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Abstract

Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and

public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs)

are as an important sink and source of pathogens and antibiotic resistance genes (ARGs).

Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic

potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials

and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs cov-

ering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of

1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families

were detected respectively. The bacterial virulence genes exhibited significant spatial distri-

bution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across

China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly

positive associations. In addition, key environmental factors shaping the overall virulence

gene structure were identified. This study profiles the occurrence, composition and distribu-

tion of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns

and important environmental variables shaping their structure, which may provide the basis

for further studies of bacterial virulence factors and antibiotic resistance in WWTPs.

Introduction

Although great efforts have been made in recent years to control the distribution of bacterial

pathogens in the environment, they still pose a large world-wide threat to public health and

the environment [1, 2]. Many of pathogens are opportunistic and reside most of their life cycle

in non-host environments [3],but they can be transmitted to hosts, including humans, and

cause outbreaks and epidemics [4] in certain conditions. Essentially, the ability of bacterial
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pathogens to establish infection and cause disease is directly or indirectly determined by multi-

ple virulence factors acting individually or together [5, 6]. Virulence factors as elements

encoded by genes [7] can be divided into several categories on the basis of the mechanism of

virulence and function [8], such as adherence, colonization, immune evasion, secretion sys-

tem, invasion, toxin production and iron uptake [9]. Friman et al. [3] have reported that bacte-

rial virulence correlated with their survival capability positively in environmental reservoirs.

Furthermore, virulence genes (encoding virulence factors) are recognized to be more specific

as genetic targets for the detection of bacterial pathogens than the 16S rRNA gene due to the

limited ability of the 16S rRNA gene to differentiate closely related microorganisms [10].

Therefore, information on the virulence properties of an environment, such as abundance, dis-

tribution and their correlation with environmental properties, is critical to understand the

nature and extent of their potential threat [5].

Another growing concern is that more and more bacterial pathogens have become resistant

to antibiotics [11]. As the “gut” of a city, wastewater treatment plants (WWTPs) receive a large

variety of contaminants, including antibiotics and pathogens [12]. Because of variable mix-

tures of bacteria, abundant nutrients and antimicrobial agents, WWTPs is considered a hotpot

for the spread of antibiotic resistance genes via horizontal gene transfer [11, 13, 14]. However,

WWTPs mostly using biological treatment process (activated sludge process), focus on the

removal of physical and chemical pollutants while overlooking biological contaminants [15].

A wide range of pathogens and ARGs have been detected in activated sludge and effluent of

WWTPs [16, 17]. Growing evidences suggest that clinical resistance is intimately associated

with environmental ARGs and bacteria [18]. It is thus critical to focus on ARGs in overall

microbial communities as well as those associated with virulence genes.

Moreover, centralized WWTPs are widely used in cities and represent similar habitats

because of receiving similar domestic wastewater and operating under relatively similar condi-

tions [19], but microbial communities within these reactors are highly diverse, dynamic and

complex [20]. Therefore, WWTPs are ideal model systems to test whether and how the spatial

distribution patterns of virulence genes in eco-systems. However, current knowledge of bacterial

virulence factors and ARGs in WWTPs and their corresponding spatial patterns is incomplete.

Previous studies have been successful to assess pathogenic properties [5] and antibiotic

resistance [21] of microbial community using Geochip-based array (PathoChip) or GeoChip.

It also has been demonstrated that GeoChip has a good specificity, sensitivity, and quantitation

[9, 22–25], which can be a reliable and comprehensive tool to investigate virulence genes and

ARGs simultaneously. In addition, the probes in Geochip are designed on the basis of the gene

sequences from pure cultures of known phylogeny or from environmental sequences of

known taxonomic groups based on the National Center for Biotechnology Information

(NCBI) database, so the hybridization data can be used to assess phylogenetic of composition

and structure of microbial communities [26].

In this study, we utilized the GeoChip 4.2 to characterize bacterial virulence genes and

ARGs in 19 WWTPs which cover a majority of latitudinal zones of China to address the fol-

lowing questions: (i) what is the spatial distribution of virulence genes? (ii) What are the key

environmental factors affecting the structure of virulence genes? (iii) What is the relationship

between virulence genes and ARGs?

