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ABSTRACT Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all mi-
crobial biodiversity research focuses on “species” richness and abundance but not on their interactions. Although a network
approach is powerful in describing ecological interactions among species, defining the network structure in a microbial commu-
nity is a great challenge. Also, although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity
are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly under-
stood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological net-
works was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a
long-term grassland FACE (free air, CO2 enrichment) experiment. Our results indicate that RMT is powerful in identifying func-
tional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO2 and
ambient CO2 (aCO2) possessed the general characteristics of complex systems such as scale free, small world, modular, and hier-
archical. However, the topological structures of the functional molecular ecological networks are distinctly different between
eCO2 and aCO2, at the levels of the entire communities, individual functional gene categories/groups, and functional genes/
sequences, suggesting that eCO2 dramatically altered the network interactions among different microbial functional genes/
populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidat-
ing network interactions in microbial communities and their responses to environmental changes is fundamentally important
for research in microbial ecology, systems microbiology, and global change.

IMPORTANCE Microorganisms are the foundation of the Earth’s biosphere and play integral and unique roles in various ecosys-
tem processes and functions. In an ecosystem, various microorganisms interact with each other to form complicated networks.
Elucidating network interactions and their responses to environmental changes is difficult due to the lack of appropriate experi-
mental data and an appropriate theoretical framework. This study provides a conceptual framework to construct interaction
networks in microbial communities based on high-throughput functional gene array hybridization data. It also first documents
that elevated carbon dioxide in the atmosphere dramatically alters the network interactions in soil microbial communities,
which could have important implications in assessing the responses of ecosystems to climate change. The conceptual framework
developed allows microbiologists to address research questions unapproachable previously by focusing on network interactions
beyond the listing of, e.g., the number and abundance of species. Thus, this study could represent transformative research and a
paradigm shift in microbial ecology.
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An ecosystem is a complex system in which various species
interact with each other to form complicated networks (1).

Through such network interactions, an ecosystem is capable of
accomplishing systems level functions (e.g., nutrient cycling, eco-
system stability) which could not be achieved by individual pop-
ulations. Explaining and predicting network structures, dynam-
ics, and the underlying mechanisms are essential parts of ecology.
Although ecological networks of biological communities have
been intensively studied in macrobial ecology (1–5), very limited
studies have been carried out in microbial communities due to
their vast diversity and as-yet-uncultivated status (6–8).

Massive amounts of data on microbial community diversity

and dynamics across various spatial and temporal scales can be
generated with metagenomics and associated technologies, such
as high-throughput sequencing and microarrays (9, 10), which
offer an unprecedented opportunity to examine network interac-
tions among different microbial species/populations (6). Re-
cently, microarray-based high-throughput technologies, such as
GeoChip (10), have been developed and are enabling microbial
ecologists to address a variety of ecological questions on a
community-wide scale (11, 12). However, identification of net-
work structure based on such high-throughput microarray data is
challenging.

Various network methods have been developed for inferring
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cellular networks based on gene expression data (13), such as dif-
ferential equation-based network methods, Bayesian network
methods, and relevance/coexpression network methods (14). The
correlation-based relevance network methods are most com-
monly used for identifying cellular networks (14) based on gene
expression data because of their computational simplicity and the
nature of microarray data (typically noisy, highly dimensional,
and significantly undersampled) (13). However, most methods
for relevance network analysis use arbitrary thresholds, which are
often determined based on known biological information (15).
Thus, the network structure largely depends on the thresholds
chosen. It is difficult to select appropriate thresholds, especially for
poorly studied organisms. We have previously developed a novel
random matrix theory (RMT)-based approach to automatically
identify cellular networks from microarray data (16, 17). Our re-
sults indicated that this approach is a reliable, sensitive, and robust
tool for modular network identification and gene function predic-
tion through high-throughput genomic data (16, 18, 19).

Here, we describe the novel RMT-based network approach
(16, 17) to delineate and characterize functional molecular eco-
logical networks (MENs) in microbial communities based on
GeoChip hybridization data by addressing the following ques-
tions. (i) How can the functional molecular ecological networks in
microbial communities be identified based on high-throughput
GeoChip hybridization data? (ii) Does elevated CO2 (eCO2) have
an impact on the functional network structure of soil microbial
communities? To answer these questions, a novel conceptual
framework of MENs has been developed for identifying and char-
acterizing interaction networks in microbial communities based
on high-throughput GeoChip hybridization data derived from
the microbial communities under both eCO2 and ambient CO2

(aCO2) in a multifactor grassland FACE (free air, carbon dioxide
enrichment) experiment, BioCON (biodiversity, CO2, and nitro-
gen deposition), at the Cedar Creek Ecosystem Science Reserve in
Minnesota (20). Our results indicated that the functional ecolog-
ical networks in microbial communities can be discerned using
the RMT-based network approach and that eCO2 has a significant
impact on network interactions of microbial communities.

