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Tundra soil carbon is vulnerable to rapid microbial
decomposition under climate warming
Kai Xue1,2,3†, Mengting M. Yuan2,3†, Zhou J. Shi2,3, Yujia Qin2,3, Ye Deng2,3,4, Lei Cheng2,3,5, LiyouWu2,3,
Zhili He2,3, Joy D. Van Nostrand2,3, Rosvel Bracho6, Susan Natali7, Edward. A. G. Schuur6,8,
Chengwei Luo9, Konstantinos T. Konstantinidis9, QiongWang10, James R. Cole10, James M. Tiedje10,
Yiqi Luo3 and Jizhong Zhou1,2,3,11*
Microbial decomposition of soil carbon in high-latitude tundra
underlain with permafrost is one of the most important, but
poorly understood, potential positive feedbacks of green-
house gas emissions from terrestrial ecosystems into the
atmosphere in a warmer world1–4. Using integrated meta-
genomic technologies, we showed that themicrobial functional
community structure in the active layer of tundra soil was
significantly altered after only 1.5 years of warming, a rapid
response demonstrating the high sensitivity of this ecosystem
to warming. The abundances of microbial functional genes
involved in both aerobic and anaerobic carbon decomposition
werealsomarkedly increasedby this short-termwarming.Con-
sistent with this, ecosystem respiration (Reco) increased up to
38%. In addition,warming enhanced genes involved in nutrient
cycling, which very likely contributed to an observed increase
(30%) in gross primary productivity (GPP). However, the GPP
increase did not o�set the extra Reco, resulting in significantly
more net carbon loss in warmed plots compared with control
plots. Altogether, our results demonstrate the vulnerability
of active-layer soil carbon in this permafrost-based tundra
ecosystem to climatewarming and the importance ofmicrobial
communities in mediating such vulnerability.

Permafrost, defined as ‘subsurface earth materials remaining
below 0 ◦C for two consecutive years’1, is a unique characteristic
of polar regions and high mountains. In permafrost-underlain
high-latitude tundra, plant-derived carbon has accumulated over
hundreds to thousands of years because low temperatures and
saturated soils reduce microbial decomposition of soil organic C
(refs 5,6). As a result, nearly 50% of the global soil organic C is
stored in Northern Hemisphere permafrost and the active-layer
soils above, although they cover only 16% of the global terrestrial
area7. High-latitude tundra has long been recognized as being highly
responsive to climate change8. Recent accelerated warming in the
northern high-latitude region9 has resulted in rapid permafrost
degradation, and studies suggest that permafrost could decline
by 30–70% by the end of the twenty-first century10,11. During
permafrost degradation, frozen soil becomes biologically active,

withmicrobial decomposition resulting inmassive ecosystemC loss,
which is likely to dominate the overall net C exchange in permafrost
regions1. Although plant responses to climate warming in the active
layer of the tundra soil have been intensively studied12–14, microbial
responses have not been examined until very recently4,15–18.

Although various observational studies have documented the
responses of tundra ecosystems to natural warming19, and some
incubation studies revealed microbial community changes on
permafrost thaw in laboratory settings16,18, very few studies
examined microbial responses to climate warming in tundra
ecosystems in the field. As field experimental warming can directly
examine the impacts of temperature increases on the microbial
community in situ13, an ecosystem warming experiment, Carbon
in Permafrost Experimental Heating Research (CiPEHR), was
established in September, 2008, in Interior Alaska. The experiment
is located in typical moist acidic tussock tundra20, a dominant
tundra type, on permafrost that is close to the freezing point
and thus especially vulnerable to thaw in a warming climate21.
In this experiment, snow fences (that is, increased snow pack for
insulation) were used in the soil warming treatment to increase soil
temperature, coupled with early spring snow removal to control
snow-water equivalents in both warmed and control plots. Soil
warming and control treatments were arranged in six replicates,
providing sufficient statistical power. This is the first warming
experiment to degrade surface permafrost without delaying spring
snow melt14. To understand how vulnerable the active layer of the
tundra soil is to climate warming, a total of 12 subsurface soil
samples from a representative depth of 15–25 cm were collected
from both warmed and control plots after short-term (1.5 years)
warming for geochemical and microbial analyses. These samples
represented active-layer soil that freezes in winter and thaws in
the growing season, and were within the organic horizon along
the depth profile. As soil microbial community structure is tightly
linked to changes in the aboveground plant community and soil
environmental conditions22, we predicted that short-term warming
would result in selective microbial growth, which would be seen
as a shift in the active-layer microbial community structure and
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Figure 1 | Warming e�ects on soil variables and ecosystem C fluxes. Grey
bars represent control plots and black bars represent warmed treatment
plots. a, Soil temperature in both growing season (May to September 2010)
and wintertime (December 2009 to March 2010) averaged across 5, 10, 20
and 40 cm. b, Soil moisture. c, Maximum thaw depth. d, Standard cellulose
filter paper decomposition rate (mass loss) in the field. e, Proportion of soil
C pools in total organic C, including labile C pool 1 (LCP1, mainly
polysaccharides) and 2 (LCP2, mostly cellulose), and recalcitrant C pool
(RCP). f, Growing season (May to September 2010), wintertime
(October 2009 to April 2010) and annual ecosystem C fluxes, which were
estimated on the basis of the C amount from CO2 emissions. GPP, gross
primary productivity; Reco, ecosystem respiration; NEE, net ecosystem C
exchange. Positive values indicate C sink, and negative values represent C
source. Error bars represent standard error of the mean. The di�erences
between warmed and control plots were tested using two-tailed t tests,
indicated by ∗∗ when p<0.05, or ∗ when p<0.10. Panels a–d,f were
reanalysed from previously published data12,23,31.

