nirK, C: nirS), 569 
nitrate reduction (B: narG), and nitric oxide redunction (D: norB). We did not analyze nosZ 570 
because it is involved in a later stage of denitrification than included in our potential assay 571 
(nitrous oxide reduction).572 
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Tables 573 
 574 
Table 1. Means and standard deviation for variables included in structural equation models among the three categories of nutrient 575 
addition: low fertilizer, high fertilizer, and agroforestry. All soil properties are to a depth of 20 cm. Because of unbalanced design 576 
statistical comparisons between groups are not valid; instead the effect of Farm Type is represented by the path coefficients of 577 
Agroforestry and N Addition in the structural equation models. Further detail on changes in soil properties is presented in Wood et al. 578 
(in revision). 579 
 580 

Farm Type Denitrification C 
mineralization 

Taxonomic 
diversity 

Functional 
diversity Sand Silt Clay pH C N P 

  (ng N g dry soil-

1 h-1) 
(ug C g dry soil-

1 h-1) 
H' % log [H+]  % % ppm 

Low Fertilizer 0.61  
[0.49] 

1.04  
[0.24] 

10.02  
[0.31] 

8.88  
[0.07] 

53.76  
[5.64] 

14.40  
[7.61] 

31.74  
[6.34] 

5.41  
[0.35] 

1.83 
[0.20] 

0.20 
[0.03] 

16.63 
[9.15] 

High Fertilizer 0.48  
[0.09] 

0.99  
[0.41] 

9.78  
[0.45] 

8.99  
[0.08] 

56.00  
[3.13] 

9.71  
[5.91] 

34.15  
[6.57] 

5.06  
[0.37] 

1.95 
[0.16] 

0.22 
[0.03] 

19.13 
[10.30] 

Agroforestry 1.00  
[0.58] 

1.27  
[0.13] 

9.79  
[0.30] 

9.05  
[0.09] 

58.58  
[2.06] 

10.46  
[4.67] 

30.86  
[4.96] 

5.47  
[0.72] 

1.72 
[0.27] 

0.18 
[0.02] 

7.00 
[2.55] 

  581 
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Table 2. Model results and goodness of fit statistics for structural equation models. We report robust Χ2 statistics for model fit. P > 582 
0.05 indicates that estimated models have covariance matrices among variables that are not strongly different from observed values 583 
and that the model, therefore, adequately represents the data. Root mean square error of approximation (RMSEA) is a sample-size 584 
weighted measure of model fit. Values below 0.1 indicate good model fit.  585 
 586 

Denitrification   C Mineralization 

    
Standardized Estimate P   

    
Standardized Estimate P 

                  
Denitrification~       C mineralization~     
  Agroforestry 0.63 0.00     Agroforestry 0.47 0.00 
  Functional diversity -0.18 0.31     Functional diversity -0.08 0.72 
  N addition -0.33 0.10     N addition -0.01 0.95 
  Taxonomic diversity -0.24 0.18     Taxonomic diversity -0.23 0.35 
                  
Taxonomic diversity~       Taxonomic diversity~     
  N Addition -0.35 0.06     N Addition -0.31 0.18 
  pH -0.41 0.00     pH -0.40 0.01 
                  
Functional diversity~       Functional diversity~     
  Agroforestry 0.50 0.01     Agroforestry 0.48 0.03 
                  
  Structural Equation Model Metrics     Structural Equation Model Metrics 
    n 21       n 21 
    df 5       df 5 
    χ2 2.14       χ2 2.62 
    Pχ2 0.83       Pχ2 0.76 
    RMSEA 0.00       RMSEA 0.00 
    PRMSEA 0.85       PRMSEA 0.75 
                  
 587 
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