RESULTS
Molecular ecological networks. The detection and quantitation
of microorganisms often rely on individual genes or gene-like
DNA fragments such as 16S rRNA genes, functional genes, and
intergenic regions. Based on gene abundance data, a network
graph can be developed to represent the ecological interactions
(links) of different gene markers (nodes) in a microbial commu-
nity (21). Strictly speaking, the ecological networks determined in
this way should reflect the interactions among different microbial
populations carrying the OTUs (operational taxonomic units) or
functional genes of interest rather than individual “species” in a
microbial community. Thus, to avoid confusion, we especially
refer to such molecule-based networks in microbial communities
as MENs, in which OTUs or functional genes (nodes) are con-
nected by pairwise interactions (links). In addition, MENs derived
from phylogenetic gene markers (i.e., 16S rRNA gene sequencing
data) are referred to as phylogenetic MENs (pMENs), whereas
MENs derived from functional gene markers (e.g., GeoChip hy-
bridization data) are called functional MENs (fMENs).

A general framework of MEN analysis is illustrated in Fig. 1.
First, high-throughput metagenomic data (e.g., large-scale se-

quencing and functional gene array hybridization) are collected
and appropriately transformed. Then, a pairwise Pearson correla-
tion between any two genes is estimated based on the gene abun-
dance data and the absolute value of the pairwise correlation co-
efficient is used to measure their similarity. As a result, a similarity
matrix is obtained, which is subsequently transformed into an
adjacency matrix by applying a threshold to the correlation values
based on an RMT approach. Once the adjacency matrix, which
measures the strengths of the connections between nodes, is de-
fined, module analysis and network characterization are per-
formed. Summing the strengths of the connections of each gene
with all of the other connected genes yields a single network pa-
rameter, connectivity, which represents how strongly that gene is
connected to all of the other genes in the network. In addition, the
relationships of topological network characteristics (e.g., connec-
tivity) to the sample traits of interest are evaluated to understand
the importance of network properties in determining community
functions.

Identification of functional MENs. Based on RMT, two uni-
versal extreme distributions of the nearest-neighbor spacing dis-
tribution of eigenvalues are predicted. One is Gaussian orthogonal

FIG 1 Overview of RMT-based MEN analysis. Six key steps are outlined here
for molecular ecological analysis. A typical figure is placed in each step to
highlight the main characteristics of such types of analysis.
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ensemble (GOE) statistics, which reflects the random properties
of complex systems. The other is Poisson distribution, which is
related to the system-specific, nonrandom properties of complex
systems (22). The two predictions should be applicable to ecolog-
ical communities if they are universal to complex systems based
on RMT. Thus, we assume that there is a transition of the nearest-
neighbor spacing distribution of eigenvalues from GOE to Pois-
son distributions, and this transition can serve as a reference point
to distinguish random noise from system-specific, nonrandom
properties embedded in high-throughput metagenomic data.
This reference point is mathematically defined and can be used as
a threshold to identify MENs in an automatic and objective fash-
ion (16).

To discern the ecological network structure in microbial com-
munities, GeoChip-based microbial community functional diver-
sity data from aCO2 and eCO2 were analyzed using the RMT-
based network approach (16, 17). Clear transitions of the nearest-
neighbor spacing distribution of eigenvalues from GOE to
Poisson distribution were observed for grassland microbial com-
munities under aCO2 and eCO2, as indicated by the existence of a
similarity threshold in Table 1. These results suggested that the
two universal predictions based on RMT are applicable to the
microbial communities examined. The transition points were
used as the similarity thresholds (st) for network construction.
Based on the RMT approach, the thresholds were determined to
be 0.80 for both microbial communities (Table 1). If two genes
have a correlation larger than this threshold, 0.80, this correlation
is highly significant (P � 0.0018) based on the Fisher transforma-
tion test. This is also consistent with our previous analyses of gene
coexpression networks which showed that the RMT-based ap-
proach is able to effectively remove random noise inherent in
high-throughput microarray hybridization data (16, 23). Thus,
these results suggested that the RMT-based network approach can
be used to identify the network structure of microbial communi-
ties based on array hybridization data.