accompanying gene content, especially in those populations and
traits important to both aerobic and anaerobic C decomposition
and nutrient cycling. Consequently, soil C in this tundra ecosystem
would be highly vulnerable to climate warming.

Short-term soil warming altered several environmental attributes
(for example, plant, soil microclimate and soil properties) of the
tundra12,14,23. First, soil temperature (5–40 cm) increased by 2.3 ◦C
(from −6.2 ◦C to −4.0 ◦C) in response to warming in wintertime
and by 0.6 ◦C (from 3.8 ◦C to 4.4 ◦C) during the growing season
in 2010 (Fig. 1a), which led to a substantial surface permafrost
thaw as indicated by an increased thaw depth (8.8%, p< 0.001;
Fig. 1c). Similarly, soil moisture increased in response to warming
(over 10%, p = 0.03; Fig. 1b). Second, GPP increased (30.3%,
p=0.02; Fig. 1f), mainly owing to enhanced growth of graminoids
(57.5% increase in biomass, p = 0.05). Warming also extended
the growing season length through earlier bud break and delayed
senescence12. In addition, the percentage ofmostly cellulose fraction
of the labile C pool24 in total soil organic C was higher (36.1%,
p= 0.06) in warmed than control soils (Fig. 1e). The C amount
of this pool under warming tended to increase as well, but not
statistically significantly (Supplementary Fig. 5). Together, these
results indicated that environmental attributes of the tundra soil
were altered rapidly by short-term warming.

Table 1 | Significance tests on the e�ects of warming on
the microbial community functional structure detected by
GeoChip hybridization.

MRPP ANOSIM Adonis

δ p R p F p
Euclidean 69.02 0.04 0.38 0.02 1.69 0.04
Horn 0.06 0.04 0.36 0.02 1.20 0.23
Bray 0.09 0.03 0.30 0.02 1.28 0.21
Three di�erent permutation tests were performed, including the multiple response
permutation procedure (MRPP), analysis of similarity (ANOSIM) and permutational
multivariate analysis of variance (Adonis), calculated with Euclidean, Horn or Bray distance.
Bold values indicate p<0.05.

The observed alterations in the soil microclimate (temperature,
moisture, thawing depth), soil C, and GPP in response to warming
would be expected to cause significant changes in the microbial
communities in the active layer of tundra soil. Consistent with this
expectation, the microbial community functional gene structure
was markedly different between warmed and control plots as
revealed by the detrended correspondence analysis of the GeoChip
data (Supplementary Fig. 1a), indicating increases in certain genes
and possibly the organisms that host these. Three different non-
parametric multivariate statistical tests (ANOSIM, Adonis and
MRPP) showed that the functional community structure differed
substantially between warmed and control plots (Table 1). However,
significant differences in the overall community structure were
not detected with 16S ribosomal RNA gene-based amplicon
and shotgun metagenomic sequencing approaches (Supplementary
Fig. 1b,c). This is most likely due to the high heterogeneity of
soil environments, low taxonomic resolution of the experimental
approaches, and/or high noise associated with random sampling25.
Canonical correspondence analysis revealed that soil temperature,
moisture and plant GPP were the main significant variables
related to the microbial community functional structure (F=1.68,
p= 0.005; Supplementary Fig. 2a). This is also consistent with
our central hypothesis that warming-induced changes in plant
productivity and soil microclimate significantly alter the soil
microbial community structure. In addition, soil community DNAs
were shotgun sequenced and a total of 3.24 billion raw sequences
were obtained for these samples (Supplementary Table 2). Although
the overall metagenome structures were not separable into warmed
versus control groups (Supplementary Fig. 1c, Supplementary Fig. 3
and Supplementary Table 1), a small portion (7.4%) of total
subsystems, genes associated withmicrobial physiological attributes
and ecosystem processes, were significantly different between
warmed and control plots (p<0.05; Fig. 2d). In particular, warmed
plots were enriched in genes associated with pathways related to
labile C utilization (Supplementary Table 3). Our above results
indicated that the microbial communities in the active layer of
tundra soil were responsive to warming.

