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Abstract

Motivation: Combining a 16S rRNA (16S) gene database with metagenomic shotgun sequences

promises unbiased identification of known and novel microbes.

Results: To achieve this, we herein report reference-based ribosome assembly (RAMBL), a compu-

tational pipeline, which integrates taxonomic tree search and Dirichlet process clustering to recon-

struct full-length 16S gene sequences from metagenomic sequencing data with high accuracy. By

benchmarking against the synthetic and real shotgun sequences, we demonstrated that full-length

16S gene assemblies of RAMBL were a good proxy for known and putative microbes, including

Candidate Phyla Radiation. We found that 30–40% of bacteria genera in the terrestrial and intestinal

biomes have no closely related genome sequences. We also observed that RAMBL was able to

generate a more accurate determination of environmental microbial diversity and yield better dis-

ease classification, suggesting that full-length 16S gene assemblies are a powerful alternative to

marker gene set and 16S short reads. RAMBL first realizes the access to full-length 16S gene se-

quences in the near-terabase-scale metagenomic shotgun sequences, which markedly improve

metagenomic data analysis and interpretation.

Availability and Implementation: RAMBL is available at https://github.com/homopolymer/RAMBL

for academic use.

Contact: zengfeng@xmu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial ecology relies on 16S rRNA amplicon sequencing and

whole metagenomic shotgun sequencing to explore the taxonomic

and phylogenetic composition of previously unknown environmen-

tal samples (Franzosa et al., 2015). Accurate determination of

microbial taxa and compositional abundance from amplicon

sequencing data is challenging (Zhou et al., 2015). This can, in part,

be attributed to the fact that PCR primers used for 16S rRNA ampli-

con sequencing are biased toward certain kinds of microbes and

thus cannot fully capture divergent 16S rRNA gene sequences,
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especially the Candidate Phyla Radiation (CPR) members and

uncharacterized archaea that comprise approximately 10% of envir-

onmental microbes (Eloe-Fadrosh et al., 2016). In addition, the

hyper-variable regions (V1–V9) of 16S rRNA gene evolve at distinct

divergence rates (Chakravorty et al., 2007). As a result, amplicon se-

quences of different hypervariable regions could not reach a consist-

ent characterization of taxonomic composition for a microbial

community.

On the other hand, whole metagenomic shotgun sequencing suf-

fers no primer bias and possesses a full characterization for micro-

bial community. It requires reference genome sequences and relies

on phylogenetic marker gene set(s) to profile and annotate microbial

taxa. For instance, mOTU established a core set of 40 marker genes

extracted from 3496 prokaryotic reference genome sequences for

taxonomy identification (Sunagawa et al., 2013). MetaPhlan2

started from the genome sequences contributed by the early capillary

sequencing and latest metagenomic shotgun sequencing efforts to

construct a clade-specific marker gene set, containing one million

genes, on average 184 genes per species, for identifying 7500 species

(Truong et al., 2015). The more the characterized prokaryotic gen-

ome sequences grow, the more archaea and bacteria the metage-

nomic shotgun sequences could identify. The number of prokaryotic

reference genome sequences has been increased by 10-fold in the

past few years. However, since metagenomic shotgun sequencing

projects (such as the Human Microbiome Project, HMP (The HMP

Consortium, 2012) and the Metagenomics of the Human Intestinal

Tract, MetaHit (Qin et al., 2010)) were mostly devoted to catalog-

ing the microbes colonized in human body, the speed of characteriz-

ing environmental microbes lags far behind that of characterizing

human associated microbes in terms of genome sequences.

Moreover, more than 99% of microbes, including most underrepre-

sented and uncultivated bacteria, such as CPR members (Sunagawa

et al., 2015), still have no closely related reference genome sequences

(Sharon and Banfield, 2013). The bias and incompleteness of the ref-

erence genome sequence database limit full characterization of taxo-

nomic diversity of microbial communities.

Over the past few decades, millions of 16S rRNA gene sequences

have been collected by amplicon sequencing (DeSantis et al., 2006)

and in silico gene prediction (Cole et al., 2014; Pruesse et al., 2007).

An existing strategy for taxonomic profiling involves identifying 16S

rRNA sequence reads from shotgun sequencing data and then using

them to query a 16S rRNA database for taxonomic identification,

e.g. Parallel-Meta (Su et al., 2014). However, since most metage-

nomic studies adopt Illumina sequencers for data generation, short

reads from 100 to 250 bp cannot differentiate many homologous

gene sequences. Therefore, when combined with sequencing errors,

short reads could produce an incorrect and biased estimation of

taxonomic composition.

Full-length 16S rRNA gene sequences, about 1.5 kb, can delin-

eate a full spectrum of bacteria and archaea (Singer et al., 2016).

Unfortunately, current sequencing platforms produce reads that are

too short (Illumina), have low quality (PacBio), or have low

throughput (Sanger). As a result, high-throughput sequencing of

full-length 16S rRNA genes remains unavailable. A worthy alterna-

tive is the direct assembly of full-length 16S rRNA gene sequences

from shotgun sequencing data. EMIRGE (Miller et al., 2011) and

Reago (Yuan et al., 2015), representing reference-based and de novo

assembly approaches, respectively, have previously attempted this

task. EMIRGE assigned sequencing reads to the closest known refer-

ence sequences, and reconstructed 16S rRNA gene sequences of a

community using a single nucleotide polymorphism (SNP) map and

an iterative inference-and-realignment algorithm. The specificity of

EMIRGE depends on the accurate assignment of sequencing reads

to the ab origine 16S rRNA gene reference sequences. However,

error-prone short reads and homologous 16S rRNA gene sequences

make this task a grand challenge. Reago employed a hidden Markov

model (HMM) profile (Nawrocki et al., 2009) trained for small sub-

unit ribosomal genes to extract 16S rRNA gene reads, and utilized

overlap graph to assemble full-length 16S rRNA gene sequences. De

novo assembly can discover new 16S rRNA gene sequences, but can-

not differentiate similar strain sequences. In addition, de novo as-

sembly algorithms tend to show bias toward high-abundance strains

and miss low-abundance strains, restricting the sensitivity.

