
lable at ScienceDirect

Water Research 104 (2016) 1e10
Contents lists avai
Water Research

journal homepage: www.elsevier .com/locate/watres
Long-term successional dynamics of microbial association networks in
anaerobic digestion processes

Linwei Wu a, Yunfeng Yang a, *, Si Chen b, Mengxin Zhao a, Zhenwei Zhu b, 1, Sihang Yang a,
Yuanyuan Qu c, Qiao Ma c, Zhili He d, Jizhong Zhou a, d, e, **, Qiang He b, f, ***

a State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
b Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
c Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian
University of Technology, Dalian 116024, China
d Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
e Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
f Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
a r t i c l e i n f o

Article history:
Received 12 April 2016
Received in revised form
12 July 2016
Accepted 29 July 2016
Available online 2 August 2016

Keywords:
Anaerobic digestion
Microbial interactions
Process stability
* Corresponding author.
** Corresponding author. State Key Joint Laboratory
and Pollution Control, School of Environment, Tsinghu
China.
*** Corresponding author. Department of Civil and
The University of Tennessee, Knoxville, TN 37996, US

E-mail addresses: yangyf@tsinghua.edu.cn (Y. Ya
qianghe@utk.edu (Q. He).

1 Current affiliation: Loyola University Chicago, Ins
tainability, USA.

http://dx.doi.org/10.1016/j.watres.2016.07.072
0043-1354/© 2016 Elsevier Ltd. All rights reserved.
a b s t r a c t

It is of great interest to elucidate underlying mechanisms to maintain stability of anaerobic digestion, an
important process in waste treatment. By operating triplicate anaerobic digesters continuously for two
years, we found that microbial community composition shifted over time despite stable process per-
formance. Using an association network analysis to evaluate microbial interactions, we detected a clear
successional pattern, which exhibited increasing modularity but decreasing connectivity among mi-
crobial populations. Phylogenetic diversity was the most important factor associated with network to-
pology, showing positive correlations with modularity but negative correlations with network
complexity, suggesting induced niche differentiation over time. Positive, but not negative, correlation
strength was significantly related (p < 0.05) to phylogeny. Furthermore, among populations exhibiting
consistent positive correlations across networks, close phylogenetic linkages were evident (e.g. Clos-
tridiales organisms). Clostridiales organisms were also identified as keystone populations in the networks
(i.e., they had large effects on other species), suggestive of an important role in maintaining process
stability. We conclude that microbial interaction dynamics of anaerobic digesters evolves over time
during stable process performance.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Widely applied in wastewater treatment and animal waste
management, anaerobic digestion is an important microbial pro-
cess in waste treatment and renewable energy recovery (Aydin
et al., 2015a; Talbot et al., 2008; Zhang et al., 2011). Therefore, it
of Environment Simulation
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is crucial to understand the ecology and function of microbial
communities involved in anaerobic digestion. With the develop-
ment and application of molecular microbial ecology techniques,
progress has recently been made to characterize microbial com-
munity compositions in anaerobic digestion processes (Narihiro
and Sekiguchi, 2007). For example, Aydin et al. (2015b, 2016)
showed that changes in microbial community composition led to
altered biodegradation capacity of organic waste and antibiotics
during anaerobic digestion, which linked microbial community
compositions to the function of anaerobic digesters. However, more
studies are needed that focus on the potential interactions among
microbial populations at the whole community level, which is ex-
pected to contribute more to system functions than individual
populations (Ma et al., 2016).

Microorganisms live within complicated networks through a
multitude of interactions, such as mutualism and competition
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(Faust and Raes, 2012). However, most of those interactions among
microbial populations cannot be directly observed, representing a
great challenge for studying population interactions in microbial
communities. Network analysis has been used to deduce potential
interactions among microbial populations by uncovering strong,
non-random associations (Faust et al., 2012). It has been applied to
examine complex microbial communities in various habitats, such
as oceans (Chow et al., 2014), soils (Barber�an et al., 2012), human
microbiomes (Faust et al., 2012) and bioreactors (Ju and Zhang,
2015). In addition, network analysis is capable of revealing
changes in the topology of microbial networks (Deng et al., 2015;
Zhou et al., 2010, 2011). Therefore, network analyses have been
considered as powerful tools for studying population interactions
in complex microbial communities (Lupatini et al., 2014).

Various approaches of network analyses have been developed
and widely applied in functional genomics studies based on gene
expression data, including differential equation-based network
methods, Bayesian network analyses, and relevance/association
network methods (Deng et al., 2012). Among them, the association
network method based on co-occurrence/correlation is the most
commonly used, owing to its computational simplicity and noise
tolerance (Gardner and Faith, 2005). However, most studies
employing association network analyses use arbitrary thresholds,
thus compromising the constructed networks with subjectivity. To
address this, a random matrix theory (RMT)-based approach was
developed to objectively identify a threshold for network con-
struction based on microarray data or high-throughput sequencing
data (Luo et al., 2006, 2007). This approach was shown to be
effective in identifying network interactions among microbial
populations (Deng et al., 2012, 2015; Zhou et al., 2010, 2011).

