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Alpine soil carbon is vulnerable to rapid microbial
decomposition under climate cooling
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As climate cooling is increasingly regarded as important natural variability of long-term global
warming trends, there is a resurging interest in understanding its impact on biodiversity and
ecosystem functioning. Here, we report a soil transplant experiment from lower to higher elevations
in a Tibetan alpine grassland to simulate the impact of cooling on ecosystem community structure
and function. Three years of cooling resulted in reduced plant productivity and microbial functional
potential (for example, carbon respiration and nutrient cycling). Microbial genetic markers associated
with chemically recalcitrant carbon decomposition remained unchanged despite a decrease in genes
associated with chemically labile carbon decomposition. As a consequence, cooling-associated
changes correlated with a decrease in soil organic carbon (SOC). Extrapolation of these results
suggests that for every 1 °C decrease in annual average air temperature, 0.1 Pg (0.3%) of SOC would
be lost from the Tibetan plateau. These results demonstrate that microbial feedbacks to cooling have
the potential to differentially impact chemically labile and recalcitrant carbon turnover, which could
lead to strong, adverse consequences on soil C storage. Our findings are alarming, considering the
frequency of short-term cooling and its scale to disrupt ecosystems and biogeochemical cycling.
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Introduction

Global climate change science has predominantly
targeted climate warming (Luo, 2007; Frey et al.,
2013; Nie et al., 2013), but this focus is changing, as
it is increasingly recognized that temporary, local
cooling events are common amidst long-term global
warming trends (Alley et al., 2003; Ji et al., 2014).
There has been significant cooling in the Antarctic

Peninsula as the late 1990s, arising from natural
variability of the regional atmospheric circulation
(Turner et al., 2016). It has been projected that the
climate in the 21st century is likely to produce
periods as long as one or two decade(s) of cooling
(Easterling and Wehner, 2009; Lyubushin and
Klyashtorin, 2012), which is alarming because
historic evidence shows that cooling may perturb
ecosystems and biogeochemical cycling at a scale
comparable to what is known for warming
(McAnena et al., 2013). For instance, cooling on
the Antarctic continent between 1966 and 2000 led
to a rapid decrease in the primary productivity of
lakes (6–9% per year) as well as the number of soil
invertebrates (more than 10% loss per year) (Doran
et al., 2002). Therefore, further understanding of the
full range of possible climate change scenarios and
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their potential impacts is of considerable value for
policy makers and citizens to promulgate effective
responses. Despite the impact, we still lack a
fundamental understanding of how ecosystems
respond to climate cooling.

To date, the effects of cooling are estimated
indirectly by historical records (Campbell and
McAndrews, 1993; Doran et al., 2002) or model
simulation (Lucht et al., 2002), owing to the
difficulty of carrying out in situ studies. Soil
transplant experiments provide an opportunity to
quantify the direct influence of substantial climate
changes on the plant and soil microbial community
structure and function (Breeuwer et al., 2010;
Vanhala et al., 2011; Luan et al., 2014). For example,
soil transplants into warmer climates have shown
comparable results to long-term in situ artificial
warming (Petchey et al., 1999; Vanhala et al., 2011;
Zhou et al., 2012; Luan et al., 2014; Yue et al., 2015).
In this study, we conducted a soil transplant study in
a Tibetan alpine grassland, which is the largest
grassland on the Eurasian continent (Yang et al.,
2008). Soils on the Tibetan alpine store a large
amount of organic C (about 10% of the terrestrial C in
China) and are especially vulnerable to global
climate change (Qiu, 2008; Yang et al., 2008), making
it an ideal region to study the feedback of the
grassland ecosystem to climate change. In this study,
soils with attached vegetation from lower elevations
were moved sequentially to higher elevations, along
an elevation gradient of 3200, 3400, 3600 and 3800m
above sea level (see Materials and Methods for
details). Soils mock transplanted, that is, soils
removed from and then reinstalled to the same
place, were used as controls. Various theoretical and
empirical studies have suggested that climate warm-
ing increases both plant productivity and soil
respiration (Luo, 2007; Zhou et al., 2012), resulting
in an increase in organic C loss through increased
soil respiration, which is not offset by increased net
primary production (Frey et al., 2013). Therefore, we
hypothesize that, in contrast to warming, cooling
would suppress associated ecosystem functional
processes, such as C uptake and respiration, and
consequently cause a net increase in SOC.