Therefore, we developed a new computational pipeline termed

reference-based ribosome assembly (RAMBL) with markedly im-

proved sensitivity and specificity for 16S rRNA gene assembly.

Using synthetic and real benchmark datasets, we showed that

RAMBL was able to reconstruct both known and novel full-length

16S rRNA gene sequences from a complex microbial community,

which yield a better estimate of taxonomic composition than marker

gene set and 16S rRNA short reads. In addition, RAMBL can iden-

tify both high-abundance and low-abundance microbes, such as

CPR members, with high quality. RAMBL displayed a unique cap-

acity for comprehensive characterization of microbial diversity.

2 Methods

2.1 Overview of RAMBL
Genetic heterogeneity is a predominant factor that declines the ac-

curacy of 16S gene sequence reconstruction. At one side, heteroge-

neous sequences in a microbiota lower the sensitivity of 16S gene

assembly. At the other side, sequence homology can lead to falsely

detect microbes that are not present in the microbiota. To resolve

this issue, we proposed a divide-and-conquer approach (Fig. 1a) fol-

lowing the anticipation that reduces genetic heterogeneity as far as

possible and avoids eliciting false discoveries in the meantime.

Briefly, at the beginning, we separate the entire data into many

Fig. 1. The metagenomic 16S assembly pipeline. (a) RAMBL consists of two com-

ponents: taxonomic tree search and Dirichlet process clustering. (b) Clade hit ana-

lysis for the 10�dataset of Mock1. Blue and green bars represent the number of

clade hits by short reads before and after the taxonomic tree search, respectively.

The taxonomic tree search significantly decreases the number of clade hits. P-values

of Student’s t-test for comparison at all taxonomic ranks are less than 0.001. (c) The

taxonomic tree search sums up the abundance and coverage signals, which are

shown as red curves next to the nodes. (d) Dirichlet process clustering infers the

posterior distribution of the strains. The strains with proportional ratio above thresh-

old t are reported. (e) The procedure of abundance estimation for the 16S contigs

(Color version of this figure is available at Bioinformatics online.)
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subgroups at high rank with the aid of a well-established taxonomic

tree. The underlying assumption is that taxonomic annotation is

correct at high rank. Short reads of a subgroup are assumed to be

originated from the same taxon or similar taxa. The subgroups are

called as the seeds. To enhance signal intensity for the detection of

the seeds, RAMBL merges short reads across multiple samples.

Next, for each subgroup, we devise a Bayesian non-parametric

model to statistically reconstruct the full-length sequences of similar

16S genes. Technical details are addressed in the following.

2.2 Taxonomic tree search and data division
The taxonomic tree search aims to cluster short reads according to

their origins. We observe that each short read can be mapped to dif-

ferent 16S rRNA gene sequences. The 10�Mock1 dataset is an ex-

ample of this (Fig. 1b). Although short reads are noticeably

dispersed at the genus rank, we observe that the number of clade-

hits per read gradually decreases as we move up taxonomic ranks

(Fig. 1b). This phenomenon leads to a hypothesis that dispersed

mapping of short reads could be grouped together if a proper high-

rank taxonomic clade was specified. Therefore, we devised a taxo-

nomic tree search algorithm to identify proper clades for the purpose

of partitioning reads into subsets.

The taxonomic tree search starts from leaf nodes of a taxonomic

tree, e.g. the 16S reference sequences of GreenGenes (DeSantis et al.,

2006) (v13.8). The leaf nodes represent 16S rRNA gene reference se-

quences. Given the read mapping files, we calculate the depth of a

reference sequence as the average number of reads observed at a pos-

ition, and the coverage as the fraction of reference sequences cov-

ered by at least one read.

Then, as the algorithm walks up to the root of the taxonomic

tree, we sum up the abundance and coverage signals at each taxo-

nomic level (Fig. 1c). The abundance of an internal node is calcu-

lated as the sum of the abundances of its offspring nodes. The union

of the covered regions of the offspring nodes is used to define the

coverage of the internal node. When an internal node is abundant,

i.e. depth�1�, and its sequence is fully covered, i.e. coverage�0.9,

we call the subtree under the internal node as a candidate clade. A

candidate clade is represented by a subset of short reads of the same

taxonomic origin. Short reads of the clades that do not satisfy the

coverage and abundance criteria are re-assigned to the closest candi-

date clades using Bowtie2 (Langmead and Salzberg, 2012).

2.3 The construction of alignment graph
We proposed a data structure named alignment graph to store the

short reads as well as their alignments for a subgroup. Alignment

graph is an extension of the partial order graph (POG) that was ori-

ginally proposed to delineate the skeleton of a MSA (Lee et al.,

2002). Unlike POG that discards the alignments, alignment graph

retains the alignment information. Thus, alignment graph is not

only to represent the graph skeleton that guides the generation of all

the possible strain sequences, but also to permit the fast establish-

ment of all the MSAs against all the possible strain sequences. In the

following, we first describe the procedure of graph construction,

and later introduces how to generate the possible strain sequences

and establish the strain-specific MSA in linear time.

We used the following procedures to construct an alignment

graph for a subgroup.

First, all the reads that are assigned to the subgroup by the data

division step are mapped onto the representative reference sequence

of the subgroup. The reference sequence of a taxon of the subgroup

is selected as the representative if it harnesses the most reads. An

aligned read is represented by a 3-tuple as shown in Figure 2a. The

first element of the 3-tuple indicates the start position of the align-

ment on the representative reference sequence. The second element

of the 3-tuple is a CIGAR string (Li et al., 2009) that indicates how

the read is aligned to the representative exactly. The third element of

the 3-tuple is the part of the read sequence that is aligned to the

representative.