Materials and Methods

Sample collection and DNA extraction

Nineteen full-scale wastewater treatment systems located in 7 different cities of China, includ-

ing Dalian (DL1, DL2, DL3), Beijing (BJ1, BJ2, BJ3, BJ4) and Zhengzhou (ZZ1, ZZ2, ZZ3),
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Changsha (CS1, CS2), Wuxi (WX1, WX2), Shanghai (SH1, SH2) and Shenzhen (SZ1, SZ2,

SZ3) were investigated in this study. A map of these cities’ geographic locations is shown in S1

Fig. Details of the ID code, locations, influent characteristics and operational parameters of the

19 WWTPs are listed in Table 1. No specific permits were required for the described field stud-

ies. We confirm that: i) the 97 locations were not privately-owned or protected in any way; and

ii) the field studies did not involve endangered or protected species.

In each WWTP, triplicate activated sludge samples were collected from the end part of the

aeration tank once a day for three consecutive days in the summer of 2011. Firstly, the samples

were collected into vessel and briefly settled on site to be concentrated. Then, they were fixed in

50% (v/v) ethanol aqueous solution. The fixed samples were transported to laboratory on ice.

Each 30-ml sample was dispensed into a 50-ml sterile tube and centrifuged at 15,000g for 10 min.

The supernatant was decanted and the pellets were stored at -80˚C until DNA was extracted.

Meanwhile, the pollutant concentrations of influents and effluents were measured using standard

methods, including ammonia, total nitrogen, total phosphorus and chemical oxygen demand

(COD). Temperature, pH and dissolved oxygen (DO) were also measured in situ. DNA was

extracted from the pellets of activated sludge samples by joint use of freezing and sodium dodecyl

sulfate (SDS) for cell lysis [27]. Wizard1 SV Genomic DNA Purification Kit was then employed

to pure the extracted products (Promega, Madison, WI). After purification, DNA quality was

assayed by using ND-2000 spectrophotometer (Nanodrop Inc., Wilmington, DE, USA). To

ensure sample quality, the ratio of absorbance at 260 and 280 nm was required to be between

1.80 and 2.0, and the ratio of absorbance at 260 and 230 nm needed to be higher than 1.70.

Table 1. Characteristics of 19 geographically distributed wastewater treatment plants (WWTPs).

WWTPs

Code

Geographic Location Environmental Variable

City Longitude latitude IN_COD(mg/

liter)

IN_TN(mg/

liter)

IN_NH4
+(mg/

liter)

IN_pH (mg/

liter)

IN_TP (mg/

liter)

Temp.(˚

C)

DO (mg/

liter)

pH

BJ1 Beijing 116.30 40.02 150.67 48.70 42.46 7.25 6.10 19.80 2.94 7.10

BJ2 Beijing 116.44 39.83 443.00 46.00 36.00 7.38 6.80 26.00 1.10 6.91

BJ3 Beijing 116.36 40.03 437.10 64.73 58.61 7.23 6.12 23.10 3.75 7.15

BJ4 Beijing 116.53 39.91 452.80 58.00 52.47 6.97 6.00 20.70 1.39 6.97

CS1 Changsha 113.06 28.22 177.14 20.00 20.00 7.14 2.00 25.10 4.60 6.81

CS2 Changsha 113.02 28.18 74.67 25.00 25.00 7.26 1.80 25.00 3.20 6.98

DL1 Dalian 121.50 38.86 243.00 28.00 37.49 7.37 5.35 15.30 5.53 6.72

DL2 Dalian 121.64 39.00 258.00 24.00 39.35 7.43 5.86 14.10 7.00 6.81

DL3 Dalian 121.68 38.88 291.00 18.19 16.40 7.31 5.81 13.70 7.46 6.51

SH1 Shanghai 121.62 31.34 281.94 58.00 41.00 7.30 6.00 26.80 2.80 7.82

SH2 Shanghai 121.49 31.28 300.00 64.00 38.70 7.55 7.20 26.40 2.80 7.53

SZ1 Shenzhen 114.15 22.54 317.00 33.00 27.00 6.91 4.30 25.00 4.49 6.42

SZ2 Shenzhen 114.15 22.54 328.00 33.00 26.00 6.91 4.30 24.60 2.99 6.84

SZ3 Shenzhen 114.10 22.53 343.00 77.90 55.00 7.13 5.10 30.70 2.60 6.41

WX1 Wuxi 120.32 31.53 374.89 45.58 45.35 7.24 7.24 18.40 2.35 6.88

WX2 Wuxi 120.32 31.53 374.89 45.58 45.35 7.24 7.24 18.05 1.54 6.72

ZZ1 Zhengzhou 113.74 34.85 427.00 50.60 37.40 7.87 10.80 17.00 3.00 6.80

ZZ2 Zhengzhou 113.80 34.78 443.73 55.72 47.79 7.76 5.73 17.00 3.00 6.90

ZZ3 Zhengzhou 113.80 34.78 443.73 55.72 47.79 7.76 5.73 17.00 3.00 6.90

The alphabets (DL, BJ, ZZ, CS, WX, SH, SZ) represent the cities and the number represents the number of the WWTPs. Abbreviation: IN_COD, chemical