Process stability is highly desirable during anaerobic digestion
processes. Previous efforts have primarily focused on the roles of
individual populations in process stability, especially on metha-
nogens (Chen and He, 2015; Sekiguchi, 2006). Owing to the
importance of microbial interactions in system functions (Ma et al.,
2016), herein we evaluated microbial population interactions by
performing network analysis of the microbial communities in
anaerobic digesters operated continuously for two years. A clear
successional pattern was identified, exhibiting increasing modu-
larity but decreasing connectivity between populations over time.
Furthermore, microbial phylogenetic diversity was found to be the
most important factor associated with network topology, indicative
of induced niche differentiation over time.

2. Material and methods

2.1. Anaerobic digester operation and biomass sampling

Triplicate mesophilic continuous anaerobic digesters, desig-
nated as C1, C2 and C3 hereafter, were established and operated
with dairy waste as the substrate as previously described (Chen and
He, 2015). All anaerobic digesters had aworking volume of 3.6 L and
were operated at a constant temperature of 35 �C. The hydraulic
retention time was maintained at 20 days and the organic loading
rate (OLR) was kept at 1.0 g volatile solids (VS)/L/day throughout
the two-year study period. Process performance remained stable
throughout the study period and biomass samples were collected
from the digesters periodically, resulting in a total of 156 samples
from 52 time points. All samples were stored at �80 �C before use.
The detailed sampling points and process performance parameters
are summarized in Supplementary Table S1.

2.2. Acquisition and processing of 16S rRNA gene sequences

DNA was extracted from biomass samples using previously
described protocols (Ma et al., 2015). Briefly, biomass samples were
suspended in 630 mL DNA-extraction buffer, followed by treatment
with 60 mL of a lysozyme mixture (37 �C, 60 min), 60 mL of a pro-
tease mixture (37 �C, 30 min), and 80 mL of 20% sodium dodecyl
sulfate (37 �C, 90 min). The treated sample suspension was sub-
sequently extracted with phenolechloroformeisoamyl alcohol
(25:24:1) at 65 �C for 20 min and the supernatant was extracted
using chloroformeisoamyl alcohol (24:1). DNA extract was then
mixed with 0.6 volume of isopropanol and stored at 4 �C overnight.
DNAwas obtained by centrifugation followed by washing with 70%
cold ethanol, drying and resuspension in nuclease-free water. DNA
concentration and purity were analyzed with a NanoDrop spec-
trophotometer (NanoDrop Technologies Inc., Wilmington, DE,
USA). The V4 region of microbial 16S rRNA genes was amplified by
primer pairs (Wu et al., 2015), 515F (50-GTG CCA GCM GCC GCG
GTA A-30) and 806R (50-GGA CTA CHV GGG TWT CTA AT-30). PCR
was performed at 94 �C for 1 min; 35 cycles of 94 �C for 20 s, 53 �C
for 25 s, and 68 �C for 45 s; and a final extension at 68 �C for 10 min
using the AccuPrime High Fidelity Taq Polymerase (Invitrogen,
Grand Island, NY, USA). PCR products were pooled and purified
using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA)
and amplicon sequencing was performed with the Miseq Illumina
platform at the Institute for Environmental Genomics (IEG), Uni-
versity of Oklahoma.

For sequencing data analysis, the primer sequences were trim-
med from the paired-end sequences, which were then merged
using FLASH. Merged sequences were processed to generate oper-
ational taxonomic units (OTUs) by UPARSE at the 97% sequence
similarity threshold. Taxonomy was assigned with a confidence
cutoff of 50% using the RDP classifier. Phylogenetic trees were then
constructed from all representative sequences using the FastTree
algorithm (Price et al., 2009). The phylogenetic distance between
OTUs was then determined by their relatedness in the phylogenetic
tree with function cophenetic in R picante package. The rRNA gene
copy number for each OTU was estimated with the rrnDB database
(Stoddard et al., 2014). The OTU matrices were rarefied to 11,558
sequences per sample. The abundance-weighted average rRNA
gene copy number was then calculated for each sample.

2.3. TaqMan qPCR analysis

TagMan qPCR analyses were performed with triplicate biomass
samples at 15 time points (Day 45, 73, 90, 111, 121,132, 146, 167, 251,
289, 326, 347, 395, 453 and 501). Genus-specific TaqMan qPCR
assays were used to quantify the populations of Methanosarcina
andMethanosaeta. To determine the relative abundance of the both
methanogens in the archaeal community, a domain-specific Taq-
Man qPCR assay was performed to quantify total archaeal pop-
ulations. The characteristics of TaqMan primer/probe sets used in
this study were summarized in Table S2, and the qPCR procedure
was performedwith a CFX96 Real-Time PCR Detection System (Bio-
Rad, Hercules, California, USA) as previously described (Chen and
He, 2015). In brief, the qPCR assays were performed in 25 mL re-
action volumes with 15 pmol primers, 5 pmol probe, and Brilliant II
QPCR Master Mix (Agilent, Santa Clara, California, USA). The ther-
mal cycling was started by an incubation at 50 �C for 2 min and an
initial denaturation at 95 �C for 10 min, followed by up to 45 cycles
at 95 �C for 30 s and 60 �C (for all primer/probe sets) for 45 s.