Second, we create an initial graph using the representative refer-

ence sequence, where there is only one path and each node on the

path represents a letter of the representative reference sequence. The

path on the bottom line of Figure 2b represents the representative

reference sequence. After that, we consider the aligned reads one by

Fig. 2. Flows to build an alignment graph. (a) Input data include a reference

gene sequence and the aligned reads. Each read is represented as a 3-tuple,

indicating the position where the alignment starts on the gene reference, the

CIGAR letter that claims how the read is aligned, and the read sequence. (b)

The first step is to build a non-compact alignment graph, where a path repre-

sents an aligned read or the reference gene sequence. The path on the bot-

tom represents the reference gene sequence. The deletion is explicitly

represented as ‘¼’. (c) The second step is to adjust the gap alignment. A pro-

gressive MSA method is utilized to re-compute the alignment of the se-

quences C, CC and CCT, which are inserted between the reference letters G

and T. We explicitly add the letter ‘-’ into the paths that represent the refer-

ence gene sequence and the reads that have no insertions at this gap pos-

ition. Instead of discarding the alignments, we use a level-wise data structure

to store the read letters that cover a graph position. (d) The third step is to re-

move the redundant nodes and edges to obtain a compact graph representa-

tion. In a forward-and-backward manner, it first walks through the graph from

left to right, one level by one level and merges the nodes at a level that have

the same letter and the same preceding node. Next, it reverses the direction,

walks through the graph from right to left, one level by one level and repeats

the node-merging process.
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one. We scan an aligned read from left to right. We add a node for

each letter of the aligned read to the graph. Eventually, this will re-

sult in a redundant and non-compact graph, where there are mul-

tiple nodes in one position that equally represents the same

alignment event, like the letter ‘C’ in the first three lines in Figure

2b. We call this graph as the non-compact graph. On the resultant

graph, we explicitly represent the deletion nodes in the graph using

the letter ‘¼’. Other nodes are called as non-deletion nodes.

Third, we adjust the gap alignment. The mapping program that

does not implement a full version of dynamic programming and con-

siders the alignment of short reads one by one cannot result in a con-

sistent alignment for the reads that encounter the insertions and/or

deletions (indels). In addition, the random indels that happen during

sequencing will confuse the alignment of a gap. As the example in

Figure 2b, there are three inserted sequences between the letters G

and T on the representative sequence, which are C, CC and CCT.

Their alignments are inconsistent. Thus, we pursuit to establish a

consistent alignment for the gap. For the insertion, we apply the pro-

gressive MSA algorithm to re-align the inserted sequences. A consist-

ent alignment for the sequences inserted between the reference

letters G and T is shown in Figure 2c. After the adjustment of the in-

sertion, we re-calculate the graph level for all the non-deletion

nodes. Next, we adjust the deletion by simply adding a new deletion

to replace the old one. The number of nodes on the new deletion

equals to the difference between the level orders of the deletion-

starting and deletion-ending nodes. To keep a consistent graph rep-

resentation, we explicitly represent the insertions on the representa-

tive reference sequence.

Although the graph is non-compact, the nodes of the graph can

be indexed using a horizontal–vertical coordinator. The horizontal

axis indicates the graph level, which is a counterpart of the level

counting on a tree. Particularly, the first column is level 1, the se-

cond column is level 2 and so on. The vertical axis indicates the

order of the variants at a graph level. For example, the letter ‘G’ at

the graph level 3 has a horizontal–vertical coordinate of (3,0), where

zero indicates that it is a reference allele, and the letter ‘C’ on the

top of ‘G’ has a horizontal-vertical coordinate of (3,1).

We introduce an auxiliary data structure Reads l½ � to store the

aligned reads at the level l by collecting the reads covering the level

l.

Finally, we use a forward–backward algorithm to reduce the re-

dundant nodes to obtain a compact graph. In the forward direction,

we traverse the graph from left to right, visit the nodes one level by

one level, and merge the nodes at a level having the same letter.

After that, we repeat this process but conduct in the reverse direc-

tion. Eventually, a compact graph like the one depicted in Figure 2d

is obtained.

Alignment graph and the conventional POG are different in two

aspects. First, alignment graph explicitly represents the indels,

whereas POG adopts an implicit representation for the indels.

Second, alignment graph involves an external data structure to store

the alignment information. POG discards the alignments.

2.4 The manipulation of alignment graph
During the probabilistic inference described at next section, we use

the alignment graph for two purposes. First, we use the alignment

graph to generate possible strain sequences. Second, we use the

alignment graph to fast establish a MSA of all reads against a pos-

sible strain sequence.

Strain sequence generation. We traverse an alignment graph

from left to right, and start with a possible strain sequence that

accounts for the starting node of the graph. By visiting nodes one

level by one level, we can extend the strain sequence by padding the

node letter at the next level, when there is no branch. Otherwise, we

can expand the set of strain sequences by adding new strain se-

quences where the variant node letters are padded on the right end

of the strain sequences till the previous level per graph branching.

Figure 3a depicts all the possible strain sequences at all the graph

levels of an exemplar alignment graph. Without the aid of alignment

graph, the enumeration of all the possible strain sequences grows ex-

ponentially in terms of the number of mutations and indels. The

graph-aided generation of strain sequences substantially reduces the

enumeration complexity. As shown in Figure 3a, the number of all

the possible strains is 1� 2� 1� 3� 3� 1 ¼ 18, when all positions

are assumed to be mutually independent. However, the use of align-

ment graph declines the number by 10. This improvement will be

noticeable when the graph is complex.

Fast MSA establishment. For each possible strain sequence, we

can establish the alignments of all the reads against it in linear time.

This is achieved by the constant time retrieval of the alignment parts

starting from Reads 1½ � to Reads l½ �, where l is the current level. Figure

3b depicts the MSAs of all the possible strain sequences at the level 4.

This avoids the intensive computation of new MSAs ab initio.

2.5 Dirichlet process clustering
Dirichlet process clustering is a machine learning method for the

automatic inference of community composition and does not require

prior knowledge about the structure of mixture data. It has been

widely used in quasi-species sequence assembly for viral population

sequencing data (Töpfer et al., 2013) and clonal reconstruction for

cancer genomics (Fischer et al., 2014). Therefore, we applied this

technique to reconstruct 16S gene sequences for the taxonomic tree-

defined read sets.