General characteristics of functional MENs. To understand
whether the identified fMENs have a network topology similar to
that of other complex systems, several important general network
features, such as scale free, small world, modular, and hierarchical
(15, 24, 25), were examined. A scale-free network is a network
whose connectivity follows a power law, at least asymptotically;
that is, a few nodes in the network have many connections with
other nodes while most of the nodes have a few connections. Also,
a small-world network is a network in which most of the nodes are

not neighbors of one another but most of the nodes can be reached
from every other node by a small number of steps.

The degree distributions (or connectivity) in all of the con-
structed fMENs fit the power law model well, with typical corre-
lation values of �0.89 to �0.94, respectively (Table 1; see Fig. S1
in the supplemental material), indicating that the fMENs in these
microbial communities exhibited scale-free behavior, at least ap-
proximately. Also, the path length and clustering coefficients were
significantly different from those of the corresponding random
networks with the same network size and average number of links
(Table 1) and were comparable to those in other networks display-
ing small-world behavior, indicating that the MENs in these mi-
crobial communities show typical small-world characteristics.

Many networks in biological and engineering systems are
modular (24). In the fMENs examined here, a module is a group of
functional genes that are highly connected among themselves but
have few connections with the functional genes belonging to other
modules. The two fMENs examined were modular, with a signif-
icantly higher modularity (M) than those from the corresponding
random networks (Table 1).

Hierarchy is a central organizing principle of complex net-
works, but there is no formal definition of hierarchical topology
(26). One of the most important signatures of hierarchical mod-
ular organizations is that the scaling of clustering coefficients fol-
lows C(k) ~ k��, in which k is connectivity and � is a constant. By
log transformation, we will have log[C(k)] ~ �� log(k); that is, the
logarithms of clustering coefficients have a linear relationship
with the logarithms of connectivity. The clustering coefficients for
the MENs examined followed log[C(k)] ~ �� log(k) (r � �0.31 ~
�0.85, P � 0.001), suggesting that all of the MENs examined here
appeared to be hierarchical. However, it should be cautioned that
global network properties such as the average shortest pathway,
degree distribution, and clustering coefficient may fail to capture
potentially important network structure features (27).

Impact of eCO2 on the architecture of whole MENs. Although
identical thresholds were used to define the network, the network
size was considerably bigger under eCO2 than under aCO2 (Ta-
ble 1). Also, the network composition was substantially different.
Only 129 (43%) nodes of the fMENs were shared by eCO2 and
aCO2. However, the connectivity values for the genes shared by
these two networks were significantly correlated (r � 0.379, P �
0.001).

Various network indexes were calculated separately for both
fMENs under eCO2 and aCO2. To test their statistical significance,

TABLE 1 Major topological properties of the empirical MENs of microbial communities under eCO2 and aCO2 and their associated random
MENs

Community

Empirical networks Random networksd

No. of
original
genesa

Similarity
threshold
(st)

Network
size (n)b

r of scale freec

(significance)

Avg
connectivity
(avgK)

Avg
path
length
(GD)f

Avg
clustering
coefficient
(avgCC)

Modularity
(no. of
modules)

Avg path
length
(GD)

Avg
clustering
coefficient
(avgCC)

Modularity
(M)

eCO2 371 0.80 245 �0.89 (�0.001) 7.13 3.09e 0.22e 0.44e (18) 3.00 � 0.03 0.099 � 0.009 0.31 � 0.01
aCO2 323 0.80 184 �0.94 (�0.001) 3.58 4.21e 0.10e 0.65e (16) 3.84 � 0.06 0.028 � 0.007 0.52 � 0.01
a The number of genes that were originally used for network construction using the RMT-based approach.
b The number of genes (i.e., nodes) in a network.
c The correlation coefficient (r) of the linear relationship in log[P(k)] ~ �� log(k), where P(k) is the fraction of connectivity k and � is a constant.
d The random networks were generated by rewiring all of the links of a MEN with the identical numbers of nodes and links to the corresponding empirical MEN.
e Significant difference (P � 0.001) between aCO2 and eCO2.
f GD, geodesic distance.
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100 random networks corresponding to both fMENs were also
generated, respectively. The standard deviations of individual in-
dexes were estimated based on their corresponding random net-
works and used for the Student t test of their significance between
eCO2 and aCO2. All of these indexes were significantly different (P
� 0.001) between aCO2 and eCO2 (see Table S2 in the supplemen-
tal material), indicating that the overall network structures of
these two microbial communities were distinctly different. Inter-
estingly, compared to aCO2, the fMENs at eCO2 generally had
significantly higher connectivity, shorter path lengths, higher
clustering efficiencies, and more modules (Table 1), which are key
network properties in terms of system efficiency and robustness
(15, 28). All of the above results suggested that eCO2 could have a
significant impact on the overall architecture of the fMENs in
these grassland microbial communities and that the overall net-
work composition and structure are not well conserved between
eCO2 and aCO2.