Soil warming also significantly impacted a number of microbial
functional and phylogenetic groups important for C decomposition.
First, more than half (54.5%) of the detected C decomposition
genes were increased by warming according to GeoChip signal
intensities (p<0.05; Fig. 2a), including those involved in degrading
starch (for example, amyA encoding α-amylase), hemicellulose
(for example, ara encoding arabinofuranosidase), cellulose
(for example, cellobiase), chitin (for example, endochitinase),
aromatics (for example, vdh encoding vanillin dehydrogenase)
and lignin (for example, glyoxal oxidase, phenol oxidase).
Also, the total fungal functional gene intensity detected by
GeoChip was more abundant in warmed plots than control plots
(4.7%, p< 0.001; Supplementary Fig. 4a). Increases of the genes
involved in recalcitrant C decomposition (Fig. 2a) suggest the
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Figure 2 | Warming e�ects on functional genes involved in biogeochemical cycling processes. a, C degradation from GeoChip data. The targeted
substrates were arranged in order from labile to recalcitrant C. GeoChip data are presented as the signal di�erence between warmed and control plots
(warmed–control). Error bars represent standard error. Significance is indicated by ∗∗ when p<0.05. b, Anaerobic processes from GeoChip data.
c, N processes from GeoChip data. The percentage change in N gene abundance in response to warming is indicated in parenthesis. Genes where change in
abundance was significant (p<0.05) are labelled in red. Grey-coloured genes were not targeted by the version of GeoChip used here, not detected or not
applicable. d, Abundance of subsystems involved in C, N, phosphorus and sulfur cycling from metagenomic shotgun sequence data. Changes in
subsystems are indicated as fold change (log2 (warmed/control)) in abundance. Significant di�erences between warmed and control plots are highlighted
with green squares. e, Response ratios showing significant changes in abundance of gene clusters involved in C and N cycling from the metagenomic
shotgun sequence data. These gene clusters were identified by searching the shotgun sequence data sets using GeoChip genes as queries. Each cluster on
the x axis represents a group of sequences among which the similarities are≤95%. The GenBank GI numbers of the representative sequences for the gene
clusters are listed in Supplementary Table 8. Error bars indicate 95% confidence intervals of abundance di�erences between warmed and control groups.
The full names of the genes in this figure are listed in Supplementary Table 7.

possible degradation of old recalcitrant C and thus a potential
positive feedback to climate warming. In addition, shotgun
metagenome sequence data revealed that a substantial portion
(19.5%, 8 of 41) of C degradation pathways was increased by
warming (p < 0.05; Fig. 2d, Supplementary Table 3), including
those for cellulose, mannose metabolism, carbohydrate hydrolases,
fructooligosaccharides and raffinose utilization, lactose and
galactose uptake and utilization, L-fructose utilization, xylose
utilization, chitin utilization and N -acetylglucosamine utilization.
More specifically, many individual genes involved in labile
C degradation (for example, starch, hemicellulose and cellulose),
which were identified from metagenome sequences using GeoChip
genes as queries, were increased (95% confidence interval;
Fig. 2e). Overall, as these functional genes directly participate in
aerobic C degradation, their higher abundance could enhance
C decomposition and hence contribute to positive climate feedback.

The potential for accelerated C decomposition was supported
by several independent pieces of evidence. First, the cellulose
decomposition rate measured by adding external cellulose substrate
was higher under warming (Fig. 1d). Also, both winter Reco,
derived almost exclusively from heterotrophic soil respiration, and
growing season Reco, including both autotrophic (from plants) and
heterotrophic soil respiration, increased with warming (100% and
24%, p< 0.05; Fig. 1f; ref. 23). In addition, strong correlations
were observed between both growing season and wintertime Reco
and the functional gene groups involved in degrading almost all
C compounds targeted byGeoChip, including starch, hemicellulose,
cellulose, chitin, aromatics and lignin (Supplementary Table 5),
suggesting that changes in abundance of these genes could be
important in mediating Reco (ref. 26).

Permafrost thawing induced by warming often increases soil
water content and creates a mosaic of flooded areas interspersed
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within dry areas, which may potentially enhance anaerobic
C decomposition1,18. As water is heterogeneously distributed
spatially and temporally, oxygen would also be expected to be
unevenly distributed in the soil14. GeoChip hybridization-based
analysis revealed that genes involved in several important anaerobic
respiration processes, such as denitrification, methanogenesis and
sulfate reduction, were increased by warming (p< 0.05; Fig. 2b).
Shotgun metagenome sequence analysis also revealed that the
pathway for denitrification (marginally) increased in response to
warming (p= 0.08; Supplementary Table 6). These results were
consistent with laboratory incubation studies, where methanogenic
pathways were increased within several days after permafrost
thaw16,18. Although some upland permafrost areas were observed
to be CH4 sinks26, for our studied site, significantly increased CH4
emission rates after several years of warming have been reported27.
As CH4 and N2O have 28 and 265 times the warming potential
of CO2 per mole28, respectively, anaerobic microbial responses are
most likely of considerable importance.