2.4. Network construction

To construct a time-lag network, it is desirable to use a mini-
mum of 12 samples with consistent time intervals between sam-
ples. We fit our time-series data to this criteria by categorizing
samples into 9 operational intervals according to sampling time: 1)
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31e45 days; 2) 59e73 days; 3) 76e90 days; 4) 122e136 days; 5)
160e171 days; 6) 206e252 days, 7) 309e322 days; 8) 475e501
days; and 9) 735e763 days. Within each operational interval,
triplicate 16S rRNA gene sequence datasets from 5 time points
(except for operational interval 5, which had only 4 time points)
were used to construct a network (Table S1). The 9 networks con-
structed in this study were thereafter named as N31, N59, N76,
N122, N160, N206, N309, N475 and N735, corresponding to the 9
operational intervals, respectively. To minimize the impact of rare
OTUs, OTUs detected in less than 80% of the samples (i.e. less than
12 out of 15) were not considered. Rarefied sequence data were log
transformed before network construction. Each network was con-
structed with a time-lagging RMT-based approach (Deng et al.,
2015). In brief, the molecular ecological network (MEN), as
defined by Deng et al. (2012), was inferred primarily from the
Pearson correlation matrix. Because microbial populations may
have delayed response, one time point forward or backward was
allowed when the correlation coefficient (r) was calculated be-
tween OTUs. These two r values, as well as a third r value calculated
without time delay, were then compared and the greatest of the
three values was recorded as the correlation coefficient between
the two OTUs for developing the correlationmatrix. The correlation
matrix was subsequently converted into a similarity matrix by
taking the absolute values, and the cutoff for absolute r values was
determined based on the RMT-based algorithms. In this study, the
cutoff r value was determined to be 0.84 for all networks except
N160, which was constructed with only 4 time points and therefore
a cutoff r value of 0.92 was used for N160. The MEN construction
and network topology characterization were processed using the
network analysis pipeline at http://ieg2.ou.edu/MENA.

Correlation coefficients across all network topological features
were also calculated. To remove redundant topological features and
get a better representation of network topology, a feature set,
without pairwise correlations greater than 0.95, was selected for
further analysis. The feature set included number of nodes, number
of edges, average degree (avgK), centralization of degree (CD),
average cluster coefficient (avgCC), average geodesic distance (GD),
centralization of betweenness (CB), centralization of stress cen-
trality (CS), density, number of modules and modularity. Detailed
definitions of these network topological features are described in
Table 1.

2.5. Statistical analysis

A principal component analysis (PCA) was performed to eval-
uate the temporal dynamics of microbial community composition
and network topology. A canonical correspondence analysis-based
variation partitioning analysis (VPA) was used to determine the
contribution of individual process variables and their interactive
effects to the temporal variation in microbial community compo-
sitions. The importance of community and process variables for
network topological features were estimated using multiple
regression of distance matrices (MRM) with the R ecodist package.
Network topological features as well as community and process
variables (mean values during the corresponding time interval)
were standardized with function decostand in R vegan package, and
the Euclidean distance matrices for these two datasets were used in
MRM models. The relationship between phylogenetic similarity
and correlation strength was compared using aMantel correlogram
as calculated with function mantel.correlog in R vegan package.
Pearson correlation coefficients between OTUs in relative abun-
dance were classified into bins. Within each bin, the correlation
between phylogenetic distance and Pearson correlation coefficients
was determined by Mantel test with 999 randomizations. Subse-
quently, the Mantel's r value was plotted against the median of
correlation coefficient bins. Alpha significance values were pro-
gressively corrected among the correlation coefficient bins. The
density line of phylogenetic distance between positively or nega-
tively linked nodes within a network was determined by function
geom_density in R ggplot2 package. To assign significance to the
phylogenetic distances of linked nodes, a Wilcoxon rank-sum test
was used to test the differences in phylogenetic distance of posi-
tively (or negatively) linked nodes and of nodes within the
network.