Totals of seven and eight modules with more than five
nodes were obtained for the networks under aCO2 and eCO2,
respectively (see Fig. S2 in the supplemental material). The
sizes of these modules vary substantially, ranging from 6 to 59
nodes (see Fig. S2B and D in the supplemental material). These
networks also differed significantly from each other in modu-
larity (M) (Table 1). Fisher’s exact test showed that no modules
can be statistically paired between eCO2 and aCO2, suggesting
that these two networks are even less conserved at the modular
level.

Effects of eCO2 on the network interactions of functional
gene categories/groups. To examine the effects of eCO2 on the
network interactions at the levels of functional gene categories/
groups, the network members were classified based on their asso-
ciated functional gene groups. Consistent with the overall net-
work topology, the network structures, as measured by average
connectivity, average clustering coefficients, average path lengths,
and modularity, were significantly different between eCO2 and
aCO2 for the genes involved in C, N, P, and S cycling (see Fig. S3 in
the supplemental material). They were also distinctly different
from the corresponding random networks. Similar to the entire
networks, all of these subnetworks had significantly higher con-
nectivity, shorter path lengths, and higher clustering efficiencies
under eCO2 than under aCO2 (see Fig. S3 in the supplemental
material).

The impact of eCO2 on network structure could also be re-

flected at the functional gene group level.
Because most (57%) of the nodes were
not shared by these two networks (see Ta-
ble S3 in the supplemental material), for
making a meaningful direct comparison,
only the shared nodes from individual
functional gene groups in these two net-
works were considered. As expected, the
network complexities of individual func-
tional gene groups, as measured by the
node number, the average connectivity of
the shared nodes, and the Shannon diver-
sity of the connectivity among various
functional groups, were also considerably
different between aCO2 and eCO2 (Fig. 2;
see Table S3 in the supplemental mate-
rial). The network complexity for most

functional gene groups was generally higher under eCO2 than un-
der aCO2. For instance, the numbers of nodes for C fixation (pmL,
rbcL), N fixation (nifH), and sulfate reduction (dsrA) were sub-
stantially higher under eCO2 than under aCO2 (Fig. 2). These
results suggested that eCO2 substantially altered the network
structure among various microbial functional gene groups in this
grassland ecosystem.

Differential influences of eCO2 on network interactions of
individual functional genes/sequences. To determine how eCO2

affects the network structure of individual functional genes/se-
quences, the connectivity and clustering coefficients for the indi-
vidual nodes shared by these two networks were estimated, fol-
lowed by paired t tests to examine their statistical significance.
Significant differences in connectivity (P � 8.7 � 10�11) or clus-
tering coefficients (P � 1.63 � 10�5) were observed between these
two networks under eCO2 and aCO2. These results suggested that
eCO2 significantly shifted the network structure of individual
functional genes.

Since the structure of the entire networks is too complicated to
display, only very limited numbers of key nodes with higher con-
nectivity were considered. The top six functional genes with the
highest connectivities under eCO2 were examined (Fig. 3). The
network interactions among the top six functional genes of the
entire networks under eCO2 (Fig. 3A) were distinctly different
from the network interactions of the corresponding genes under
aCO2 (Fig. 3B). These six genes under eCO2 had far more compli-
cated network interactions than the corresponding genes under
aCO2 in terms of network size, connectivities, and clustering co-
efficients (Fig. 3C). In contrast, the identities of the highest-
ranked genes under aCO2 (see Fig. S4A in the supplemental ma-
terial), based on connectivities, were substantially different from
those under eCO2 (Fig. 3A). The network interactions of these top
key genes under aCO2 are also quite different from the corre-
sponding genes under eCO2 (see Fig. S4A and B in the supplemen-
tal material).

eCO2 had differential influences on the network interactions of
various individual functional genes/sequences (see Table S3 in the
supplemental material). Due to limited space, it is not possible to
describe them in detail here. Thus, we picked nifH genes as an
example because our previous results showed that the total abun-
dance of nifH genes increased much more than that of other func-
tional genes under eCO2 (29) and the connectivities for all of the
shared nifH genes in N fixation were significantly different be-

FIG 2 Distributions of major functional genes in the network under aCO2 (blue) and eCO2 (red). The
distribution of genes varies substantially among different functional groups. The gene designations are
explained in the legend to Fig. 3.