Estimates show that methane emission in northern wetlands,
including tundra, accounts for 25% of the global methane

release from natural sources29. GeoChip analysis revealed
that warming increased the gene encoding methyl coenzyme
M reductase A (mcrA), a key enzyme in methanogenesis (p<0.01;
Supplementary Fig. 4b). Although 16S rRNA sequence analysis
detected twomethanogens (Methanobacteria andMethanomicrobia;
Supplementary Fig. 4d), the relative abundance between warmed
and control plots was not significantly different for either
methanogen. Warming, however, resulted in a greater abundance
of pmoA, a gene encoding particulate methane monooxygenase
subunit A (p=0.01; Supplementary Fig. 4b), suggesting that more
of the methane produced could be oxidized in the aerobic upper
soil horizon at the warmed plots. Similar findings were reported in
recent studies on both incubated permafrost soils16 and active-layer
samples in situ17,26.

Warming also increased genes involved in N cycling (Fig. 2c,e),
microbial phosphorus utilization and sulfur metabolism
(Supplementary Fig. 4c). Most (82.4%) of the GeoChip-detected
functional genes involved in N cycling were increased in response
to warming (p < 0.05; Fig. 2c), consistent with the previous
finding that warming enhances nutrient cycling3. For example,
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the abundance of N2-fixing bacteria was higher in response to
warming (p< 0.05; Fig. 2c), and two bacterial classes (Opitutae
and Deltaproteobacteria) detected by PCR amplification of the
nifH gene had higher abundance in warmed samples (p< 0.05;
Supplementary Fig. 4e). Also, the abundance of key genes (for
example, gdh and ureC) in N mineralization was higher in
warmed than control soil (p< 0.05 or 95% confidence interval;
Fig. 2c,e). In addition, warming seemed to increase nitrification
and denitrification processes, as indicated by increased nirK and
amoA genes from GeoChip data (Fig. 2c). The increase in amoA
could potentially lead to higher nitrate concentrations, which
is also supported by the greater abundance of genes for various
reductive processes that use nitrate as an electron acceptor, such
as narG, nirS/nirK and nosZ for denitrification, napA and nrfA
for dissimilatory nitrate reduction to ammonium, and nasA, nirA
and nirB for assimilatory nitrate reduction (Fig. 2c,e). Microbial
phosphorus utilization genes (phytase and ppx) and eight of the
eleven detected sulfur metabolic genes had higher abundance in
warmed than in control plots (Supplementary Fig. 4c). Although the
significant increase in abundance of the genes involved in nutrient-
cycling processes observed in warmed plots may potentially
enhance the rates of nutrient cycling, more in-depth studies are
necessary to determine the rates and extent of stimulation of
different nutrient-cycling processes.

The increased abundance of N cycling genes (particularly those
involved in N mineralization, N fixation and nitrification) and
other nutrient-cycling genes could increase nutrient (especially N)
availability in soil, which is important for ecosystem C dynamics
because N is a limiting factor for plant growth in most tundra
ecosystems12. That warming enhanced plant N uptake is supported
by the observation that from 2009 to 2010 plant foliar N mass
increased in warmed plots (35%, p<0.01), but remained unchanged
in control plots12. The enhanced plant N uptake could in turn
affect GPP, which increased in response to warming (p< 0.05;
Fig. 1f). Moreover, almost all genes involved in N cycling (18 of 19)
and most C degradation genes (22 of 33) showed significant
correlations with GPP (p<0.05; Supplementary Table 5). Increased
N2 fixation, mineralization and nitrification could counteract the
potential higher N loss from soil due to increased plant N uptake,
denitrification and nitrate leaching. As a net result, the soil N
availability seemed not to be affected by warming14.

In summary, our results highlight the importance of microbial-
community-mediated feedbacks of the active layer to warming,
as illustrated in a conceptual model (Fig. 3). In response to
warming, deeper thaw depth increased the amount of C accessible
for decomposition. Within the active layer, soil C is also more
vulnerable to degradation through the following mechanisms:
first, short-term soil warming altered the active-layer microbial
community structure, demonstrating rapid responses by these
communities; annual Reco released 127 g more C m−2 from warmed
plots compared with controls, resulting in 38.6% more C loss from
soil. Also, warming increased the abundance of functional genes
involved in anaerobic processes, which could lead to a greater
positive feedback by releasing more CO2, CH4 and N2O (Fig. 3).
In contrast, the potentially higher nutrient availability resulting
from the increased abundance of nutrient-cycling genes would also
stimulate plant growth (Fig. 3). In this study, increased GPP did not
completely offset theC loss from thewarming-inducedReco increase.
The net C loss fromwarmed plots doubled in 2010 (Fig. 1f), and was
estimated to increase more in an actual climate warming scenario23.
However, it should be noted that the experimental results reported
in this studywere derived from the active layer of theAlaskan tundra
soil. To generalize whether the results observed are applicable to
permafrost requires further analyses with actual permafrost.