3. Results

3.1. Microbial community composition in anaerobic digesters

The results of PCA showed that microbial community compo-
sitions in triplicate anaerobic digesters gradually changed with
time (Fig. 1a). The difference in microbial community composition
increased over time, showing a significant time-decay relationship
with a correlation (r2 ¼ 0.42, p < 0.001) between microbial com-
munity dissimilarity and operation time of the anaerobic digesters
(Fig. S1). The relative abundance of methanogen populations also
changed with time (Fig. 1b). For example, the relative abundance of
Methanosaeta between 289 and 501 days was significantly higher
than that between 45 and 167 days (p < 0.001, two-tailed t-test),
while the relative abundance of Methanosarcina during 289e501
days was significantly lower than that during 45e167 days
(p< 0.001, two-tailed t-test). In sharp contrast, the PCA ofmeasured
process variables did not show a similar time-decay relationship,
which was in accordance with stable operation conditions. The VPA
showed that these process variables together could only explain
15.75%, 20.51% and 15.76% of microbial community variations in C1,
C2 and C3, respectively. The most important variable was volatile
solids concentration (VS), which could explain 3.03%, 5.53% and
3.88% of microbial community variations in C1, C2 and C3,
respectively.

The most abundant bacterial phylum in the anaerobic digesters
was Firmicutes, which accounted for about 44% of total sequences
retrieved. Other abundant phyla included Bacteroidetes (12%),
Actinobacteria (11%), Proteobacteria (10%), Chloroflexi (6%), Cloa-
cimonetes (5%) and Synergistetes (5%). At the phylum level, the
microbial community composition was relatively stable in the first
500 days (Fig. 1c). However, at the end of the study period (Oper-
ational interval 9), the relative abundance of Firmicutes rose
considerably from 46% to 77% of the community in the anaerobic
digesters, which appeared to be a non-random pattern since it was
observed in all of the triplicate digesters (Fig. 1c & Fig. S2).

3.2. Succession of network topology

Samples were categorized into 9 operational intervals according
to sampling time. Accordingly, 9 association networks were con-
structed for each of the 9 operational intervals, with network nodes
representing OTUs and edges representing correlations between
OTUs. Network topological features used in this study are sum-
marized in Table 1. Consistent with previous studies (Deng et al.,
2012, 2015; Zhou et al., 2010, 2011), the networks exhibited topo-
logical features such as scale free, small world and modular
(Table S3). Specifically, the network topology fit the power law
distribution very well (r2 > 0.96), indicating that some OTUs in the
networks had numerous connections while most OTUs had only
few connections (i.e., scale free). The average geodesic distance
(GD) and average clustering coefficient (avgCC) were significantly
different from corresponding randomized networks, which were
observed in other networks displaying small-world behavior
(Watts and Strogatz, 1998). Modularity values were significantly

http://ieg2.ou.edu/MENA


Table 1
The network topological features used in this study.

Features Formula Explanation Note

Part I: topological features for individual nodes
Degree ki ¼

P
jsi

aij aij is the connection strength between nodes i and j. The number of direct association interactions for a specific OTU.

Stress centrality SCi ¼
P
jk
sðj; i; kÞ sðj; i; kÞ is the number of shortest paths between nodes j and k that pass

through node i.
The number of times a node acts as a bridge along the shortest path
between two other nodes.

Betweenness Bi ¼
P
jk

sðj;i;kÞ
sðj;kÞ

sðj; kÞ is the total number of shortest paths between j and k. The ratio of paths that pass through the ith node, which is a measure of
others' dependence on a given node.

Clustering coefficient CCi ¼ 2li
k0iðk0i�1Þ

li is the number of links between neighbors of node i and ki’ is the
number of neighbors of node i.

Representing how well a node is connected with its neighbors.

Part II: the overall network topological features
Average degree

avgK ¼
Pn

i¼1
ki

n
ki is degree of node i and n is the number of nodes. An index of complexity of networks.

Average geodesic
distance

GD ¼ 1
nðn�1Þ

P
jsi

dij dij is the shortest path between node i and j. A smaller GD means that all the nodes in the network are closer.

Centralization of degree CD ¼ Pn
i¼1ðmaxðkÞ � kiÞ max(k) is the maximal value of all degree values. Finally this value is

normalized by the theoretical maximum centralization score.
It is close to 1 for a network with star topology and in contrast close to
0 for a network where each node has the same degree.

Centralization of
betweenness

CB ¼ Pn
i¼1ðmaxðBÞ � BiÞ max(B) is themaximal value of all betweenness values. Finally this value

is normalized by the theoretical maximum centralization score.
It is close to 0 for a network where each node has the same
betweenness, and the bigger the more difference among all
betweenness values.

Centralization of stress
centrality

CS ¼ Pn
i¼1ðmaxðSCÞ � SCiÞ max(SC) is the maximal value of all stress centrality values. Finally this

value is normalized by the theoretical maximum centralization score.
It is close to 0 for a network where each node has the same stress
centrality, and the bigger themore difference among all stress centrality
values.

Density D ¼ l
lexp

¼ 2l
nðn�1Þ l is the sum of total links and lexp is the number of possible links It's also used to describe the network complexity.

Average clustering
coefficient

avgCC ¼
Pn

i¼1
CCi

n
CCi is the clustering coefficient of node i It is used to measure the extent of hierarchical structure present in a

network.
Modularity

Q ¼ 1
2l

P
isj

�
Aij � kikj

2l

�
dðmi;mjÞ

l is the sum of total links; Aij is 1 if node i and j are connected and
0 otherwise; ki is the degree of i; mi is the module that i belong to;
dðmi;mjÞ is 1 if mi ¼ mj and 0 otherwise.