Zhou et al.

4 mbio.asm.org September/October 2010 Volume 1 Issue 4 e00169-10

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00169-10/-/DCSupplemental
mbio.asm.org


tween eCO2 and aCO2 based on a pairwise t test (P � 0.001) (see
Table S4 in the supplemental material). The N-fixing populations
monitored by nifH genes had far more complex network interac-
tions with other functional groups of diverse phylogenetic com-
positions under eCO2 (Fig. 4A) than under aCO2 (Fig. 4B). Also,
under eCO2, several nifH hubs (e.g., 110630622, 89512768, and
76667345) were observed and each formed a separate module in-

teracting with various other functional
groups (Fig. 4). In addition, the top nifH
network hub from an uncultivated bacte-
rium (GenBank ID: 110630622) (see Ta-
ble S4 in the supplemental material) had
positive interactions with many func-
tional gene groups of diverse phyloge-
netic origins (indicated by the colors of
the nodes), such as those involved in N
fixation, denitrification, C fixation, C
degradation, sulfate reduction, sulfur ox-
idation, and P utilization (Fig. 5A). Posi-
tive interactions may reflect commonly
preferred conditions or cooperative be-
haviors such as cross feeding, syntrophic
interactions, and mutualistic interactions
(6). However, the same N fixer had very
few interactions with other functional
gene groups under aCO2 (Fig. 5B; see Ta-
ble S4 in the supplemental material).
These results also suggested that eCO2

dramatically changed the network inter-
actions of various microbial functional
genes/populations in the grassland eco-
system.

Association of network structure
with ecological functional traits. Since
microorganisms mediate important bio-
geochemical cycles of C, N, and P in soils,
one intriguing question is whether the
network interactions altered under eCO2

are relevant to soil geochemistry and
plant productivity. To discern the rela-
tionships among microbial network in-
teractions, soil properties, and plant vari-
ables, Mantel tests were performed.
Because using many unrelated individual
variables may mask the signature of any
significant variables, the trait-based gene
significance measure (30), defined as the
square of the correlation between the sig-
nal intensity of a gene and each soil or
plant variable, was used to identify com-
mon subsets of soil and plant variables
important to network interactions. Par-
tial Mantel tests revealed very strong cor-
relations between gene connectivity and
the gene significance of the selected soil
variables based on all of the genes de-
tected or on subsets of the genes involved
in recalcitrant C degradation (P � 0.05)
or N fixation (P � 0.01) under eCO2.
Also, a strong correlation between gene

connectivity and the gene significance of the selected plant vari-
ables was obtained based on all of the genes detected that are
involved in N cycling (P � 0.001). However, none of them were
significant (P � 0.05) under aCO2. These results suggested that
the microbial community network interactions were, to some ex-
tent, related to soil and plant variables and that eCO2 could have a
significant impact on such relationships.

FIG 3 Impact of eCO2 on the network interactions of key functional genes. (A) Network interactions
of the top six functional genes with the highest connectivities under eCO2. (B) Network interactions of
the corresponding functional genes under aCO2. Each node signifies a functional gene. Colors of the
nodes indicate different functional genes. A blue line indicates a positive interaction between two
individual nodes, while a red line indicates a negative interaction. The networks were constructed by the
RMT-based approach with the GeoChip data. The network interactions for these microbial functional
genes were complex under eCO2 but simple under aCO2, suggesting that eCO2 has a significant impact
on the network interactions among key functional genes/populations in the grassland soil microbial
communities. The gene are chi (endochitinase), bcsG (endoglucanase), chi36 (exochitinase), exg (exo-
glucanase), lip (lignin peroxidase), mnp (manganese peroxidase), pglA (pectinase), phox (phenol oxi-
dase), xyn (xylananase), CODH (carbon monoxide dehydrogenase), FTHFS (tetrahydrofolate formy-
lase), pcc (propionyl coenzyme A carboxylase), rbcL (ribulose-1,5-bisphosphate carboxylase
oxygenase), mcrA (methyl coenzyme M reductase), pmoA (methane monooxygenase), nifH (nitroge-
nase reductase), nirK (nitrite reductase), nirS (nitrite reductase), nrfA (c-type cytochrome nitrite reduc-
tase), ppk (polyphosphate kinase), ppx (exopolyphosphatase), dsrA (dissimilatory sulfite reductase),
and sox (sulfite oxidase).
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DISCUSSION