oxygen demand (COD) of influent; IN_TN, total nitrogen (TN) of influent, IN_NH4
+, ammonia of influent; IN_pH, pH of influent; IN_TP, total phosphorus of

influent; temp., temperature of activated sludge; DO, dissolved oxygen (DO) in activated sludge; pH, pH of activated sludge.

doi:10.1371/journal.pone.0167422.t001
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DNA labeling, and hybridization

DNA (1μg) was labeled, purified and dried before hybridization using previously described

methods [28]. All labeled DNA was suspended again in a 10-μl hybridization solution as previ-

ously described [29]. Subsequently, DNA was hybridized at 42˚C with 40% formamide for 16

hours on a MAUI hybridization station (BioMicro, Salt Lake City, UT, USA) utilizing Geo-

Chip 4.2. In essence, GeoChip 4.2 is a functional gene microarray containing 83,992 oligonu-

cleotide (50-mer) probes (nucleic acid sequence) from the genes with known biological

functions [25] and can cover as much as 152,414 coding sequencing in 410 gene categories.

Specifically, GeoChip 4.2 contained a total of 3729 probes belonging to 13 bacterial virulence

gene families (the virulence genes encoding the same type of virulence factors are classified as

a gene family) present in most bacterial pathogens and 3334 probes targeting 11 ARG families

(the ARGs with the same function are classified as one ARG family) [30, 31]. Briefly, 13 viru-

lence gene families were included which encode protein related to adhesion, aerobactin, cap-

sule colonization factors, fimbriae, hemolysin, invasion, iron oxidation, pilin, secretion,

sortase, toxin and virulence protein [9] (description of each virulence factor can be found in

S1 Table). Five transporters (ATP-binding cassette (ABC), multidrug and toxic compound

exporters (MATE), the resistance-nodulation-division (RND), major facilitator superfamily

(MFS) and small multidrug resistance (SMR)), four classes of beta-lactam resistance (beta-lac-

tamase class A to D), tetracycline resistance and vancomycin resistance were selected to ana-

lyzed bacterial antibiotic resistance (S2 Table). Detailed information about individual probe

can be downloaded at www.ou.edu/ieg/tools.html. Microarrays were scanned by a Nimblegen

(Madison, WI) MS200 Microarray scanner at 100% laser power.

Data analysis

Spots with a signal-to-noise ration of<2 and outliers of replicates were removed and signal

intensities were normalized with and across samples based on the mean signal intensity as

described previously [24]. The normalized hybridization data for virulence genes sequences and

antibiotic resistance genes sequences were selected based on gene families and functional groups.

Shannon-Winner index (H), evenness index (E), Canonical correspondence analysis

(CCA), analysis of variance (ANOVA) and partial Mantel test of 57 samples were determined

using R (v.2.13.1; http://www.r-project.org/). Spatial variables measured as latitude-longitude

coordinates were converted into projected coordinates and are represented by a cubic trend-

surface polynomial to capture broad-scale spatial trends [32]. Distance-decay analyses were

constructed using R based on Jaccrad distance and Bray-Curtis indices. Z values, as a measure

of the rate of bacterial virulence genes richness increasing with distance were calculated as the

slope of a linear least squares regression on the relationship between geographic distances

(log-transformed) versus bacterial virulence genes similarity (log-transformed).

Data accession number

Detailed information of the detected genes and their signal intensities is available at the Gene

Expression Omnibus (www.ncbi.nlm.nih.gov/geo/, accession number GSE54055).

