TECHNICAL COMMENT

CARBON CYCLE

Comment on "The whole-soil carbon flux in response to warming"

Jing Xiao,¹ Fangjian Yu,¹ Wanying Zhu,¹ Chenchao Xu,¹ Kaihang Zhang,¹ Yiqi Luo,² James M. Tiedje,³ Jizhong Zhou,^{2,4} Lei Cheng¹*

In a compelling study, Hicks Pries *et al.* (Reports, 31 March 2017, p. 1420) showed that 4° C warming enhanced soil CO₂ production in the 1-meter soil profile, with all soil depths displaying similar temperature sensitivity (Q₁₀). We argue that some caveats can be identified in their experimental approach and analysis, and that these critically undermine their conclusions and hence their claim that the strength of feedback between the whole-soil carbon and climate has been underestimated in terrestrial models.

icks Pries *et al.* (1) used a deep soil warming experiment to examine CO_2 production in response to warming across the soil profile in a coniferous temperate forest. They found that a 2-year in situ warming of 4°C significantly enhanced the whole-soil CO_2 production by 34 to 37%, and that all soil layers exhibited similar temperature sensitivity with a mean apparent Q_{10} of 2.7 ± 0.3. We argue that although the idea of subsoil carbon dynamics in response to warming is worth testing (2, 3), their conclusions are critically undermined by the experimental approach and analysis.

Hicks Pries et al. buried heating rods at a depth of 2.4 m (with additional circular heating cables near the surface at radii of 0.5 and 1 m) to warm the 1-m soil profile evenly by 4°C. This method differed from the majority of previous studies, in which soil temperature was elevated through heating surface air and/or topsoil layers to simulate the magnitude of rise in surface air temperature (2, 3). Although it is expected that ongoing and future air warming would increase the temperature of the soil profile, the magnitude of temperature elevation likely attenuates with depth. This happens because net energy inputs from air and subsequent heat conduction driven by a thermal gradient would inevitably invoke temperature variation in deep soils lagging behind that of surface soils under a dynamic climate system. Such a thermal lag effect is also ascribed to low thermal diffusivity and thickness of the soil profile (4). In an alpine meadow with clipping to simulate animal grazing under 4°C surface air warming, for instance, the magnitude of temperature elevation decreased by 88% and 77%, respectively, at 60- and 100-cm soil depths (5). In a boreal forest under 3.4°C soil warming at a depth of 10 cm, the magnitude of temperature elevation declined by 40% and 53%, respectively, at 75- and 100-cm soil depths (6). These previous findings imply that Hicks Pries *et al.*'s experimental warming approach may cause higher temperature elevations in deeper soil layers (e.g., <50 cm) than expected under air warming, thus overestimating the whole-soil CO₂ production.

To examine temperature sensitivity of CO_2 production across the soil profile, Hicks Pries *et al.* used the following equation to calculate the apparent Q_{10} , a factor by which the CO_2 production rate increases with a 10°C rise, of each soil layer:

$$Q_{10} = \left(\frac{R_{\rm H}}{R_{\rm C}}\right)^{\frac{10}{T_{\rm H}-T_{\rm C}}} \tag{1}$$

where $R_{\rm C}$ and $R_{\rm H}$ are the CO₂ production rates of each control and heated plot pair, respectively, and $T_{\rm C}$ and $T_{\rm H}$ are the soil temperatures of the corresponding control and heated plots, respectively. By directly comparing CO₂ production between each treatment plot pair on every sampling date, however, a large number of anomalous Q10 values appeared (for example, 33% of them <1.0 and 20% of them >5). Hicks Pries et al. included Q_{10} values less than 1.0 but excluded those greater than 6.4 (45 of 281) as "unrealistic values" ($Q_{10} >$ 30) or "outliers" ($6.4 < Q_{10} < 30$) in their analysis. At 7.5-cm soil depth, for instance, nearly one-third of the data points were not included in computing the mean apparent $Q_{10}.\,Although \,many\,Q_{10}$ values were ignored in Hicks Pries et al., they did not propose a different mechanism (other than the warming treatment) underlying the emergence of these anomalous data points. We believe that the analysis of Hicks Pries et al. is inappropriate, leading to the biased conclusion that all soil depths responded to warming with very similar temperature sensitivity.

In a seminal work, Hawkins defined an outlier as "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism" (7). Evidently, the apparent Q_{10} was not a direct observation but was calculated from the paired soil CO_2 in their study. As such, the exclusion of any Q_{10} must be based on the statistical analysis of soil CO_2 measurements rather than the Q_{10} itself. If any Q_{10} value could be considered an outlier or even unrealistic, the corresponding paired soil CO_2 data should also be excluded in analyzing the mean soil CO_2 production (figure 2A of Hicks Pries *et al.*). To reach a fair conclusion about the whole-soil response to warming, we

¹College of Life Sciences, Zhejiang University, Hangzhou 310058, China. ²Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA. ³Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA. ⁴Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA. ***Corresponding author. Email:** Icheng@zju.edu.cn

reanalyzed the mean soil CO₂ production using the original data sets by omitting those not included in the estimation of the mean apparent Q_{10} in figure 2B of Hicks Pries *et al.* In contrast to Hicks Pries *et al.*, results from the current analysis show that CO₂ flux from the whole-soil profile remained unchanged under warming (Fig. 1A, P = 0.15). This result indicates that the omission of many data points in the Hicks Pries *et al.* analysis could lead to inconsistent conclusions about the response of the whole soil to warming.