Materials and Methods

Experimental design and soil sampling
The transplant experiments were carried out in
Haibei Alpine Meadow Ecosystem Research Station
(37°37′N, 101°12′E) of the Northeastern Tibet Pla-
teau, Qinghai, China. Experimental plots were set up
in May 2007. Along an elevation gradient of 3200,
3400, 3600 and 3800m above sea level, triplicate
soils with sizes of 1m length ´ 1m width ´ 0.3 m
depth were dug out from the ground, with soil and
aboveground vegetation intact, and transplanted
upwards to plots at higher elevations. This strategy
resulted in 18 transplanted samples (namely,

3200T3400, 3200T3600, 3200T3800, 3400T3600,
3400T3800 and 3600T3800, which means 3200m
plots to 3400m plots, and so on). To simulate the
disturbance effect due to soil extraction, triplicate
plots at the elevations of 3200, 3400 and 3600m
were mock transplanted and reestablished in place
to serve as controls, that is, they were dug out from
the ground but put back to the original plots. All
plots were randomized in block design, and sur-
rounded by plastic to minimize exchange with
neighboring soils.

Soil samples were collected in August 2009 and
used for 454 pyrosequencing of 16S rRNA gene
amplicon, GeoChip 4.0 (Tu et al., 2014) and
environmental variable measurements. Three soil
cores with a diameter of 1.5 cm at the depth of
0–20 cm were taken randomly from each plot. Then
soil samples were transported back to the laboratory
at 4 °C in cooler boxes and sieved with a 2mm mesh
to remove visible grassroots and stones. Soil samples
for pyrosequencing and GeoChip experiments were
kept at −80 °C until DNA extraction, and soil
samples for environmental variable measurements
were kept at 4 °C.

Environmental variable measurements
Vegetation variables were measured for a sub-plot
within each plot. Vegetation species, density, bio-
mass and average height were recorded using
established protocols (Klein et al., 2007) when soils
were sampled. Soil temperature was measured at
depths of 5 and 20 cm using type-K thermocouples
(Campbell Scientific, Logan, Utah, USA) coupled to a
CR1000 datalogger, while soil moisture was recorded
every 30min at depths of 5 and 10 cm with time
domain reflectometry (TDR) (Model Diviner-2000,
Sentek Pty Ltd., Australia). Soil biogeochemical
variables were measured as previously described
(Yang et al., 2014). In brief, total organic C (TOC) and
total N (TN) were measured by a TOC-5000 A
analyzer (Shimadzu Corp., Kyoto, Japan) and a Vario
EL III Elemental Analyzer (Elementar, Hanau,
Germany) using standard protocols (Ryba and
Burgess, 2002). Soil NH4

+-N and NO3-N were
analyzed with a FIAstar 5000 Analyzer (FOSS,
Hillerd, Danmark). The soil C/N ratio was calculated
as the TOC to TN ratio.

SOC density can be estimated using TOC and soil
bulk density values (Yang et al., 2009). SOC density
in the top 20 cm was calculated as follows:

SOC ¼
Xn
i¼1

Ti ´BDi ´TOCi ´ 1� Cið Þ=100

where SOC, Ti, BDi, TOCi and Ci represent SOC
density (kg C m− 2), layer thickness (cm), bulk density
(g cm−3), TOC (g kg− 1) and percentage of the fraction
42mm of the ith soil layer, respectively.
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Ecosystem respiration (Re) and CH4, N2O flux
estimation
During the growing seasons, the Re was measured by
opaque, static, manual stainless steel chambers (Lin
et al., 2011) every 7–10 days at 9:00 to 11:00 am from
May to September, depending on weather condi-
tions. Based on previous experiments, the measure-
ments obtained between 9:00 and 11:00 am best
represented the average daily CO2 flux (Lin et al.,
2011). The chambers were of the same architecture
and dimension (40 cm×40 cm×40 cm) as previously
described (Ma et al., 2006). Chambers were closed
for half an hour and gas samples (100ml) were
collected every 10min using plastic syringes. The
CO2, CH4 and N2O concentrations of gas samples
were analyzed with a gas chromatograph (HP Series
4890D, Hewlett Packard, USA) within 24 h after gas
sampling. The gas chromatograph configurations for
analyzing gas concentrations and the methods for
calculating gas flux were previously described (Song
et al., 2003). The average gas flux in August 2009,
when soil samples were collected, was used for
statistical analyses in this study.

DNA extraction, 454 pyrosequencing and GeoChip 4.0
experiments
DNA extraction, purification, pyrosequencing and
GeoChip 4.0 experiments, and raw data processing
methods were described in recent studies (Rui et al.,
2015; Yue et al., 2015). While GeoChip experiments
were conducted for all samples, pyrosequencing
experiments were conducted in most samples except
for 3600 and 3600T3800 samples, which cannot be
made up due to the lack of DNA from them for
sequencing. However, the missing samples did not
considerably affect our results. In brief, the Fast DNA
Spin kit (MP Biomedical, Carlsbad, CA, USA) was
used to extract DNA from 0.5 g soil, following the
manufacturer’s instructions. The V4-V5 hypervari-
able regions of 16S rRNA genes were PCR amplified
with primers 515F (5′-GTGYCAGCMGCCGCGGTA
-3′) and 909R (5′-CCCCGYCAATTCMTTTRAGT-3′).
The pyrosesequencing experiments were conducted
with a GS FLX system (454 Life Sciences, Branford,
CT, USA). The raw sequences were trimmed for
quality control using the RDP Pipeline Initial Process
(http://pyro.cme.msu.edu/). Sequences with low
quality (length o300 bp, with ambiguous base ‘N’,
or average base quality score o20) were removed,
resulting in 170 161 high-quality and chimera-free
reads with an average length of 408 bp. Then
sequences were aligned using the Aware Infernal
Aligner in the RDP pyrosequencing pipeline, and
subjected to chimera check using the Uchime
algorithm, and resampling to 2291 sequences per
sample. Sequences were clustered by the complete-
linkage clustering method incorporated in the RDP
platform. Operational taxonomic units were classi-
fied using a 97% sequence identity cutoff and
singletons were removed. Natural logarithmic

transformation was used before statistical analyses.
The GeoChip experiments were performed as
described previously (Yang et al., 2013). In brief,
DNA was labeled with the fluorescent dye Cy-5
using a random priming method and then purified
with the QIA quick purification kit (Qiagen, Valen-
cia, CA, USA) according to the manufacturer’s
instructions. After checking the dye incorporation
on a NanoDrop ND-1000 spectrophotometer (Nano-
Drop Technologies, Wilmington, DE, USA), DNA
was dried in a SpeedVac (ThermoSavant, Milford,
MA, USA) at 45 °C for 45min. Subsequently, labeled
DNA was resuspended in 120 μl hybridization
solution containing 40% formamide, 3 × SSC, 10 μg
of unlabeled herring sperm DNA (Promega, Madison,
WI, USA), and 0.1% SDS. The hybridizations were
performed with a MAUI hybridization station (Bio-
Micro, Salt Lake City, UT, USA) according to the
manufacturer’s instructions. After washing and dry-
ing, microarray was scanned by a NimbleGen MS200
scanner (Roche, Madison, WI, USA) at 633 nm using
a laser power of 100% and a photomultiplier tube
(PMT) gain of 75%. Signal intensities were subse-
quently quantified. Briefly, raw data were processed
as following: (i) poor-quality spots, those flagged or
with a signal to noise ratio (SNR) o2.0, were
removed; (ii) at least two valid values of three
biological replicates were required for each probe;
(iii) relative abundance normalization was applied to
all data; and (iv) natural logarithmic transformation
was used before statistical analyses.