Overall, whether the tundra soil acts as a C source or sink
depends on plant and microbial responses to climate warming.

Our results indicate that the soil C is highly vulnerable to
climate warming and this vulnerability is determined by a set
of complex microbial feedbacks to the temperature increase.
Improved predictions by ecosystem models to climate warming30
may be possible through better assessment of microbial functional
capacities and their responses.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Site description and sampling. The Carbon in Permafrost Experimental Heating
Research (CiPEHR) site was established in September 2008 at a moist acidic tundra
area of Interior Alaska near the Denali National Park in the Eight Mile Lake region
(63◦ 52′ 59′′ N, 149◦ 13′ 32′′ W). The experimental plots were located in the
discontinuous permafrost region where permafrost thaw has been observed in the
past several decades. Experimental design and site description were described in
detail previously14. Briefly, three experimental blocks were located approximately
100m away from each other. In each block, two snow fences were erected in the
winter of each year (October to April) about 5m apart. The soil warming treatment
plots were located 5m back from the leeward side of the snow fences, and the
paired control plots were at the windward side of the snow fences. Soil temperature
was increased in the warmed plots owing to thicker snow cover on the soil surface
and lower wind strength. Snow fences were removed in the spring before snow melt
to provide uniform hydraulic conditions in both winter warming and control
treatments. From 1976 to 2009, mean monthly temperature in the field ranged
from−16 ◦C in December to 15 ◦C in July, with an annual mean temperature of
−1.0 ◦C. The average annual precipitation was 378mm. Only C3 plant species were
observed in this area. Dominant species include Eriophorum vaginatum,
Vaccinium uliginosum, some other vascular species, non-vascular feather moss and
lichen. In the experimental plots, soil from the ground surface to a depth of
45–65 cm, depending on sampling cores, was rich in organic carbon (C) materials;
below that depth was mineral soil with a mixture of glacial till and windblown
loess. The active-layer depth was about 50 cm.

Twelve soil cores, six from treatment and six from control plots, were taken
using electric drills in destructive sampling plots at the six snow fences in the
beginning of the 2010 growing season (May), one and one-half years after the
initiation of the winter warming treatment. Our analysis provides a snapshot of the
soil microbial community response to early stage soil warming. The 15–25 cm
depth soil fractions were analysed in this study.

Environmental and soil chemical measurements. Thaw depth was measured
weekly during the growing season (May to September 2010) using a metal depth
probe14. The thaw depth data presented in this study were the average values for the
2010 growing season.

Constantan–copper thermocouples and CR1000 data loggers (Campbell
Scientific) were used to measure and record soil temperature and moisture content
at 5, 10, 20 and 40 cm every half hour in flux bases installed in each plot14. The
soil temperatures in Fig. 1 were reanalysed from previously published data12, which
represent either growing season or wintertime (December 2009 to March 2010)
temperatures averaged over 5–40 cm soil depth. To represent themicroclimate of the
soil where and when the microbial communities were sampled, the soil temperature
data used in canonical correspondence analysis (CCA; Supplementary Fig. 2)
were the average values at 20 cm depth from December 2009 to May 2010.
Volumetric water content from the soil surface to 15 cm depth was measured
using site-calibrated Campbell CS616 water content reflectometer probes14. Soil
moisture data presented in this study were averaged over the 2010 growing season.

To prepare soils for microbial and chemical analyses, visible roots and stones
were removed by metal forceps. To measure soil C and nitrogen (N), soil samples
(5 g) were dried at 70 ◦C until constant weight, ground to powder, encapsulated in
silver foil and fumigated with HCl for 24 h at room temperature to remove soil
inorganic C (carbonates). Soil C and N concentrations were analysed in the
Colorado Plateau Stable Isotope Laboratory at the Northern Arizona University on
a DELTA V Advantage isotope ratio mass spectrometer (Thermo Fisher Scientific),
configured through a Finnigan CONFLO III (Thermo Fisher Scientific) and using
a Carlo Erba NC2100 elemental analyser (CE Elantech). The total organic C (TOC)
and soil N content of each sample were calculated as the percentage mass of
C or N (ref. 32).