Results and Discussion

Overall virulence gene structure and composition

A total of 1610 genes (probes), covering 13 categories (families) of bacterial virulence factors,

were detected (S3 Table). Among these, 1438 genes (89.3%) came from Proteobacteria. The

virulence genes of activated sludge communities detected in this study showed had higher
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richness than those of soil (1372 genes detected) and deep-sea water (372 genes) communities

[5]. In each WWTP, the 13 virulence gene families showed similar abundance distribution

patterns, but they were of different abundances (Fig 1). Genes encoding toxin were more

abundant in SZ1, SZ2 and SZ3. About each gene family, genes encoding siderophore were

dominant both in number (26.8%-33.4%) (numbers of detected genes encoding each individ-

ual virulence factor in 57 samples are shown in S3 Table) and in abundance (27.6%-33.7%) (S2

Fig). Siderophores are small, high-affinity iron-chelating compounds, which play roles in scav-

enging iron from iron-limiting environment and making the mineral available to the microbial

cell [33]. Though siderophores as a nonspecific virulence factor are indirectly involved in path-

ogenesis, they are as equally important as specific ones for bacteria to establish infection [7].

Our results showed that virulence genes encoding siderophores came from many hydrocar-

bon-degrading bacteria, such as Delftia acidovorans SPH-1 (GenBank: CP000884.1), Novo-
sphinggobium aromaticivorans DSM 1244 (GenBank: CP000248.1) and Variovorax paradoxus
S110 (GenBank: CP001635.1), which are consistent with the study about virulence genes in

oil-contaminated seawater [5]. The virulence genes encoding siderophores may facilitate the

uptake of iron [5] and increase the potential of pollutants degradation in WWTPs.

To assess the virulence gene diversity in each sample, richness, evenness and Shannon-

Weaver index (H) were calculated. Seven hundred and two (BJ1A) to 1370 (SZ2B) genes were

detected within each sample (S3 Table). The values of H ranged from 6.55 to 7.22 across the 19

WWTPs. Both the highest abundance and greatest diversity of virulence genes came from the

SZ, indicating a possible increase in abundance and diversity of pathogenic bacteria under

environmental perturbations such as high temperature [5]. The evenness of all samples did not

show significant difference (S4 Table).

Relationships between virulence genes and environmental factors

Understanding the factors that shape the bacterial virulence genes structure in WWTPs could

potentially enhance treatment performance and control [34]. In this study, the effects of the 10

measured factors (Table 1) were evaluated including geographic location of the WWTPs and

environmental factors which are usually monitored in routine measurement of WWTPs. CCA

was performed to identify the key environmental attributes shaping the virulence gene struc-

ture from these 10 factors. Based on values of variance inflation factors (VIF) less than 20 with

999 Monte Carlo permutations, six environmental variables, latitude, longitude, pH of influ-

ent, dissolve oxygen (DO), temperature and pH of activated sludge were selected in the CCA

biplot (Fig 2). Among them, latitude and pH showed a strong negative correlation with the

first axis and DO showed a strong positive correlation with the second axis. These six factors

explained 43.41% virulence gene structure in total and fitted CCA model very well as a whole

(P<0.001). There was also a large proportion of variance that could not be explained, indicat-

ing that unmeasured biotic and abiotic environmental factors may also play important roles in

shaping virulence gene structure.

In general, bacterial virulence genes from the same city were clustered together and com-

munities in different WWTPs were separated based on latitude, pH and temperature along the

first axis. Virulence gene structure in WWTPs DL1, DL2 and DL3 were primarily linked to

DO, which would explain why virulence genes in DL were separated from the others.

As shown in Fig 2, latitude had a strong effect on the overall virulence genes structure,

which was confirmed by the partial Mantel test. The partial Mantel test result showed that

overall virulence gene composition was strongly correlated to latitude (r = 0.55, P<0.01).

This was consistent with previous observations that latitude could best explain community

variations of influent sewage samples from 13 different WWTPs [35]. The possible reasons are

Bacterial Virulence Genes and Antibiotic Resistance Genes in WWTPs
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that the structure of virulence genes is a reflection of the local epidemic situation to some

degree and the local ambient environment and climate would influence both source microor-

ganisms entering the system and resident microorganisms in the WWTPs [36].

Temperature also has a strong effect on virulence gene structure. In addition, there were

positive correlations between temperature and abundance of virulence genes (r = 0.38,

P<0.01) and between temperature and diversity (r = 0.36, P<0.01), respectively, which mean

that elevated temperature can lead to an increase in the relative abundance and diversity of vir-

ulence genes [5]. Konkel et al [37] pointed that virulence genes expression can be regulated by

temperature, which acts as an “on-off” switch in a manner distinct from the more general

heat-shock response. As such, these findings may indicate that temperature is vital environ-

mental variable and provide the basis for the development of method to control virulence fac-

tors in activated sludge.