Statistical analyses
We used a pure random-effects model to estimate the
overall weighted mean effect size of cooling on
environmental variables and functional genes, based
on the method of meta-analysis of response ratios
(Hedges et al., 1999). Briefly, for each of the six
comparison pairs (3200T3400 vs 3200, 3200T3600 vs
3200, 3200T3800 vs 3200, 3400T3600 vs 3400,
3400T3800 vs 3400 and 3600T3800 vs 3600), the
effect size, represented by the response ratio (RR)
metric, was calculated as log-proportional change
between the means of the transplant and control
group. To correct potential bias introduced by small
sample sizes, we used the bias-corrected metric RRΔ

and validated the accuracy of RRΔ metric with
Geary’s test for each comparison pair prior to pooling
outcomes (Lajeunesse, 2015). For each pair of
transplant-control comparison, the effect size RRΔ

was calculated as:

RRD ¼ RRþ 1
2

s:d:Tð Þ2
NTX

2
T

� s:d:Cð Þ2
NCX

2
C

" #

¼ ln
XT

XC
þ 1
2

s:d:Tð Þ2
NTX

2
T

� s:d:Cð Þ2
NCX

2
C

" #

where X T and X C represent the mean of the variable
in transplant and control group; s.d.T and s.d.C
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represent standard deviations of transplant and
control group; NT and NC represent the number of
replicates of transplant and control group.

The sample sizes and standard deviations were
used to help quantify the sampling variability in the
effect size RRΔ within each comparison. For each
comparison, the variance of RRΔ (denoted by v) was
calculated as:

v ¼ s:d:Tð Þ2
NTX

2
T

þ s:d:Cð Þ2
NCX

2
C

þ 1
2

s:d:Tð Þ4
N2

TX
4
T

þ s:d:Cð Þ4
N2

CX
4
C

" #

The random between-comparisons variance com-
ponent was calculated as:

s2̂l ¼ Q � ðk � 1ÞPk
i¼1 wi �

Pk

i¼1
w2

iPk

i¼1
wi

Where

Q ¼
Xk
i¼1

wi RRD
i

� �2 � ðPk
i¼1 wiRRD

i Þ2Pk
i¼1 wi

and wi=1/vi, k is the number of comparisons. In this
study, k=6.

The within-comparison variance and the between-
comparisons variance component were converted
into weights to help minimize the influence of
comparisons with low statistical power when ana-
lyzing and pooling multiple study outcomes. The
weight of each comparison was determined as:

w�
i ¼

1
vi þ ŝ2l

The weighted mean effect size ðRR�Þand its standard
error were then determined based on the effect size
and the weight of each comparison:

RR� ¼
Pk

i¼1 w
�
iRR

D
iPk

i¼1 w
�
i

s:e: RR�
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Pk
i¼1 w

�
i

s

In addition, we examined the Pearson correlation
between the effect size and the cooling degree, that
is, the air temperature difference. For variables
whose effect sizes were positively and significantly
(Po0.05) correlated with the cooling degree, the
average change per °C cooling was calculated as the
mean of the absolute change divided by the cooling
degree in each comparison.

To test the cooling effects on the microbial
community structure, three different complementary
non-parametric dissimilarity analyses for multivari-
ate data were used: analysis of similarity (ANOSIM)
(Clarke, 1993), non-parametric multivariate analysis
of variance (adonis) (Anderson, 2001) using distance
matrices, and multi-response permutation procedure
(MRPP) (McCune et al., 2002). The Detrended
Correspondence Analysis (DCA) (Hill and H.G.

Gauch, 1980) was used to visualize the difference
of microbial community structure between cooling
sample and its corresponding control.

The Canonical Correspondence Analysis (CCA)
was performed to determine the most significant
environmental variables linking to microbial func-
tional gene structure (Ramette and Tiedje, 2007).
Based on the variance inflation factors (VIF) values,
redundant variables with VIF420 were removed
from the CCA model. A partial-CCA based Variation
Partitioning Analysis (VPA) was then performed to
determine the contribution of different groups of
variables. To determine the effects of microbial
functional gene or environmental variables on green-
house gas flux, partial Mantel tests (Smouse et al.,
1986) were performed in which the co-varying
effects between microbial functional gene structure
and environmental variables were controlled. Bray-
Curtis coefficient and Euclidean distance were used
to construct dissimilarity matrices of microbial
communities and environmental variables,
respectively.