To measure soil C pools, soil samples were processed with a two-step hydrolysis
procedure to separate the labile and recalcitrant C pools24. First, 5N H2SO4 was
used to hydrolyse dried soil at 105 ◦C for 30min, from which the hydrolysate and
wash-offs were collected after centrifugation as labile pool 1, containing mainly
polysaccharides. Second, the residue was then shaken continuously overnight at
room temperature with 26N H2SO4, followed by hydrolysis at 105 ◦C for 3 h with
acid diluted to 2N. The hydrolysate and wash-offs were recovered as labile pool 2,
containing mostly cellulose. The recalcitrant C pool consisted of the remaining
organic C. The organic C in labile pools 1 and 2 was analysed using a Shimadzu
TOC-V CPH PC-Controlled TOC analyser (Shimadzu Corporation) and the
organic C in the recalcitrant C pool was analysed using a PerkinElmer Optima
2000DV ICP-OES spectrometer (PerkinElmer) in the Environmental and
Agricultural Testing Service laboratory at North Carolina State University.

Aboveground plant communities. Aboveground plant community investigations
were conducted as described previously12,14. In brief, aboveground biomass and net
primary productivity (ANPP) were determined by a non-destructive point-frame
method using a 60×60 cm point frame with a grid size of 8×8 cm (ref. 33). At

each of the 49 intersecting grid points, a metal rod (1mm diameter) was placed
vertically through the plant canopy. Species identity and tissue type (leaf, stem or
fruit) were recorded for every ‘hit’ with the rod. Aboveground live biomass for each
vascular plant species, moss and lichen was estimated by applying allometric
equations developed for this site to the average number of point-frame ‘hits’ per
plot34. Vascular plant ANPP was estimated as the sum of the current year’s apical
growth (leaves, stems, flowers and fruits) and secondary growth. The ratio of
biomass between each tissue type and total plant was determined from destructive
harvesting of a site adjacent to CiPEHR (ref. 35). Secondary growth was evaluated
using growth rates determined from tussock tundra at Toolik Lake, Alaska35. Moss
NPP was measured by the cranked wire method, which measures vertical growth of
moss using a stainless-steel reference wire inserted at the moss surface34,36. Three to
five cranked wires were placed in four moss types in each treatment at all fences to
measure the growth from mid-May to mid-September. Feather moss NPP was
estimated as the product of linear growth per stem, stem density, biomass per unit
stem growth and percentage cover. Allometric equations developed for the Eight
Mile Lake watershed34 as well as percentage cover were used to convert the vertical
growth of other types of moss into biomass. Moss NPP was the sum of all types of
moss NPP. Current year’s fully formed green leaves from six vascular plants found
across plots were collected at peak biomass (mid-July) for measuring foliar N and
at the end of the growing season (late September) for senescent N (ref. 14). At least
three leaves from two to three individuals in each plot were collected each time.
Leaves were dried at 60 ◦C, finely ground, and analysed on a continuous flow
isotope ratio mass spectrometer (Thermo Fisher Scientific) coupled with a Costech
elemental analyser.

Decomposition.Weighed cellulose filter papers (Fisher brand P8 09-802-1B) were
placed into fibreglass mesh bags and placed vertically at 0–10 cm in the field soils in
September 2009 and collected in September 2010. The bags were rinsed and dried
at 60 ◦C for weighing. The percentage of mass loss was calculated to represent
decomposition rate.

Ecosystem C flow. Ecosystem C flux measurements were described previously14,23.
Growing season net ecosystem exchange (NEE) and ecosystem respiration (Reco)
were measured fromMay to September 2010 using an automated CO2 flux system
coupled to the flux chambers14. Reco was determined with night measurements.
Gross primary productivity (GPP) was estimated as the difference between NEE
and Reco (values are positive for C flowing from atmosphere to terrain and vice
versa). Winter respiration was estimated using a parameterized winter respiration
model, adjusted using in-plot winter respiration measurements in March and April
2009 using an infrared gas analyser in a portable CO2 flux system. In winter, there
was no photosynthetic activity and Reco represents mainly microbial respiration.
The C flux data used for analysis in this study were reanalysed from previous
published data sets23.

Soil DNA extraction. Soil DNA was extracted using a PowerMax Soil DNA
Isolation Kit (MO BIO), and the quality was assessed based of spectrometry
absorbance at wavelengths of 230 nm, 260 nm and 280 nm (ratios of absorbance at
260/280 nm around 1.8, and 260/230 nm>1.7) detected by a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies). Then it was quantified with Pico
Green using a FLUOstar OPTIMA fluorescence plate reader (BMG LabTec) before
being used for gene array labelling and sequencing library preparation. Detailed
protocols for soil microbial community analysis (for example, amplicon
sequencing, shotgun sequencing and GeoChip) are provided as Supplementary
Information.