It demonstrates how well a network could be naturally divided into
modules.
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Fig. 1. The temporal dynamics of microbial community composition in anaerobic digesters. PCA showed that microbial community composition changed over time (a); the relative
abundance of Methanosaeta and Methanosarcina changed with time (b) and fluctuation of major phyla (exemplified in C1) (c).
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higher than those from the corresponding randomized networks.
Therefore, these networks appeared to be modular.

The PCA revealed a successional pattern of network topology
among the 9 association networks constructed from each of oper-
ational intervals (Fig. 2a). The topology of the first 6 networks,
corresponding to 31e252 days of operation, shifted gradually over
time. In contrast, the last two networks (N475 and N735, corre-
sponding to operational intervals 8 and 9) shared similar topolog-
ical properties with that of N122 (network constructed for
operational interval 4 during 122e136 days). The average degree
and the centralization of degree decreased over time in the first 7
networks, and then increased slightly fromN309 to N475 and N735
(Fig. 2b). The modularity of these networks increased in the first 7
networks and then decreased. By calculating the percentage of
positive edges in all edges within a network, we found that the
proportion of positive edges generally decreased over time.

The topological roles of nodes can be defined by two parame-
ters, within-module connectivity (zi) and among-module connec-
tivity (Pi). According to values of zi and Pi, the roles of nodes were
classified into four categories: (i) peripherals, which have low z and
P values, i.e., they have only a few links and almost always to the
species within their modules; (ii) connectors, which have a low z
but a high P value, hence, these nodes are highly linked to several
modules; (iii) module hubs, which have a high z but a low P value,
thus, they are highly connected to many species in their own
modules; and (iv) network hubs, which have high z and P values,
acting as both module hubs and connectors (Deng et al., 2012).
Across the 9 networks, only N31 had a network hub, which was
OTU99 from genus Blastopirellula. A total of 38 OTUswere identified
as module hubs; yet only three of them were classified as module
hubs in two networks and no module hub was detected more than
twice (Table S4), suggesting that hubs were intensively dynamic
between different networks. Observations for connectors were
similar, with only two of 47 OTUs detected twice as connectors
(Table S5). The majority of the hub OTUs were from the phyla Fir-
micutes (69.0%), Bacteroidetes (11.9%) and unclassified bacteria
(11.9%). OTUs for connectors were mainly from Firmicutes (51.1%),
Bacteroidetes (14.9%) and Actinobacteria (10.6%).

3.3. Correlation between network topological features and
community/process variables

A MRM analysis was performed to estimate the correlations of
microbial community composition or process variables with



Fig. 2. The successional pattern of network topological features. PCA of the network topological feature set (a) and the change of network average degree, centralization of degree,
modularity and the proportion of positive edges over networks (b).

Fig. 3. The contributions of the top four most important variables to network topological features (a), and Pearson correlation between community composition or process variables
and network topological features (b). The r2 values in (a) were estimated with the MRM models using the distance matrices calculated from community/process variables and
network topological features. In (b), the correlation matrix only keeps Pearson correlations with p < 0.1. PC1 (PC2) stands for the first (second) axis score of PCA for microbial
community compositions; avgK stands for the average degree of network; avgCC stands for average clustering coefficient; GD stands for average geodesic distance; CD stands for
centralization of degree; CB stands for centralization of betweenness and CS stands for centralization of stress centrality.
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network topological features. Community composition variables
included in the MRM model were microbial alpha-diversity (rep-
resented by Shannon's index), phylogenetic diversity (measured by
Faith's index), the first axis score of PCA (PC1), the second axis score
of PCA (PC2), and average rRNA gene copy number of community
members. Process variables included were acetate concentration,
ammonia concentration, pH, and VS. Collectively, these variables
explained 72.8% (p ¼ 0.036) of the temporal variations in network
topology. Further investigation showed that the most important
variable correlated with network topology was phylogenetic di-
versity, which explained 28.3% (p ¼ 0.01) of the network topology
variations (Fig. 3a). The next three important variables were
average copy number, ammonia concentration and PC1 that
explained 10.4%, 9.5% and 9.3% of the variations in network
topology.
We further examined the correlations among network topo-
logical features, community composition, and process variables
(Fig. 3b). The Pearson's correlation analysis showed that node
number, GD, centralization of betweenness (CB) and modularity
positively correlated with microbial phylogenetic diversity
(r > 0.57, p < 0.10) (Fig. 3b). Centralization of degree (CD), density
and the proportion of positive edges negatively correlated with
microbial phylogenetic diversity (r < �0.57, p < 0.10) and ammonia
concentration (r < �0.60, p < 0.10). In addition, average degree and
average clustering coefficient negatively correlated with ammonia
concentration (r < �0.60, p < 0.10). Also, CB and centralization of
stress centrality (CS) positively correlated with microbial alpha
diversity (r > 0.58, p < 0.10). The number of modules positively
correlated with acetate concentration and pH (r > 0.57, p < 0.10).
The network topology also correlated with dynamics of
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methanogen populations (Fig. 3b). The node number and CD
negatively correlated with the relative abundance of Methanosaeta
(r < �0.65, p < 0.10), while GD, CB and CS positively correlated with
Methanosarcina (r > 0.70, p < 0.05).
3.4. Topological consistency between OTUs across networks