We argue that the exclusion of many data points in the Hicks Pries et al. analysis could be problematic because their data were collected from a time-series experiment. In their study, soil CO2 measurements had been conducted repeatedly on the same object (i.e., each soil layer) over 2 years; thus, measurements at different time points were not independent of each other (8). Actually, soil CO2 production decreased significantly over time in the whole-soil profile (P <0.001). Moreover, two CO₂ measurements taken at adjacent time points were more highly correlated than two taken several time points apart [the fittest covariance structure: first-order autoregressive with heterogeneous variance ARH(1), $\phi = 0.994$]. If such repeated and self-correlated CO₂ measurements were treated erroneously as if they were random samples, as in the analysis of Hicks Pries et al., the exclusion of a large number of data points could lead to serious power loss in statistical analysis (7).

To avoid the occurrence of many "abnormal" Q_{10} values, we propose a different method to estimate the mean apparent Q_{10} of each soil depth. In the Hicks Pries *et al.* analysis, many anomalous Q_{10} values appeared because any variation in soil CO₂ data collection would be amplified exponentially by a power of $10/(T_{\rm H} - T_{\rm C})$. To ameliorate error propagation, we use a least-squares regression model to estimate the apparent Q_{10} (9) by reformatting Eq. 1 as follows:

$$\ln \frac{R_{\rm H}}{R_{\rm C}} = \frac{\ln({\rm Q}_{10})}{10} \cdot (T_{\rm H} - T_{\rm C}) \tag{2}$$

Using Eq. 2, the apparent Q_{10} for each soil layer can be estimated through performing a linear regression between $\ln(R_{\rm H}/R_{\rm C})$ and $(T_{\rm H} - T_{\rm C})$. Meanwhile, the potentially confounding effects of seasonal changes, emphasized in Hicks Pries et al., could be minimized because the same paired data are used. In our analysis, only those data points with CO₂ production equal to zero were not included. Tests of difference in Q_{10} between soil depths were conducted based on a generalized linear model by introducing a dumb variable of depth. Interestingly, we found that the mean apparent Q₁₀ of the two surface soil layers (mean $Q_{10} = 2.62$) was significantly higher than that of the three deeper soil layers (mean $Q_{10} = 1.20$) (Fig. 1B, P < 0.001). These results are in conflict with those of Hicks Pries et al. and suggest that the surface soil layers were more responsive to warming, with a much higher temperature sensitivity relative to the deep layers.

Hicks Pries *et al.* concluded their analysis with a claim that the strength of the carbon-climate feedback in terrestrial models has been underestimated because these models have ignored the warming effects on subsoil (e.g., >50 cm) and usually include relatively low apparent Q_{10} values of soil CO₂ production. Given the above caveats with respect to how this experiment was carried out and how the data were interpreted, we believe that their recommendation lacks a solid foundation.

REFERENCES AND NOTES

- 1. C. E. Hicks Pries, C. Castanha, R. C. Porras, M. S. Torn, *Science* **355**, 1420–1423 (2017).
- 2. L. Cheng et al., ISME J. 11, 1825–1835 (2017).
- 3. T. W. Crowther et al., Nature 540, 104–108 (2016).
- T. Mimouni, L. Lei, L. Laloui, Acta Geotech. 10, 197–208 (2015).
 M. Xu et al., J. Arid Land 7, 189–204 (2015).
- 6. R. L. Rich et al., Glob. Change Biol. 21, 2334–2348 (2015).
- 7. D. M. Hawkins. Identification of Outliers (Springer, 1980).
- R. C. Littell, G. A. Milliken, W. W. Stroup, R. D. Wolfinger, O. Schabenberger, SAS for Mixed Models (SAS Institute, Cary, NC, ed. 2, 2006).
- 9. M. D. Mahecha et al., Science 329, 838-840 (2010).

ACKNOWLEDGMENTS

We thank M. S. Torn for stimulating discussions. Supported by National Natural Science Foundation of China (NSFC) grants 31670501, 31422010, and 31370487 and by Zhejiang Provincial NSFC grant LR14C030001.

6 June 2017; accepted 21 December 2017 10.1126/science.aao0218

Comment on "The whole-soil carbon flux in response to warming"

Jing Xiao, Fangjian Yu, Wanying Zhu, Chenchao Xu, Kaihang Zhang, Yiqi Luo, James M. Tiedje, Jizhong Zhou and Lei Cheng

Science **359** (6378), eaao0218. DOI: 10.1126/science.aao0218

ARTICLE TOOLS	http://science.sciencemag.org/content/359/6378/eaao0218
REFERENCES	This article cites 7 articles, 2 of which you can access for free http://science.sciencemag.org/content/359/6378/eaa00218#BIBL
PERMISSIONS	http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title *Science* is a registered trademark of AAAS.