Spatial distribution patterns

As we mentioned previously, WWTPs are ideal model systems to test whether and how the

spatial distribution patterns of virulence genes in eco-systems. Firstly, the pattern of a latitudi-

nal biodiversity gradient was evaluated, that is, whether species richness or diversity increases

towards lower latitudes [38, 39]. The latitudinal gradient of alpha diversity was analyzed by a

linear regression. Strong correlations between richness and latitude (r = 0.69, P<0.01) as well

as H value and latitude (r = 0.66, P<0.01), were detected, respectively (Fig 3), suggesting that

virulence genes in WWTPs had a latitudinal diversity gradient.

The bacterial virulence genes as whole displayed a significant, negative distance-decay rela-

tionship based on Bray-Cutis similarity (r = -0.49, P<0.01(Fig 4A) and Jaccard similarity (r =

Fig 1. Gene abundance of each virulence gene family in 57 samples. For clear and pithy description, we use the names of virulence

factors to substitute the related names of virulence genes in Fig 1.

doi:10.1371/journal.pone.0167422.g001
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-0.51, P<0.01) (Fig 4B), indicating that the composition of bacterial virulence genes in

WWTPs located proximally were more similar than that in WWTPs located father apart. The

z value based on Bray-Cutis distance for the whole virulence genes was 0.0136, while z value

Fig 2. Canonical correspondence analysis (CCA) of 57 samples based on the bacterial virulence genes.

Arrows indicate the direction and magnitude of measurable variables associated with community structures. The

solid circles represent the different WWTPs. In-pH represents the pH of influent.

doi:10.1371/journal.pone.0167422.g002

Fig 3. A. Latitudinal gradient of richness. B. Latitudinal gradient of H value (Shannon-Wiener index).

doi:10.1371/journal.pone.0167422.g003
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based on Jaccard distance was 0.0234 (higher than the former). Since the Bray-Cutis index

focuses on the difference in species abundance between two communities and the Jaccard index

is the ratio of the number of shared species to the number of whole distinct species in two sam-

ples, our finding suggest that dominant virulence genes had a lower turnover in WWTPs. Fur-

thermore, the z values obtained in this study are several times lower than those for animals and

plants, which was 0.27 and 0.32 respectively [19]. In addition, they were lower than those

observed in other habitats for microorganisms. For example, the z values for metal resistance

genes families in a forest soil were 0.0616 and z values varied considerably across different func-

tional and phylogenetic groups (z = 0.0475–0.0959) [40]. It is because similar functions and rela-

tively similar operational conditions in WWTPs may result in lower turnovers[19].

Distribution of ARGs in WWTPs

There were 3334 ARGs (589 sequence-specific genes and 2745 group-specific genes) covering

5533 sequence in GeoChip 4.2. A total of 1903 ARGs deriving from 807 species (strains) were

detected in this study. Many of species (strains) are related to degradation of pollutants, such

as Agrobacterium radiobacter K84 (GenBank: NC_011985.1), Nitrosomonas sp. AL212 (Gen-

Bank: CP002552.1), which demonstrates that various microorganisms had the capability of

antibiotic resistance and these bacteria can act as potential reservoirs of resistance genes[41].

SampleSZ2A showed the highest richness (1419 ARGs), whereas sample ZZ1A had the lowest

richness (677 ARGs).

All these detected ARGs belong to 11 antibiotic resistance categories, and ten of them were

shared by all 57 WWTPs samples (Fig 5), which indicated that antibiotic resistance are preva-

lent and widely disseminated in non-clinical environments[42]. ARGs belonging to ABC,

MATE, MFS and SMR were widely distributed in both Gram-positive and negative bacteria,

while genes encoding RND only derived from Gram-negative bacteria, which agreed with the

study from Handzlik et al. [43]. For each gene family, SMR transporters had the highest abun-

dance, which were also found as the most dominant ARGs in pharmaceutical wastewater treat-

ment systems [21]. All five transporters accounted for 70%±0.12% (abundance) of all detected

ARGs, indicating that efflux pumps are the major antibiotic resistance determines [14]. One

concern about array-based technology is that all of the probes on the array are derived from a

chosen set of genes and sequences [22] and we need to admit that some genes like

Fig 4. A. Distance-decay patterns for virulence genes in activated sludge on Bray-Curtis similarity index. B.