A total of 908 OTUs were present at least once in 9 networks,
which resulted in 4724 edges. Only 275 edges were detected in two
ormore networks, with amajority (89%) being consistently positive
or negative (i.e., only 29 edges had both positive and negative
correlations in different networks). This topological consistency
became stronger when the same edges were present in more net-
works. Only 24 pairs of correlations were detected in five or more
networks, all of which were positive. In fact, we found that 40 pairs
of OTUs had consistently negative correlations, but all of themwere
detected only twice.

The 15 OTUs involved in the 24 pairs of positive correlations
identified in five or more networks are summarized in Table S6.
Strikingly, these OTUs were closely related, phylogenetically. For
example, OTU11 and OTU5259 were positively correlated in all 9
networks, and both belonged to the family Lachnospiraceae. The
pairs of OTU14 and OTU86, OTU14 and OTU2912, as well as OTU14
and OTU4501, were identified to be positively correlated in 8 net-
works, and all of themwere from the genus Mogibacterium. In fact,
13 out of the 15 OTUs were from the same order Clostridiales, and
were strongly correlated. Most of these OTUswere co-located in the
same module across networks (Fig. 4 & Table S6), indicative of
stronger interactions than other pairs of OTUs.
Fig. 4. The subnetwork revealing intense interaction between OTUs from the order Clostr
phylum of OTUs. Labeled nodes are those detected to be positively correlated in at least 5 net
family and genus, respectively) of OTUs, and node size is proportional to its degree. The blu
associations. The arrow direction is assigned from ahead OTU pointing to lagged one in time
is referred to the web version of this article.)
3.5. Linkage between correlation and phylogeny

The Mantel test was performed to determine whether the edge
strength (i.e. the correlation strength between nodes) was related
to phylogenetic similarity (Fig. 5a & S3). For positively correlated
OTUs (0.50 < r < 1.00), the Pearson correlation coefficient r
exhibited negative (p < 0.01) correlation with the phylogenetic
distance, a negative index of phylogenetic similarity. For OTUs with
modest negative correlation (�0.84 < r < �0.50), the Pearson's r
was positively (p < 0.01) correlated with phylogenetic distance, i.e.
the negative correlation strength increased (Pearson's r decreased)
with phylogenetic similarity (when phylogenetic distance
decreased). In contrast, strong, negative correlations
(�1.00 � r � �0.84) were not correlated with phylogenetic relat-
edness. Analyses of population dynamics data from all operational
intervals showed similar results (Fig. S3). Since the first and last
bins of Pearson correlation coefficients (i.e., the strong negative and
positive correlations) corresponded to the correlation coefficient
threshold of networks, these results suggested that only positive,
but not negative, correlations in the networks were phylogeneti-
cally related.

We examined the phylogenetic distance between positively or
negatively linked OTUs within a network. Fig. 5b showed the dis-
tribution of phylogenetic distance within positive links, negative
links and between any two nodes in network N735. While the
distribution of phylogenetic distance between negatively linked
nodes was similar to that between any two nodes with a peak
around 0.50, there was an obvious peak around 0.10 in the distri-
bution of phylogenetic distance between positively linked nodes.
The phylogenetic distance distribution in other 8 networks showed
similar patterns (Fig. S4), with the exception that a unique
idiales. The subnetwork was the second module of N76. The node color indicates the
works. The label stands for the lowest taxonomic rank (o_, f_, and g_ representing order,
e edges represent the positive associations, while the red edges represent the negative
dynamics. (For interpretation of the references to color in this figure legend, the reader



Fig. 5. The relationship between correlation and phylogeny. The correlation between phylogenetic distance and correlation strength by Mantel test (a) and the distribution of
phylogenetic distance between positively or negatively linked nodes (b). The correlation strength is represented by Pearson correlation coefficient (Pearson's r) of OTUs in relative
abundance. The Pearson's r between OTUs were classified into bins (such as [�1.0, �0.84],[ �0.84, �0.78] etc) and Mantel test was applied within each bin to test the Mantel's
correlation between phylogentic distance and correlation strength (i.e, Pearson's r value). Then, Mantel's correlation coefficients were plotted against the Pearson's r (median of
each bin) in (a). Plot (a) show Mantel test results using the time-series data of OTU dynamics from 31 to 45 days; Plot (b) show the phylogentic distance distribution based on
network N735.
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distribution within short phylogenetic distance of positive links
was not obvious in N206. In addition, the Wilcoxon rank-sum test
showed that the mean of phylogenetic distance between positively
linked nodes in all of the 9 networks were significantly smaller
(p < 0.05) than that of average nodes. In contrast, the mean of
phylogenetic distance between negatively linked nodes was not
different (Wilcoxon rank-sum test, p > 0.10) from the average in
most of the networks. Exceptions were N31 and N160, in which the
mean of phylogenetic distance between negatively linked nodes
were larger than the average (Wilcoxon rank-sum test, p < 0.05).
4. Discussion