Suppose there are N short reads, R ¼ rif gN
i¼1, within a read set.

These reads are derived from K different strains, S ¼ sj

� �K

j¼1
. We de-

vise a full probabilistic sequencing model, Hi ¼ hi
a;b

n o
, a; b 2 A ¼

A;C;G;T;�f g, for a strain sj. It formulates the single nucleotide

polymorphisms (SNPs), insertions and deletions (indels), which

occur during the sequencing of strain sj. The model parameter hi
a;b

represents the probability that a letter a on si emits an observation b.

The probability of all emission events of a is equal to 1,P
b2Ahi

a;b ¼ 1.

Fig. 3. Operation on alignment graph. (a) Alignment graph is to yield the can-

didate strain sequences. The graph-aided enumeration avoids the exponen-

tial complexity. (b) Alignment graph is also to establish a MSA of all the reads

against a candidate strain sequence through the constant-time retrieval from

the level-wise data structure. All the MSAs of all the candidate strain se-

quences till the level 4 are listed. (c) The Dirichlet process model is to infer the

underlying strain sequences that likely yield all the reads till the current level,

such as red dashed boxes in (b).
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With the above configuration, we can describe the generation of

short reads as follows. To generate a short read ri, a strain sj is

first drawn from the candidate strain set S. The distribution over S is

a multinomial probabilistic model with parameter p ¼
p1;p2; . . . ;pKð Þ,

PK
j¼1 pj ¼ 1. The prior distribution over parameter

p is a Dirichlet distribution, Dirichlet cð Þ, c ¼ c1; c2; . . . ; cKð Þ, where

cj > 0 is the pseudocount of the jth strain sj. Next, the sequencer

proceeds from the left end to the right end and emits one letter at

one position. Suppose the strain letter a is at the current position;

then the sequencing model, hj
a;b

n o
, b 2 A, would be specified by

drawing from a Dirichlet prior distribution, Dirichlet kj
a

� �
, where kj

a

¼ kj
a;A; k

j
a;C; k

j
a;G; k

j
a;T ; k

j
a;�

� �
is the pseudocounts of the emission

events. Given the strain and sequencing model, a letter b on read ri

is drawn from a multinomial distribution with the probabilistic par-

ameters hj
a;b

n o
. Taken together, the Dirichlet process generation is

depicted in Figure 3c and formulated as

p � Dirichlet cð Þ

sj �Multinomial pð Þ

hj
a � Dirichlet kj

a

� �

b �Multinomial hj
a

� �

In this framework, the probability of a read ri belonging to a

strain sj can be explicitly written by,

pðrijsj;HjÞ ¼
Y

a;b2A
h

j;nab

ab

where nab counts the number of the emission event a! b that

occurs during the generation of ri.

The joint probability of a read ri belonging to the strain sj and

the parameter Hj can be obtained by

p ri;Hjjsj

� �
¼
Y
a2A

C
P

b2Akj
ab

� �

Q
b2AC kj

ab

� � Y
b2A

h
j;nabþkj

ab�1

ab

By integrating out the parameter Hj, the marginal probability of

the strain sj generating ri is,

p rijsj

� �
¼
Y
a2A

C
P

b2Akj
ab

� �

Q
b2AC kj

ab

� �
Q

b2AC kj
ab þ nab

� �

C
P

b2Akj
ab þ

P
b2Anab

� �

The posterior probability of Hj, given that ri has been assigned

to sj, can be explicitly written by

p Hjri; sj

� �
/ p risj;Hj

� �
p Hj

� �

/
Y
a2A

Dirichlet kj
a þ nj

a

� �

RAMBL uses Gibbs sampling to estimate p and H with the aim

of maximizing the posterior probability of the strains. In the Gibbs

sampling, the conditional posterior probability of the assignment of

a read ri is given by

p sjr1; . . . ; ri�1

� �
¼

mj

mj � 1þ s
p risj;Hj

� �
; if sj has been populated

s
mj � 1þ s

X
sj
p risj

� �
p sj

� �
; if sj is new strain

8>><
>>:

where mj is the number of previous reads that has been assigned to

the strain sj. The update of the parameter Hj is according to the pos-

terior probability that described above.

2.6 Progressive inference
Once an alignment graph for a subgroup is built, we scan the graph

from left to right, and conduct the probabilistic inference one level

by one level. We call this way that we perform the inference as the

progressive Dirichlet process.

Specifically, at the beginning, the candidate strain set has only

one element comprising one letter that represents the starting node

of the alignment graph under exploitation. The inference at this cir-

cumstance is trivial. We move on to the next level of the alignment

graph. If the graph branches to indicate variants, we will involve

additional strain sequences to expand the candidate set. A new

strain sequence is constructed by padding the variant letter of a

branching node v to the right end of the old strain sequence of the

node u preceding the branch. The weight of the new strain sequence

is computed using cv ¼ Nv

Nu
cu, where cu is the weight of the old strain

sequence, Nu is the number of reads covering u, and Nv is the num-

ber of reads covering v. The initial K at current level is specified as

the K� inferred at the previous level. Then, we execute the Dirichlet

process clustering to infer the posterior probability for the strain se-

quences until the current level. After the inference, a strain is dis-

carded if its posterior probability is found to be less than 0.05. In

this case, its abundance would be less than 5% within the subgroup.

The posterior probability of the strains at the current level is used as

the prior probability at the next level. The procedure proceeds to-

ward the right end of the alignment graph. When RAMBL reaches

the right end, it outputs the reconstructed 16S gene sequences. Two

assembled contigs are merged if sequence identity is higher than

98%.