Distance-decay patterns for virulence genes in activated sludge on Jaccard similarity index. Each dot

represents a pairwise similarity of virulence genes. S means virulence gene similarity and D means geographic

distance.

doi:10.1371/journal.pone.0167422.g004
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aminoglycoside -resistance genes were lack in order to ensure the array specificity. However, it

is not easy for microarrays to cover all of the known genes. As we know, sequences of a partic-

ular functional gene are highly homologous and/or incomplete, especially sequences derived

from laboratory cloning of environmental samples [25]. In order to meet the critical criteria

for designing probes and ensure the array specificity, lots of sequences need to be discarded.

But, the designers are always keeping increasing the coverage of GeoChip based on the latest

database. The coverage of virulence genes and antibiotic resistance genes on GeoChip 4.2 was

manually checked and improved by modifying keyword queries for some genes and increasing

gene sequence coverage from the latest public database at the time of development [9]. There-

fore, GeoChip 4.2, as high-throughput technology, can cover as many as 3729 genes related to

13 major virulence factors and 3334 genes related to 4 categories of antibiotic resistance, which

can be reliable and comprehensive for analyzing bacterial virulence and antibiotic resistance

simultaneously and avoid the limitation of primer selection compared to PCR.

Bacteria can intrinsically resist to particular antibiotics but can also acquire or develop

resistance to antibiotics [44]. Intrinsic resistance is a natural characteristic of a bacterial species

by reducing uptake or inactivating antibiotics [44]. For example, E. coli has innate resistance to

vancomycin [45]. Also, Gram-negative bacteria are intrinsically resistant to many antibiotics

with the help of efflux pumps [44]. On the contrary, acquired resistance may arise by mutation

in chromosomal genes or by the acquisition of mobile genetic elements (MGEs), e.g. plasmids,

transposons and integrons [46, 47]. For instance, tet genes which also had high abundance in

activated sludge samples, are often located on plasmids and can be horizontally transferred

among bacterial strains in wastewater treatment plants [48].

Fig 5. Abundance of total detected ARGs in 57 WWTPs samples. Abbreviations: B_lactamase_A, B, C, D, genes encoding beta-

lactamase class A, B, C, D, respectively; ABC, genes encoding ATP-binding cassette transporter; MATE, genes encoding multidrug and toxic

compound exporters; NRD, genes encoding the resistance-nodulation-division transporter; MFS, genes encoding major facilitator superfamily

transporter; SMR, genes encoding small multidrug resistance; Tet, genes encoding tetracycline resistance protein; Van, genes encoding

vancomycin resistance protein.

doi:10.1371/journal.pone.0167422.g005
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Correlation between virulence genes and ARGs

It has been evidenced that acquisition of antibiotic resistance determines via horizontal gene

transfer (HGT) play an important role in the development and spread of antibiotic resistance

among pathogenic bacteria [49, 50]. Since activated sludge with high microbial density and

diversity can facilitate HGT of ARGs among bacteria [34, 40, 41], pathogenic bacteria in acti-

vated sludge have large potential to develop antibiotic resistance. However, the relationship

between virulence genes and ARGs has rarely been studied. The mantel test results indicated

that the virulence genes as a whole were positively correlated with the ARGs as a whole

(r = 0.98, P<0.01).

One of the plausible explanations for why a positive association between virulence genes

and ARGs was observed is that opportunistic pathogens tended to harbor ARGs. Some previ-

ous studies showed that long-term exposure to sub-inhibitory concentrations of antibiotics in

wastewater may favor ARGs horizontal transfer in activated sludge [51]and also could favor

bacterial virulence under certain conditions [46]. These opportunistic pathogens with resis-

tance to antibiotics could pose potential threat to public health when released into the receiv-

ing surface water.

In addition, small multidrug resistance efflux transporters (SMR), with the highest abun-

dance in activated sludge, are involved in other processes such as virulence [46], and multidrug

efflux systems can directly export virulent determinants and contribute to bacterial pathogene-

sis [52].

Conclusion

In sum, the study not only provided insight into the structure and diversity of bacterial viru-

lence genes in geographically distributed WWTPs, but also revealed the correlation of the

structures of virulence genes and ARGs. Overall, 1610 virulence genes covering all 13 bacterial

virulence factors and 1903 ARGs belonging to 11 ARG families were detected in 57 WWTPs

samples. Virulence genes in WWTPs showed a clear latitudinal biodiversity gradient and dis-

tance-decay relationship across China. Moreover, abundances of virulence genes and ARGs

showed a strong and positive correlation. These results provide us with more comprehensive

information on virulence genes and ARGs in WWTPs, which may facilitate a more targeted

control and reduce potential risks in the future.
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