In this study, we report a RMT-based network analysis to
delineate the successional pattern of microbial interactions in
anaerobic digesters. The RMT-based analysis is a reliable, sensitive
and robust tool for identifying microbial associations with several
advantages. First, this approach was developed based on the two
universal laws of RMT, which were well characterized and hence
reliable as a theoretical foundation. Second, the threshold for
constructing a network is automatically defined based on the data
structure rather than arbitrarily chosen, and hence no ambiguity
exists in network construction. Third, RMT is able to remove noise
from nonrandom, system-specific features (Luo et al., 2007),
resulting in optimized networks. The association networks con-
structed by microbial populations in anaerobic digesters revealed
topological features frequently observed in complex systems and
were different from random expectations, which further verified
our RMT-based approach.

Our results show that positive rather than negative correlations
were related to phylogeny (Fig. 5). Interestingly, the distribution of
phylogenetic distance between positively correlated nodes was
nearly bimodal, with one peak close to random distribution and
another one close phylogenetic distances. Positive associations
could include cross-feeding, co-aggregation in biofilms, co-
colonization and niche overlap (Faust and Raes, 2012). The posi-
tive correlation between phylogenetically similar OTUs is usually
attributed to niche overlap, as microorganisms similar in phylogeny
are likely to behave similarly in niche adaptation (Tringe et al.,
2005). Recently, a study based on evolution model simulations
suggests that phylogeny could shape interaction networks, wherein
more closely related species tend to have stronger mutualistic in-
teractions when interactions are mediated by a mechanism of
phenotype matching (Nuismer and Harmon, 2015). However, pos-
itive links between two closely related OTUs might be caused by
mutual, i.e. false, cross-assignment because taxon assignment at
lower taxonomic levels is often inaccurate (Faust and Raes, 2012). If
so, consistent positive correlations between Clostridiales OTUs
might imply that the current taxon classification within Clos-
tridiales is too fine.

Negative associations could arise from amensalism, in which
one population is harmed without any advantage to the other
(Brenner et al., 2008), preyepredator relationships, competition,
and/or differential niche adaptation, to name a few (Faust and Raes,
2012). Amensalism and predation were less likely to occur in mi-
crobial communities of anaerobic digesters. Rather, we expect
negative associations to be prevalently found between closely
related OTUs as they would compete for similar resources (Faust
and Raes, 2012), and/or between distinct OTUs due to differential
niche adaptation, i.e. different ability to adapt to changing envi-
ronments (Faust et al., 2012). However, the distribution of phylo-
genetic distance between negatively correlated OTUs were not
different from random events in most networks, suggesting that
the negative associations likely resulted from stochastic processes.

We found that both microbial community compositions and
network topological features changed over time despite stable
operation performance. One possible explanation for the succes-
sion of the microbial communities is that the characters of sludge
gradually changed during long-term operation. For example, the
absorption of toxic compounds by anaerobic sludge, such as
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antibiotics, could result in the accumulation of such chemicals in
sludge (Aydin et al., 2015c). It has been established that network
topology reflects interactions between microbial populations (Ma
et al., 2016). Our results showed that network N31, representing
the first operational interval, had the highest average degree and
degree centralization (Fig. 2b). The average degree, representing
microbial interaction frequency, decreased steadily from 31 to 322
days. A similar pattern of decrease in degree centralization is
indicative of more ‘even’ networks over time in the anaerobic
digesters.

The network N31 had the highest average degree and degree
centralization (Fig. 2b). Consistently, N31 was the only network
having a network hub (OTU99 from genus Blastopirellula). This is
the first time that a network hub was identified by microbial
network analysis (Deng et al., 2012, 2015; Zhou et al., 2010, 2011).
From an ecological perspective, it has been proposed that periph-
erals in a network might represent specialists whereas module
hubs/connectors were generalists and network hubs behave as
super-generalists (Olesen et al., 2007). OTU99 was detected in all
samples, suggesting that it was a generalist in anaerobic digesters,
albeit it comprised only 0.09% of all sequences. A recent study
showed that several clones affiliated with Blastopirellula were
identified as putative anammox bacteria in wastewater treatment
plants (Bae et al., 2010), implicating a potentially important role of
OTU99 in anaerobic ammonium oxidation process. However, the
specific function of this population in anaerobic digestion remains
to be characterized.