Results and Discussion

For the six comparison pairs; 3200T3400 vs 3200,
3200T3600 vs 3200, 3200T3800 vs 3200, 3400T3600
vs 3400, 3400T3800 vs 3400 and 3600T3800 vs 3600,
air temperature decreased by 0.26, 1.00, 2.09, 0.74,
1.83 and 1.09 °C, respectively (Supplementary
Table 1). We calculated the weighted mean effect
sizes of cooling on environmental variables. The
temperature of the top 5 cm and lower 20 cm of the
soil profile significantly decreased, with mean effect
size of −0.22 (±0.05 s.e.) and − 0.23 (±0.05). The
effect size of soil temperature of the top 5 cm profile
was significantly correlated with the cooling degree
(Pearson’s r=0.82, P=0.04) across the six compar-
isons. Further analysis showed that soil temperature
of the top 5 cm profile decreased by 2.41 (±0.48) oC
per oC decrease in air temperature. Soil pH margin-
ally significantly decreased under cooling, with an
effect size of − 0.02 (±0.01), while soil moisture
remained largely unchanged. In addition, plant
species richness remained unchanged, but the plant
biomass and total plant coverage (TCOV) responses
were negative, with effect sizes of − 0.53 (±0.17) and
−0.07 (±0.04), respectively (Figure 1). These results
were consistent with known cooling effects
(Campbell and McAndrews, 1993), demonstrating
that the field simulation we performed was reliable.
Also, they directly contrasted observations from
warming-based studies, in which plant productivity
increased in tundras, grasslands and forests (Lal,
2005; Zhou et al., 2012; Natali et al., 2014).

Amplicon sequencing of the 16S rRNA gene was
combined with GeoChip 4.0 (Tu et al., 2014) to
examine soil microbial communities. GeoChip 4.0 is
a microarray containing probes to detect ~ 141 995
gene sequences from 410 gene families derived from
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bacteria, archaea or fungi, including genes associated
with nitrogen (N), carbon (C), sulfur (S) and
phosphorus (P) cycling, metal resistance, organic
remediation, and other processes. DCA and dissim-
ilarity tests showed that, for each transplant-control
comparison, both taxonomic composition and func-
tional gene structure of microbial communities in
transplanted soils differed compared with in-place
controls (Table 1; Supplementary Figure 1; Po0.05).
In addition, the Mantel test showed a very weak but
significant correlation (r=0.18, P=0.03) between the
variations of 16S rRNA gene data and GeoChip data
across samples, unveiling some consistency between
microbial taxonomic composition and functional
gene structure. Furthermore, CCA indicated that
microbial functional gene structure correlated
(Po0.01) with changes in soil temperature, pH,
moisture, NH3-N, TOC, TN, C/N ratio, plant biomass,
plant species richness and TCOV (Supplementary
Figure 2). A total of 63.6% of the variation in soil
microbial functional gene structure could be
explained by soil climatic variables (13.1%), soil
geochemical variables (26.9%), plant variables
(8.8%) and their interactions (Supplementary
Figure 2), as indicated by VPA. It is noted that
microbial functional gene structure of 3200T3400
was more similar to that of 3200T3800 rather than
3200T3600 (Supplementary Figure 1). A possible
explanation is that some environmental variables
were more similar between 3400m and 3800m sites
than with the 3600m site, such as plant biomass and
pH, which may have important roles in shaping
microbial functional gene structure. In fact, the

changes of most environmental variables and micro-
bial functional structure were not related to the
degree of cooling.