GeoChip analysis. GeoChip 4.2 is a comprehensive gene array containing
107,950 probes designed for covering 792 functional gene families from 11 major
functional categories including C, N, phosphorus and sulfur cycling37,38. One
microgram of DNA from each sample was mixed with random primers and
denatured before dNTP, fluorescent dye Cy-3 dUTP and DNA polymerase were
added for labelling at 37 ◦C for 6 h, followed by heating at 95 ◦C for 3min. Labelled
DNA was purified and dried up. For hybridization, DNA was resuspended in
hybridization solution containing a sample tracking control, formamide, SSC, SDS,
a Cy3-labelled alignment oligonucleotide, a Cy5-labelled alignment oligonucleotide
and a Cy5-labelled common oligonucleotide reference standard target. After
denaturing, the mixtures were deposited onto the glass microarray and hybridized
at 42 ◦C for 16 h. Then the arrays were washed and dried, and scanned by an MS
200 Microarray Scanner (NimbleGen) at 532 nm and 635 nm. NimbleScan software
version 2.5 (NimbleGen) was used to grid and process the images to transform
them into signal intensity. The raw signals from NimbleScan were submitted to the
Microarray Data Manager on our website (http://ieg.ou.edu/microarray), cleaned,
normalized and analysed using the data analysis pipeline. Briefly, spot
signal-to-noise ratio and minimum intensity cutoff were used as standard to
remove unreliable spots. Both the universal standard and functional gene spot
intensities are used to normalize the signals among arrays. Data were log
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transformed after cleaning and normalization. A total of 48,188 functional gene
probes were detected across all samples in this study.

Illumina MiSeq sequencing of 16S rRNA gene amplicons. DNAs were amplified
for the V4 region of 16S rRNA genes using primer set 515F and 806R, and
sequenced in one run on a MiSeq using 2×150 pair end format39. Raw sequences
were assembled using RDP’s paired-end reads Assembler. Any assembled sequences
with any ambiguous bases (‘N’) were discarded. Then, 5.28% of the remaining
reads were identified as chimaeras using Uchime40 and removed. The remaining
sequences were clustered into operational taxonomic units (OTUs) using Uclust41
at 97% identity, and randomly resampled to the depth of 42,684 reads per sample.
Representative sequences chosen by Uclust from each OTU were annotated
taxonomically using the RDP Classifier42 with the confidence cutoff 0.5. Finally,
512,208 sequences in 23,677 OTUs were obtained.

454 pyrosequencing of nifH gene amplicons. nifH genes from the DNA samples
were amplified using the primer pair nifH Poly F
(5′-TGCGAYCCSAARGCBGACTC-3′) and Poly R
(5′-ATSGCCATCATYTCRCCGGA-3′) and sequenced on the 454 GSFLX
Titanium platform at Macrogen43–45. After trimming primers, the sequences were
cleaned using LUCY (ref. 46). Sequences with ‘N’, those containing frameshift(s)
detected by FrameBot47, and those identified as chimaeras by Uchime40 according
to the Zehr nifH Database48 were all removed from downstream analyses. The
remaining 162,523 sequences were clustered into 2,643 non-singleton OTUs using
CD-HIT (ref. 49) at 0.95 identity, which was an arbitrary but strict enough cutoff to
identify different species according to previous studies on nifH and other
N-cycling-related genes50–52. Finally, 2,643 non-singleton OTUs were normalized to
relative abundance (scale all of the sample sequence numbers to the largest one) for
statistical analyses. The representative sequence for each OTU was assigned
taxonomic information using the FrameBot47 nearest-neighbour match with an
identity cutoff of 0.5.

Shotgun metagenome sequencing analysis. Each soil metagenome was prepared
using the TruSeq Kit and sequenced at the Los Alamos National Laboratory
Genome Facility using the Illumina HiSeq 2000 in one flow cell lane with a
2×150 bp paired-end kit39. A total of 3.24 billion reads were generated from the
12 samples, with both phylogenetic and functional information extracted. After
data processing, it was found that one of the samples from the control (C1) did not
produce enough useful sequence during shotgun sequencing and thus this sample
was removed from all subsequent analyses. For phylogenetic analysis, the
metagenome reads were trimmed53 and searched against representative OTU
sequences from GreenGenes54 using BLAT (ref. 55). Paired reads that both
matched GreenGenes reference sequences were identified as 16S reads and were
extracted for further analyses. These 16S reads were subsequently searched against
the 99%-clustered GreenGenes OTU sequences. The reads were assigned to the
taxon that was the lowest common ancestor of the two reads in a pair. The
797,898 reads were assigned to 23,167 OTUs in total. For functional subsystem
analysis, 25million reads were randomly resampled from each sample. Open
reading frames were predicted on non-16S encoding reads using FragGeneScan56.
The translated amino acid sequences were then searched against the M5NR
database57 using BLAT. Reads matching genes incorporated in the SEED database58
were assigned to the corresponding best-matched subsystem(s). The numbers of
assigned reads were taken as a proxy of abundance of the SEED subsystem(s). An
approach combining re-sampling techniques, the DESeq package59, and binomial
testing with adjusted p values60 was then applied to identify significantly
differentially abundant subsystems (pathways) under warming versus control plots,
as described previously61.