The modularity of population networks exhibited an increasing
trend, in contrast with the decreasing trend of the average degree
of the networks (Fig. 2b). The modules could be perceived as
functional units in the microbial communities (Luo et al., 2006).
Previous studies have also interpreted modules as niches (Chaffron
et al., 2010; Eiler et al., 2012). Thus, the increase in network
modularity over time might be linked to the greater extent of
segregation within the microbial community into finer niches and
functional units (i.e., niche differentiation). As a consequence, mi-
crobial populations tended to cluster more in subunits (modules)
and the interactions among modules were generally reduced over
time, resulting in increased modularity and decreased average
degree. Similarly, a previous study showed that strong niche dif-
ferentiation resulted in weaker interactions between soil microbial
populations (Faust and Raes, 2012). It could be postulated theo-
retically, that the number of niches cannot increase indefinitely,
owing to the limited availability of resources. Thus, it will eventu-
ally reach a balanced or saturated state in which the network to-
pological features would not remain constant, but show
fluctuations, according to the theory of stable limit cycles of
ecological systems (Holling, 1973). This postulationwill be tested in
these anaerobic digesters as the operation of the anaerobic di-
gesters analyzed in this study is still ongoing.

We performed an MRM-based analysis to identify community
composition and process variables attributable to topological var-
iations over time. It appeared that microbial community composi-
tion and structure played more important roles than process
variables (Fig. 3), which was not unexpected as the process vari-
ables remained relatively unchanged during stable operation. The
most important community/process variable that influenced
network topology was the phylogenetic diversity of the microbial
community. The positive correlation between phylogenetic di-
versity and network modularity suggests that network modularity
is related to niche differentiation as inferred above, since niche
differentiation is essential in maintaining population diversity
(Leibold and McPeek, 2006).

The interactions between populations, identified by network
analysis, were dynamic. For example, 94% of the association
correlations between OTU pairs were detected only once across the
9 networks, which might result from temporary interactions be-
tween microorganisms, or just random variations in relative
abundance that possibly arose from ecological drift (Hubbell, 2001).
It must be noted that association networks were generated from
Pearson correlations, which cannot be taken for as direct in-
teractions. However, among OTU pairs identified with significant
correlation at least twice, most of which (nearly 90%) were
consistent (i.e., either positive or negative). Therefore, these asso-
ciation correlations were less likely to be random. For the OTU pairs
that had ‘switching’ linkages (i.e., sometimes positive and some-
times negative), their interactions might be contingent on the
environmental conditions, or a result of random effects. In addition,
we found that 69% of hub OTUs belonged to the phylum Firmicutes,
which was substantially higher than expected by random chance
since Firmcutes comprised only 44% of total sequences. Most of
these Firmicutes OTUs were from the order Clostridiales, suggesting
that this bacterial group, known for capabilities in organic
decomposition and fermentation (Desvaux, 2005), could play
keystone roles in microbial interactions. It has been suggested that
OTUs reflecting keystone taxa (e.g., hub OTUs) are important to
maintain the functions of ecosystems and their extinction might
lead to community fragmentation (Allesina and Bodini, 2004;
Gonz�alez et al., 2010; Lupatini et al., 2014). Thus, the hub OTUs
identified by network analysis could play important roles in
maintaining the functional stability of digesters. For example, the
family Lachnospiraceae of the order Clostridiales was identified as a
major component of animal gastrointestinal tracts (Cotta and
Forster, 2006) but has been rarely investigated in anaerobic di-
gesters. However, an unidentified member of Lachnospiraceae was
found to be very abundant in anaerobic digesters treating poultry
litter and was associated with the breakdown of cellulosic biomass
(Smith et al., 2014). The identification of Lachnospiraceae members
as keystone populations in our study (Table S4& S5) also suggested
that the influent microbial community could affect the microbial
communities in the digesters. Since the influent was actual dairy
waste taken from dairy farms, the influent was expected to harbor a
large microbial community which could potentially alter the resi-
dent microbial communities in the anaerobic digesters. It is also
noted that most of the hub OTUs were not ranked high in the
communities (i.e., less abundant) (Table S4 & S5), yet they were
likely to play more important roles than peripheral OTUs with high
abundance. Futurework focusing on uncultured keystone species is
crucial to gain a better understanding of the roles of these
microorganisms.

5. Conclusions

In summary, our study of microbial association networks iden-
tified complex interactions among microbial populations and suc-
cessional pattern of these interactions, exhibiting increasing
modularity but decreasing connectivity among microbial pop-
ulations over time. Phylogenetic diversity appeared to be an
important factor associated with network topology since it showed
positive correlations with modularity, suggestive of induced niche
differentiation over time. Phylogeny could shape the positive, but
not negative, interactions among microorganisms, as more closely
related populations tended to have stronger positive correlations.
Despite the dynamic network topology, there were consistent,
positive associations among Clostridiales populations across the
two-year experimental period, signifying the important roles of the
microbial populations involved in lignocellulose degradation and
fermentation during anaerobic digestion. These results provide
valuable insight into key microbial population interactions poten-
tially important for process stability in anaerobic digestion.
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