Carbon decomposition and nutrient cycling were
both impacted by cooling. Both the relative abun-
dance and α-diversity (Simpson index) of genes
associated with chemically labile C decomposition
were markedly decreased in the transplanted plots,
as indicated by the weighted mean effect sizes. These
included apu, cda and glucoamylase genes for starch
decomposition, xylA and mannanase genes for
hemi-cellulose decomposition, exochitinase genes
for chitin decomposition, and pectinase genes for
pectin decomposition (Figure 2; Supplementary
Figure 3), which have previously been shown to
increase in response to warming (Zhou et al., 2012).
The most notably decreased C decomposition genes
included cda genes derived from Vibrio harveyi
HY01 and Roseburia intestinalis L1-82, mannanase
genes derived from Cellvibrio japonicus Ueda107
and Streptomyces sviceus ATCC 29083
(Supplementary Figure 4). Consistently, the 16S
rRNA gene amplicon data showed significant
decreases in the relative abundances of the Strepto-
myces genus. In fact, the relative abundance of
Gammaproteobacteria, Firmicutes and Actinobac-
teria were significantly decreased under cooling
(Supplementary Figure 5). Interestingly, the func-
tional genes responsible for the decomposition of
chemically recalcitrant C, such as lignin and aro-
matics, which account for about 95% of topsoil
organic C in Tibetan grasslands (Genxu et al., 2002),
were unchanged. Chemically recalcitrant C was
previously thought to be stable in soil and used by
microorganisms only when labile C substrates are
exhausted (Lützow et al., 2006). However, there is
accumulating evidence that microorganisms decom-
pose chemically recalcitrant C under suitable condi-
tions, and that not all old and stable C compounds
are as persistent as once considered (Kleber et al.,
2011; Lehmann and Kleber, 2015). Soil heterotrophic
respiration was consistently steady at our study site
(Hu et al., 2008), which would be expected under
consistent rates of C decomposition.

The abundance of most nutrient cycling genes
either decreased or remained unchanged except
ureC. For N cycling genes, the abundances of amoA
genes decreased (Supplementary Figure 6a), which
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Figure 1 Effects of climate cooling on various environmental
variables. The weighted mean effect size was calculated by the
method of meta-analysis of response ratio. Error bars are at the
95% confidence level. The significance level is indicated by
asterisk: ***Po0.001, **Po0.050, and *Po0.100. For the envir-
onmental variables, Biomass—plant biomass; TCOV—total plant
coverage; Species—plant species richness; TOC_10 and TOC_
20—total soil organic C at the 0–10 cm depth and 10–20 cm depth;
TN_10 and TN_20—total soil N at the 0–10 cm depth and
10–20 cm depth; CN_10 and CN_20—the ratio of TOC to TN
ratio at the 0–10 cm depth and 10–20 cm depth; NO3_10—soil
nitrate at the 0–10 cm depth; and NH3_10—soil ammonia at the
0–10 cm depth.

Table 1 Effects of cooling on microbial community compositions
and functional genes with three different statistical approaches

Data sets adonis ANOSIM MRPP

F P-value R P-value δ P-value

16S sequencing 1.763 0.005 0.363 0.008 0.695 0.009
All GeoChip
genes

3.521 0.018 0.160 0.020 0.232 0.014

C cycling genes 3.537 0.015 0.166 0.024 0.239 0.012
N cycling genes 3.557 0.019 0.174 0.012 0.233 0.010
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were derived from both ammonia-oxidizing archea
(AOA) and ammonia-oxidizing bacteria (AOB)
(Wessén et al., 2011). The most notably decreased
amoA genes included those derived from uncultured
archaea, Edwardsiella tarda EIB202 and Pseudomo-
nas putida KT2440 (Supplementary Figure 6b),
which was consistent with the amplicon sequencing
data showing that the relative abundance of Gam-
maproteobacteria significantly decreased under
cooling (Supplementary Figure 5). The abundance
of norB genes encoding an enzyme to convert NO to
N2O in both nitrification and denitrification pro-
cesses decreased, too (Supplementary Figure 6a,
Po0.05). However, we could not determine which
process the norB genes belong to.