2.7 Compositional abundance estimation and

taxonomic classification
We align short reads to the 16S contigs in order to calculate compos-

itional abundance. The MegaBlast program (Zhang et al., 2000)

(v2.2.29) is utilized to search for alignments between short reads

and 16S contigs. An alignment is discarded when its identity is less

than 0.95 or the E-value is higher than 1e�10. After that, each read

is assigned to the best-hit contig having the lowest E-value. If more

than one best-hit contig exists for a read, the read is assigned to

best-hit contigs with weight equal to the inverse of the number of

the best-hit contigs. Thus, if L equals contig length and l equals read

length, then the raw abundance without fixing copy number vari-

ation of the contig that has n assigned short reads can be defined as
n�l
L .

We use the RDP classifier (Wang et al., 2007) (v2.11) to deter-

mine the taxonomic identity of a contig. A taxonomic identification

is considered unreliable and filtered out if the RDP score, i.e. the

posterior classification probability, is less than 0.6.

We obtained the copy number of a contig by querying the rrnDB

database (Klappenbach, 2001) (v4.4.4) through the RDP-defined

taxonomic identity. Suppose the copy number of a contig is c. We

refined the raw abundance by dividing the copy number and get the

copy number corrected abundance as n�l
c�L. The abundance of a clade

was calculated by summing over the abundances of the contigs

within the clade.
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2.8 Data analysis for simulation metagenomes
We used two simulation communities, Mock1 and Mock2, for val-

idation. Mock1 consisted of 100 strain sequences (Supplementary

Table S1) and three datasets of the simulated Illumina paired-end

reads. The three datasets represented coverages of 10�, 20�and

30�, respectively. Mock2 contained 22 known strain sequences and

2 spiked strain sequences that represented unknown microorganisms

(Supplementary Table S2).

We used the 10�dataset of Mock1 to analyze the clade hits of

short reads. We used Bowtie2 (Langmead and Salzberg, 2012)

(v2.2.4, with local option) to map short reads of the 10�dataset to

the 16S reference sequences of GreenGenes. We counted the number

of clade hits by short reads derived from the same strain. After the

taxonomic tree search, we remapped short reads to the representa-

tives of the candidate clades. We counted the number of clade hits

again for comparison. The comparison results were summarized in

Figure 1b and evaluated by Student’s t-test.

To evaluate the recovery of strain sequences, we used Blast to

align 16S contigs to the mock strain reference sequences. We dis-

carded alignments whose sequence identities were below 95%. A

strain was considered to be recovered if a 16S contig hit the strain

with sequence identity above 95%. Therefore, we defined the sensi-

tivity of strain recovery as the fraction of the mock strain sequences

that could be found by 16S contigs. We also defined the specificity

of strain recovery as the fraction of 16S contigs that could be used to

recover the mock strain sequences. The F1 measurement,

F1 ¼ 2�sensitivity�specificity
sensitivityþspecificity , was used to summarize the sensitivity and

specificity.

To evaluate the recovery of microbial taxa, we used the RDP

classifier to determine the taxonomic identities of the 16S contigs.

Sensitivity was determined as the fraction of the mock taxa that

could be recovered by the 16S contigs. Specificity was estimated by

the fraction of taxa in the mock community defined by the 16S

contigs.

2.9 Metagenomic data of soil biomes and Chinese gut
Raw sequencing reads of the 16 soil biomes were downloaded from

the MG-RAST server: hot deserts (4477805.3, 4477872.3 and

4477873.3), cold deserts (4477803.3, 4477900.3 to 4477904.3)

and green soils (4477804.3, 4477807.3, 4477874.3 to 4477877.3

and 4477899.3). On average, there were 7 042 164 100 bp Illumina

reads per sample. It was noted that only first segments of paired-end

reads were available on the MG-RAST server. A total of

2 289 307 895 Illumina paired-end reads of the Chinese gut micro-

biota were downloaded from the Short Read Archive (SRA, acces-

sion number SRA045646) of the NCBI server. Each segment of a

paired-end read was 75 bp at length.

2.10 Data analysis for cross-biome soil metagenomes
We ran RAMBL, EMIRGE, MetaPhlan2 and Parallel-Meta with the

default parameters. We did not test Reago or mOTU because they

failed to process the soil metagenomic datasets.

To perform the principal coordinate analysis (PCoA), we ran

MUSCLE (Edgar, 2004) (v3.8.31, using default parameters) to com-

pute the multiple sequence alignment (MSA) for the 16S contigs.

Next, we input the MSA to FastTree (Price et al., 2009) (v2.1.9,

using default parameters) and built the taxonomic tree for the 16S

contigs. Following that, we used the beta_diversity.py script (with

the -m weighted_unifrac option) of the QIIME package (Caporaso

et al., 2010) to compute the weighted UniFrac distance matrix. With

the distance matrix, we used the principal_coordinates.py script of

QIIME to perform PCoA analysis. For MetaPhlan2 and Parallel-

Meta, we ran beta_diversity.py with the -m bray_curtis option to

compute the Bray–Curtis distance matrix because these two meth-

ods did not provide the representative sequences of the identified

taxa for taxonomic tree construction.

2.11 T2D classification
We used the scikit-learn package (http://scikit-learn.org) to carry out

the analysis. The support vector machine-recursive feature extrac-

tion (SVM-RFE) method was used to select the discriminative 16S

gene assemblies. The linear SVM classifier was used for the T2D

classification. We partitioned the samples into 10 folds to perform

the cross validation. Among the partitioned samples, 7 folds were

used to train the SVM classifier, and 3 folds were used to test the

classification accuracy. The cross validation procedure was repli-

cated 1000 times.

2.12 Computational resource
We conducted all the experiments using one node of the Tsinghua

BigData cluster, where the CPU is IntelV
R

XeonVR E5-2680 and mem-

ory size is 512GB. The CPU clocks of RAMBL on the 16S gene re-

construction of the soil and T2D microbiome were 18 and 389 min,

respectively, using 20 threads.