Annotating shotgun sequences on the basis of GeoChip genes. An ecological
functional gene-oriented metagenomic analysis pipeline (EcoFun-MAP) has been
developed to fish out sequence reads of important environmental functional genes
from shotgun metagenome sequence data. EcoFun-MAP is a method designed for
annotating metagenomic sequences by comparing them with functional genes used
to fabricate GeoChip. In the preparation of the reference databases, keyword
queries were submitted to the NCBI (ref. 62) online GenBank for 308 functional
genes to retrieve candidate reference sequences, from which 5 to 200 distinct
representative sequences from each gene were manually selected functional gene
seed sequences (FGSSs). The selected FGSSs were aligned using both global and
local algorithms in ClustalW (ref. 63), and the resulting alignments were used as
input for another program HMMBUILD (ref. 64) to build both global and local
HMMER (ref. 64) models (FGSS-HMM). Next, the candidate reference sequences
for each gene were searched back against corresponding FGSS-HMM using
HMMSEARCH (ref. 64). The output sequences, termed functional gene reference
sequences (FGRSs), were clustered into OTUs for each gene using CD-HIT at the
similarity threshold of 95%. In addition, BLAST databases were constructed on the
FGRSs with MAKEBLASTDB (ref. 65). To this end, two reference databases

involved in the method were established: FGSS-HMM and FGRS-BLAST. For
annotation, sequences from HighSeq were resampled to the minimal number of
reads in a sample, and were quality trimmed by Btrim66. All trimmed nucleotide
sequences were translated into protein sequences using FragGeneScan56.
HMMSEARCH was used for annotating the predicted protein sequences with the
FGSS-HMM database, and both global and local model hits were counted as valid
results. Also, all FGSS-HMM confirmed sequences were compared together against
the FGRS-BLAST database with BLASTN (ref. 65). Only best hits (Rank No. 1 in
BLAST results) between probes and sequences were kept as final processing
results. The web-based pipeline application of EcoFun-MAP can be accessed
with request.

Statistical analysis. Statistical analyses were carried out using R software version
2.15.1 using the package vegan (v.2.3-2; ref. 67) when not specified. Detrended
correspondence analysis68 was performed to visualize the overall microbial
community composition among samples. Three complementary non-parametric
multivariate analyses, non-parametric multivariate analysis of variance (Adonis;
ref. 69), analysis of similarity (ANOSIM; ref. 70), and the multi-response
permutation procedure (MRPP; ref. 71), were used to test the differences in soil
microbial communities between warming and control treatments. CCA (ref. 72)
was performed to determine the linkage between environmental variables and
microbial community composition. For selecting environmental variables, those
containing redundant information were reduced to minimum number, keeping
only the variables that had significant impacts. Also, the final sets of variables
should have the variance inflation factors all<20. Finally, soil temperature, soil
moisture and GPP remained in the CCA model (Supplementary Fig. 2a) of
GeoChip data. Labile C pool 1 and 2 (%), and soil N content (%) were selected for
16S rRNA gene-based analysis (Supplementary Fig. 2b). The significance of the
CCA model was tested by analysis of variance (ANOVA). According to CCA
results, variation partitioning analysis was performed to determine the
contribution of each individual variable or groups of variables to total variations in
soil microbial community compositions. CCA was also used to determine
correlations between abundance of subcategories of functional genes and the
individual environmental variables (Supplementary Table 5). Two-tailed t-tests
were performed to examine whether the differences between warming and control
treatments were significant on the basis of several important biotic and abiotic
variables (that is, soil C contents, aboveground biomass and total bacteria, archaea
and fungi abundance) using Microsoft Excel 2010. ANOVA (ref. 73) was
performed to test the treatment effect on the abundance of each functional gene
involved in C and N cycling for GeoChip or relative abundances of OTUs of certain
genus or phylum groups. In addition to the warming treatment effect, the probe or
OTU also factored into the model for partitioning the variance of probes within
each functional gene. Response ratio was used to compute the effects of warming
on functional genes relevant to GeoChip probes from shotgun sequences using the
formula described in ref. 74.

Data availability. Raw shotgun metagenome, 16S rRNA and nifH amplicon
gene sequences are available in the European Nucleotide Archive
(http://www.ebi.ac.uk/ena) under study no. PRJEB10725. GeoChip raw and
normalized signal intensities can be accessed through the URL
ftp://129.15.40.240:8187/nclimate2940/Raw_GeoChip_Data.txt and
ftp://129.15.40.240:8187/nclimate2940/Normalized_GeoChip_Data.csv.
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