The ecosystem respiration (Re, represented by the
measured CO2 flux) response was negative, with an
effect size of −0.30 (±0.15) (Figure 1), similar to a
recent cooling experiment in forests (Luan et al.,
2014). However, partial Mantel tests demonstrated
an insignificant correlation between C decomposi-
tion gene abundance and CO2 flux when soil or plant
variables were controlled (Table 2). Rather, soil and
plant variables showed a correlation (Po0.001) with
CO2 flux when controlled for C decomposition genes.

Specifically, plant biomass, TCOV, plant species
richness, soil temperature, pH and TOC at a depth of
0–10 cm positively correlated with CO2 flux,
whereas soil moisture negatively correlated
(Figure 3a; Supplementary Figure 7). The forward
stepwise regression method was applied to select
variables for predicting CO2 flux based on Akaike
information criterion (AIC). The final linear model
included two variables of air temperature and TCOV,
which was able to explain ~ 90% (Po0.001) of the
variation in CO2 flux (Supplementary Table 2).
Furthermore, partial correlation analysis showed
that air temperature positively and significantly
correlated with CO2 flux (r=0.75, P=0.05) when
soil and plant variables were controlled. The
decrease in air temperature (that is, cooling) could
be the major driver of Re decrease, since often
biological activities are controlled by temperature
(Brown et al., 2004). The positive correlation
(r2 = 0.57, Po0.001) between plant biomass and
CO2 flux (Figure 3a) together with the partial Mantel
test results (Table 2) suggested that a reduction in
ecosystem respiration might be primarily attributed
to decreased autotrophic respiration under cooling.
Consistently, plant autotrophic respiration was
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Figure 2 Effects of climate cooling on relative abundances of C decomposition genes. The weighted mean effect size was calculated by
the method of meta-analysis of response ratio. Error bars are at the 95% confidence level. The significance level is indicated by asterisk:
***Po0.001, **Po0.050 and *Po0.100.

Table 2 The influence of environmental variables and microbial functional genes on greenhouse gas emission by partial Mantel test

Effects of Functional gene groupsa Soil variables Plant variables

Controlling for Soil variablesb Plant variablesc Functional gene Plant variables Functional gene Soil variables

CO2 flux −0.310d 0.045 0.615*** 0.458*** 0.406*** 0.198**
CH4 flux 0.159* 0.143* −0.002 −0.031 0.213* 0.226*
N2O flux 0.331** 0.345** −0.039 0.116 0.039 0.050

aFunctional gene groups were carbon decomposition genes for CO2 flux, mmoX genes for CH4 flux and norB genes for N2O flux. bSoil variables
included for testing the relationship with CO2 or CH4 flux: soil temperature, soil moisture, pH, TOC, C/N ratio. Soil variables included for testing
the relationship with N2O flux: soil temperature, soil moisture, pH, NO3-N, NH3-N, TN, C/N ratio. cPlant variables were plant biomass, total
coverage of plants (TCOV) and plant species richness. dThe r-value of Partial Mantel test is shown. Significance: ***Po0.001, **Po0.050,
*Po0.100.
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shown to be the main explanatory factor of variations
in ecosystem respiration on the Tibetan alpine
grasslands (Hu et al., 2008). Further, soil TOC at
depths of 0–10 and 10–20 cm were decreased, with
effect sizes of − 0.05 (±0.02) and − 0.06 (±0.01),
respectively (Figure 1). The effect size of soil TOC
at depths of 10–20 cm strongly and significantly
correlated with the cooling degree (Pearson’s r=0.91,
P=0.01), and soil TOC at depths of 10–20 cm
decreased by 2.55 (±0.44) mg g− 1 per °C decrease
in air temperature.