3 Results

3.1 Improvement of full-length 16S gene assembly
To assess the accuracy of RAMBL, we created a mock community

consisting of 100 strain sequences (termed Mock1, Supplementary

Table S1). The strain abundance levels were simulated through a

stick-breaking process (Paisley et al., 2010), producing values rang-

ing from 0.02% to 5.79%. We used a simulator called Mason

(Holtgrewe, 2010) to generate three Illumina paired-end datasets

with read length of 100 bp, insert size of 300 6 30 bp (mean 6 s.d.)

and mean sequencing depths of 10�, 20�and 30�(Supplementary

Table S1) for evaluation.

The average sequence identity of reconstructed 16S rRNA assem-

blies for the 10�simulated dataset was 99.5%, compared to the

ground truth reference sequences (Supplementary Fig. S1a). These re-

sults indicated that RAMBL could reconstruct 16S rRNA gene se-

quences nearly identical to the reference sequences which is a

significant improvement over that of EMIRGE (v0.60, average se-

quence identity of 98.5%) and Reago (v1.1, average sequence identity

of 99.1%). In addition, the lengths of the reconstructed 16S rRNA

assemblies by RAMBL were closer to 1.5 kb with median deviation of

5 bp (Supplementary Fig. S1b), while those by EMIRGE were shorter,

with median deviation of �12 bp, and those by Reago were longer,

with median deviation of 124 bp. For all three simulated datasets,

RAMBL outperformed the other two methods, as measured by F1

(Supplementary Fig. S1c), with higher sensitivity and accuracy.

RAMBL could also accurately identify low-abundance taxa. For the

10�dataset, RAMBL could recover all simulated phyla, whereas

EMIRGE and Reago missed many microbes with abundance below

0.01 (Supplementary Fig. S1e). The speed of RAMBL is more than

300 assemblies per hour (Supplementary Fig. S1d).

3.2 Accurate identification of both known and

novel microbes
RAMBL can detect sequences from potentially novel microorganisms.

To verify this, we created another mock community (termed Mock2,

Supplementary Table S2) comprised of 22 known microbial genome
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sequences and 2 spike-in (novel) microbial strains, Aminiphilus cir-

cumscriptus DSM 16581 (GenBank: GCA_000526375.1) and

Arsenophonus endosymbiont str. Hangzhou of Nilaparvata lugens

(GenBank: GCA_000757905.1). The Illumina paired-end reads were

simulated using Mason with an even sequencing depth (15�Þ for the

24 strains. We evaluated three 16S rRNA reconstruction methods,

including RAMBL, EMIRGE and Reago, along with two genome

query methods, including MetaPhlan2 (v2.2.0) and mOTU (v1.3),

and one 16S rRNA read-based method, Parallel-Meta (v3.1.0). All

programs were run using default parameters.

The 16S rRNA reconstruction methods demonstrated distinct

features from those of genome query methods (Supplementary Fig.

S1f and g). For example, both EMIRGE and Reago succeeded in

identifying all of the spiked-in microbes, but failed to identify a

number of known microbes; the sensitivity of EMIRGE was 71.4%,

while that of Reago was 76.2%. On the other hand, MetaPhlan2

and mOTU, both genome query methods, recovered all the known

microbes, but missed the spiked-in microbes. In comparison,

RAMBL detected all microorganisms correctly and estimated micro-

bial abundance accurately with cosine similarity to the ground truth

at 97.9% (Supplementary Fig. S1g). By assembling 16S rRNA reads

to full-length gene sequences, we can significantly improve specifi-

city, as demonstrated in Supplementary Figure S1g.

3.3 Reanalysis of 16 soil metagenomes
We applied RAMBL to reanalyze the soil metagenomic data col-

lected from 16 spatial locations, from Antarctica to Argentina,

representing the typical desert and green (nondesert) soil biomes of

the Americas (Fierer et al., 2012). RAMBL assembled 192 16S

gene contigs (Supplementary Table S3), and most of the contigs

(86.5%) were assigned to 104 microbial genera with high confi-

dence levels (RDP score>0.8, Supplementary Fig. S2). Using

ChimeraSlayer (Haas et al., 2011), we found that two contigs were

chimeric assemblies, which correspond to a low chimera rate of

�1%. The assembled contigs were highly dissimilar and captured

diverse microbial species/strains for high-resolution taxonomic

profiling (99.7% of intra-genus sequence similarities were less

than 0.98, Supplementary Fig. S3). RAMBL recovered more accur-

ate soil microbiota with the assembled 16S contigs; 12 out of

the 17 phyla found by RAMBL were confirmed by previous 16S

amplicon sequencing data (Fig. 4a). For comparison, MetaPhlan2

missed half of these 12 phyla; EMIRGE failed to recover

Verrucomicrobia, Planctomycetes and Nitrospirae; Parallel-Meta

did not detect Thaumarchaeota. RAMBL did not report any false

positive for the non-CPR phyla, while all other methods exhibited

high false positive rates (MetaPhlan2 14.3%, EMIRGE 30.8%,

Parallel-Meta 26.7%). The other five phyla identified by RAMBL

were the CPR members that were not found by the 16S amplicon

sequences (Supplementary Fig. S4). Although the CPR phyla were

present at low abundance, one of them, Armatimonadetes (for-

merly OP10), exhibited a positive correlation with nitrogen con-

tent of desert soils (Supplementary Fig. S5) and contributed to the

separation of desert and green soil biomes (Supplementary Fig. 6),

which was not reported previously.

Fig. 4. RAMBL yields better results for the soil metagenomes. (a) Taxonomic profiling results of the four methods in comparison with previous 16S amplicon

sequencing. (b) The distribution and abundance of novel microbes. An extensive number of assembled contigs highlighted in gray (middle circle) were not

aligned to close representatives in the NCBI database, representing novel microbes. Novel microbes were in high abundance (outer circle, highlighted in red),

and mainly distributed among the desert-associated phyla (inner circle, highlighted in yellow) and green-associated phyla (inner circle, highlighted in green). In

anticlockwise direction, the desert-associated phyla in anticlockwise direction were Actinobacteria, Chloroflexi and Armatimonadetes; the green-associated phyla

were Acidobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes and Firmicutes. (c) The comparison of novel microbes in the abundance between the des-

ert and green soil biomes. (d) The comparison of the between-biome distances (weighed UniFrac measurement) based on known microbes and all microbes. (e)

The principal coordinates analysis (PCoA) plot of RAMBL based on all microbes. (f) The PCoA plot of RAMBL based on known microbes. (g–i) The PCoA plots of

EMIRGE, MetaPhlan2 and Parallel-Meta (Color version of this figure is available at Bioinformatics online.)