TN contents at the depths of 0–10 cm decreased,
with an effect size of − 0.03 (±0.01), though the C/N
ratio remained largely unchanged (Figure 1). The
N2O fluxes were either decreased (t-test, Po0.05) or
unchanged by cooling (Supplementary Table 1),
which was consistent with previous studies showing
that the effect of temperature on N2O emission is
generally positive in non-wetland soils (Smith,
1997). N2O flux was significantly correlated
(Po0.006) with the abundance of norB genes when
soil or plant variables were controlled (Table 2),
suggesting that N2O flux in these sites was
microbially-driven (Singh et al., 2010). The grass-
land appeared to be a CH4 sink rather than a source
(Supplementary Table 1), implying that CH4 oxida-
tion could have a more important role in CH4 flux
than CH4 production. In support of this, mcrA
abundance, associated with CH4 production, was
not correlated to CH4 flux. In contrast, the abundance
of mmoX, associated with CH4 oxidation, including
those derived from methanotrophs possessing the
soluble methane monooxygenase such as Methylo-
cella spp. and Methylomonas spp., was correlated
with CH4 flux (Po0.100) (Table 2). Methane flux
remained unchanged under cooling (Supplementary
Table 1; Figure 1). In comparison, previous studies
showed that soil CH4 uptake increased (Peterjohn
et al., 1994; Hart, 2006) or remained unchanged
(Torn and Harte, 1996; Rustad and Fernandez, 1998)

under warming. As CH4 production is an anaerobic
process, soil moisture might have stronger influence
on soil CH4 fluxes than soil temperature (Bowden
et al., 1998; Wei et al., 2015).

To determine whether the lower soil C was related
to cooling, we calculated the correlation between the
decrease of SOC density (kg C m− 2) under cooling
and the temperature difference. SOC loss in the top
20 cm was correlated (r2 = 0.67, Po0.001) with the
degree of cooling (Figure 3b). Although there were
considerable variations in the SOC changes at certain
temperature differences, all of the SOC changes are
exclusively negative. The SOC decrease for the
extreme of the altitudinal transplant experiment
(from 3200 to 3800m) was the largest. When the
data of this pair was removed, the linear and
significant correlation between SOC change and
temperature difference still holds (r2 = 0.44,
Po0.001). The decrease of SOC was estimated to
be 0.088 kg C m− 2 °C− 1, ranging from 0.071 to
0.105 kg C m− 2 °C− 1 at the 95% confidence level.
By extrapolating these observations to the entire
Tibetan plateau, it is estimated that a 1oC decrease in
temperature would result in a roughly 0.1 Pg SOC
loss plateau-wide, which accounts for about 0.3% of
the SOC stored in the Tibetan plateau (Genxu et al.,
2002). However, obviously, this extrapolation should
be considered a rough estimation due to the hetero-
geneity of the plateau, which will likely result in
substantial variance in responses of the soil micro-
bial community.

Various studies have suggested that climate
warming would result in soil C loss through
increased soil respiration (Frey et al., 2013). There-
fore, warming will feedback positively on climate
change. However, recent studies showed contra-
dictory results. For example, long-term warming
has increased net ecosystem C storage on Arctic
tundra, while the soil carbon storage remained
unchanged (Sistla et al., 2013). In a downward
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transplant warming experiment, we also found that
SOC remained unchanged under warming (Yue
et al., 2015). In the current study, however, we
found that SOC was significantly decreased under
cooling (Figure 3b; Supplementary Table 1). A
possible explanation is that the decrease in soil C
inputs through litter and root exudates was not
offset by the decrease in soil C consumption
through respiration. Plant biomass decreased under
cooling, suggesting a significant decrease in soil C
inputs. In contrast, the abundance and presence of
chemically recalcitrant C decomposition genes
were largely unchanged. Persistent microbially-
driven turnover of chemically recalcitrant carbon
accelerates soil C loss, since the chemically recalci-
trant C constitutes the majority of topsoil C in
Tibetan grasslands (Genxu et al., 2002). Even
though soil C loss by climate cooling was similar
to that observed under warming (Cox et al., 2000;
Nie et al., 2013), we propose that the underlying
mechanisms are fundamentally different.

Our results highlight the importance of under-
standing the role of plant and microbial communities
in providing ecosystem feedbacks to climate change.
To improve the prediction of ecosystem feedbacks to
climate cooling, it is important to consider various
types of feedback mechanisms resulting from the
changes in plant and microbial community ecology.
Our findings also provide insights into ecological
consequences of numerous cooling events in earth’s
history.
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