Large-scale 16S gene assembly using metagenomics shotgun sequences 1453

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/33/10/1447/2964788/Large-scale-16S-gene-assembly-using-metagenomics
by Lauren Bardgett user
on 07 September 2017

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
Deleted Text: sixteen 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
Deleted Text: By u
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
Deleted Text: twelve 
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btx018/-/DC1


By aligning the RAMBL assemblies against representative micro-

bial genomes in the National Center for Biotechnology Information

(NCBI) database, we found that 99 16S gene contigs among the

assemblies, at an abundance of 45.7 6 13.9% (mean 6 SD), had no

close representatives in the NCBI database (sequence iden-

tity>90%), indicating novel microbes. These novel contigs were

distributed among 15 phyla, excluding Firmicutes and Nitrospirae.

Among 104 genera that were found, the novel contigs were from 42

genera (40.4%), of which 41 (97.6%) were completely novel, dis-

playing no closely related genomes in the NCBI database. As shown

in Figure 4a, MetaPhlan2 achieved a high false negative rate of

50%; it was attributed to that 66.1% of the contigs of the missing

phyla were novel, and that the rest of the contigs of the missing

phyla showed a low sequence identity (averagely 92%) to the closest

representative microbial genomes (Supplementary Table S3).

Among the aforementioned 99 novel contigs, 80 (80.8%) be-

longed to the phyla relevant to the classification of desert and green

soil biomes, i.e. Acidobacteria and Actinobacteria (Fig. 4b and

Supplementary Fig. S6). The non-desert-associated novel genera

comprised 51.5% of the uncharacterized microbial community, and

they were more abundant than the desert-associated novel genera

(Fig. 4c), demonstrating a high prevalence of underexplored mi-

crobes in green soil biomes. Many novel microbes in the fertile and

moist green soil samples, such as the Acidobacteria genera Gp2 and

Gp5 and the Proteobacteria genus Pedomicrobium, had a preference

for high organic carbon and nitrogen contents (Supplementary Figs

S7 and S8). But in the dry and unproductive desert soils, novel mi-

crobes favored high pH levels, including the Actinobacteria genus

Iamia and the Chloroflexi genus Sphaerobacter (Supplementary Fig.

S8). These novel microbes were important to the characterization of

the inter-biome variability. When only known microbes were con-

sidered, the sample distance between different biomes decreased sig-

nificantly from 0.367 6 0.075 (mean 6 SD) to 0.296 6 0.082

(mean 6 SD), as shown in Figure 4d. In particular, the novel mi-

crobes contributed the most to the separation of the hot and cold

desert soil samples (Fig. 4e and f). Although the associated ecolo-

gical functionalities remained unknown, novel microbes that were

found in the terrestrial samples were extensive, and substantially ac-

counted for the underexplored environmental diversity.

RAMBL also yields more accurate relative abundance estima-

tions for the environmental microbes, which are key to the correct

interpretation of metagenomic data. The results of b-diversity ana-

lysis of all 16 soil samples based on RAMBL, EMIRGE,

MetaPhlan2 and Parallel-Meta were compared, as shown in Figure

4e and g–i. The results obtained by RAMBL give better separation

of the three different biomes than that achieved by the other meth-

ods. In addition, we observe a higher percentage of explanation of

the data variations at the first two PCoA components by RAMBL

than that by the other methods. Accurate abundance estimation,

combined with full taxonomic profiling, makes RAMBL the most

accurate tool for diversity estimation and community profiling of

environmental samples.

3.4 Reanalysis of 145 human gut metagenomes
We applied RAMBL to characterize the gut microbiota in a Chinese

population, which consists of 74 healthy individuals and 71 T2D indi-

viduals (Qin et al., 2012). The 896 diverse 16S gene sequences were

reconstructed from the metagenomic datasets (with an average intra-

genus sequence identity of 0.893, Supplementary Fig. S9). The chi-

mera rate was 13.7% determined by ChimeraSlayer. Based on these

recovered 16S rRNA gene sequences, RAMBL revealed an uncharted

microbial community in the gut of Chinese individuals (Fig. 5a and

Supplementary Table S4). The gut microbiota was composed of 11

bacterial and archaeal phyla, including 91.36 9.7% (mean6 SD)

Firmicutes and Bacteroidetes, and 148 genera (with an average RDP

score of 0.94, Supplementary Fig. S10). Novel microbes were abun-

dant in the Chinese gut (18.7 6 7.6%, mean6 SD), and represented

49 genera (33.1%), of which 37 genera (75.5%) had no close related

genome sequences in NCBI database. We found 27 genera

Fig. 5. Microbial landscape in the gut of a Chinese population. (a) The abundance distributions of all microbes and novel microbes. (b) The correlation analysis

between microbial taxa and individual health (Spearman correlation and Benjamini–Hochberg multiple testing adjustment, P-value<0.05). Novelty is the propor-

tion of novel microbes (contigs) within a taxon. (c) The AUC scores of RAMBL, MetaPhlan2 and Parallel-Meta for T2D classification. The red, blue and green re-

gions indicate the 95% confidence intervals (Color version of this figure is available at Bioinformatics online.)
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significantly correlated with the health and diabetes (Spearman correl-

ation analysis followed by Benjamini–Hochberg correction for mul-

tiple tests, P-value<0.05). As shown in Figure 5b, 10 genera (37%)

were novel, which was defined as the fraction of novel contigs within

a genus. These novel genera included seven health-associated genera

Oribacterium, Faecalibacterium, Butyricicoccus, Prevotella,

Lachnospiracea_incertae_sedis, Clostridium XIVa and XIVb and

three diabetes-associated genera Anaerovibrio, Anaerovorax and

Erysipelotrichacaea_incertae_sedis. The health-associated novel gen-

era are known to supply methane, acetate and butyrate (Vital et al.,

2015), which play a crucial role in the increasing of insulin sensitivity

and the fermentation of polysaccharide and fatty-acid-producing

sugar. These novel genera are important for maintaining host health.

Two diabetes-associated novel genera, Anaerovibrio and

Anaerovorax, are putative bacteria fermenting glycerol, taurine, glu-

cose and putrescine, which are elevated in diabetic individuals. Our

finding that Erysipelotrichacaea_incertae_sedis was increased in dia-

betic individuals was also consistent with the previous observation of

this bacterial genus having close relevance to metabolic disorders

(Kaakoush, 2015).

The HMP has identified a list of ‘most wanted’ OTUs that repre-

sent novel species that have never been sequenced in the western

population (Fodor et al., 2012). We compared 226 novel 16S con-

tigs that were found in the Chinese population with the HMP ‘most

wanted’ OTU sequences. Out of 119 ‘most wanted’ OTUs, 56 were

close to our contigs with sequence identity>90% and MegaBlast E-

value<1e-30. Near half of the HMP ‘most wanted’ taxa did not pre-

sent in the Chinese population. This implies that the unknown

microbiomes of different populations are divergent. Our 16S contigs

can serve as a complement of the HMP ‘most wanted’ taxa list to in-

dicate novel species across populations.

Compared with human gut microbial gene catalogs, marker

genes and 16S rRNA gene short reads, the 16S assemblies were the

better biomarkers for the T2D classification. Using only 10 discrim-

inative 16S assemblies and a trained support vector machine (SVM)

classifier, RAMBL achieved the area under the receiver operating

characteristic curve (AUC) score 0.86 (Fig. 5c), higher than the AUC

score of 0.81 obtained by the previously reported gene catalog-

based classification (Qin et al., 2012) that used 50 gene markers and

leave-one-out cross-validation (LOOCV). RAMBL achieved higher

accuracy with much fewer marker features. We demonstrated that

our classification was also more accurate than the classifications ob-

tained by MetaPhlan2 and Parallel-Meta. As shown in Figure 5c,

our classification obtained a relative increase of 7% in the AUC

score compared to that of the MetaPhlan2 classification for a wide

range of discriminative 16S assemblies and species. When 50 or

more discriminative 16S gene assemblies were used, our classifica-

tion achieved an AUC score of 0.99. In comparison, the AUC score

of MetaPhlan2 was 0.92–0.93 when the same number of species

was selected for classification. The best AUC score of Parallel-Meta

was 0.796 when 50 OTUs determined by 16S rRNA short reads

were used. These results reveal that the 16S assemblies serve as good

diagnostic markers for diabetes.

Out of the 50 16S assemblies that well classified the disease sta-

tus, 14 16S assemblies represented the novel microbes. These novel

microbes were mostly from the phylum Firmicutes, including 1

Blautia microbe, 1 Clostridium IV microbe, 6 Clostridium XIVa mi-

crobes, 1 Clostridium XVIII microbe, 1 Faecalibacterium microbe, 1

Flavonifractor microbe, 1 Lachnospiracea_incertae_sedis microbe

and 1 Ruminococcus microbe. A novel Bacteroidetes microbe

Barnesiella also contributed to the disease classification. Except for

the Clostridium IV microbe that positively correlated with the

disease, all the other microbes were the health-associated microbes.

Although it is well known that the health microbiome is more diver-

gent than the disease microbiome, we unraveled that the health

microbiome possesses more novel microbes that play an important

role for the maintenance of the individual health.

4 Discussion

Identifying a full spectrum of microbes is critical to the interpret-

ation of microbial diversity, but remains unachievable for metage-

nomic shotgun sequencing data because over 99% of microbes are

uncharacterized in terms of genome sequences. We offer RAMBL, a

scalable pipeline to assemble short and error-prone 16S rRNA

sequencing reads to full-length high-quality 16S gene sequences,

maximizing taxonomic identification from metagenomic shotgun se-

quences. To the best of our knowledge, RAMBL is the first tool that

realizes the assembly of full-length 16S rRNA gene sequences for

very large metagenomic datasets, as demonstrated by the soil and

T2D datasets that had 11 gigabases and 359 gigabases of shotgun

sequencing reads, respectively. Our work suggests that full-length

16S gene assemblies are superior to marker gene set and 16S short

reads, because they can identify both known and novel genera, and

accurately quantify them to a wide range of abundance levels.

We observed that RAMBL generated few chimeric assemblies in

the soil (1%) and gut (13.7%) datasets. Results of chimera checking

indicate full-length 16S gene assemblies of RAMBL are of high ac-

curacy. In comparison, 91.7% of the EMIRGE soil contigs could

not be aligned to known 16S rRNA reference sequences, and thus

were invalid for chimera checking. Since both EMIRGE and Reago

failed to assemble 16S gene sequences for the T2D data, we could

not determine the chimera rates of them. We attribute the low chi-

mera rate for the soil data to the fact that the soil biomes harness di-

verse microbes (Fierer and Jackson, 2006). The gut microbiota, in

the contrary, is abundant of closely related strains (Schloissnig et al.,

2013). This implies that RAMBL would suffer a higher risk of the

chimeric assembly when a community harnesses a higher proportion

of similar strains. We hope to resolve this issue in the future.

Binning of metagenomic contigs is a widely adopted method to

identify potential novel microbial sequences of a community (Nielsen

et al., 2014), but in general, the objective is not very clearly defined

beyond the binning itself. In contrast, full-length 16S gene assemblies

provide a crystalline depiction of a community, of which uncharacter-

ized and novel genera can be accurately determined. Overall, full-

length 16S gene assemblies open the door to the uncharacterized mi-

crobial community, and make possible the future investigation of gen-

etic and metabolic functionalities of these novel microbes.
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