Microorganisms play critical roles in bio-
geochemical cycling of C, N, S, P, and var-
ious metals, but the precise roles of many
microorganisms in these cycles are un-
known (31). Elucidating their network
interactions and linking them to ecosys-
tem processes and functions is difficult.
Although the availability of community-
wide metagenomic data across many rep-
licated samples offers an unprecedented
opportunity to examine the network in-
teractions in microbial communities,
identifying network structure with such
high-throughput metagenomic data is
very challenging. Based on high-
throughput metagenomic data such as ar-
ray hybridization, a conceptual frame-
work for studying functional network
interactions in microbial communities
has been developed in this study. The ap-
plications of network approaches to mi-
crobial communities could also provide a
general framework for assessing the con-
sequences of environmental disturbances
at the whole-community level, which can
serve as the first step toward a predictive
microbial ecology within the context of
global environmental change (6).

The RMT-based approach presented
here provides a reliable, sensitive, and ro-
bust tool for identifying MENs with sev-
eral main advantages. First, this approach
was developed based on the two universal
laws of RMT, and hence it is based on a
sound theoretical foundation. Thus, it
should be applicable to a variety of com-
plex systems such as cells, communities,
and ecosystems. Second, the threshold for
defining a MEN is automatically defined
based on the data structure itself rather
than artificially chosen, and thus, no am-
biguity occurs in identifying MENs.
Third, since RMT is powerful for remov-
ing noise from nonrandom, system-
specific features, the identified network is
reliable, as clearly demonstrated in iden-
tifying transcriptional networks (16). In
contrast to other approaches, such as
those based on permutation testing (7,
32), the thresholds of correlation defined
by RMT for defining networks are gener-
ally substantially higher. Consequently,
the networks identified should be highly
robust. Fourth, this RMT approach has
potential for analyzing heterogeneous
ecological data sets (e.g., hybridizations,
sequencing, geochemistry) or combina-
tions thereof. This could be particularly

FIG 4 Network interactions of microorganisms containing nifH genes under eCO2 (A) and aCO2 (B).
Microorganisms containing nifH genes formed complex network interactions with other functional
groups, and some nifH-containing populations serve as central hubs in this community. The networks
were constructed by the RMT-based approach with the GeoChip data from eCO2 and aCO2 and only
shared nifH nodes, and their nearest neighbors in the network are shown here. The nifH genes detected
in both fMENs of aCO2 and eCO2 are displayed with a bigger node size. The gene designations are
explained in the legend to Fig. 3. The numbers represent the GenBank protein IDs to differentiate
different nifH genes because most of them represent uncultivated microorganisms.

FIG 5 Network interactions of a nifH hub under both eCO2 and aCO2. The nifH-containing unculti-
vated microorganism had intensive positive interactions with many functional groups of diverse phy-
logenetic origins under eCO2 (A) but very simple interactions with other functional groups under aCO2

(B). Only this nifH gene node (110630622) and its nearest neighbors are shown. The direct interactions
with this nifH gene are labeled with thick lines, whereas the indirect interactions are marked with thin
lines.
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important for linking network structure to ecosystem function-
ing. In addition, unlike local similarity analysis (7), which deals
with time series data, this approach can be used to analyze both
spatial and temporal data sets. However, the networks in this
study are constructed based on Pearson correlation, which as-
sumes a linear relationship between correlated variables. Some
other, nonlinear, correlation methods, such as local similarity
analysis (7), should be considered for further improvement of the
RMT-based network approach.

Knowledge of network topology (e.g., scale free and small
world) is important because the same or similar architecture
among different types of networks (e.g., biological, physical, and
social networks) may reveal common organizing principles of
complex systems, and the shape of the degree distribution greatly
affects the stability of the complex systems (15). Several recent
studies indicated that most food webs did not display small-world
patterns and scale-free structure, except for a few (33, 34). Food
webs could be fitted with different functional forms, including
power law, truncated power law, exponential, and uniform distri-
butions (34). It appears that most food webs follow exponential
distribution (35). Also, most of the mutualistic networks exam-
ined follow the truncated power law distribution. In contrast to
the above two types of ecological networks, the fMENs presented
here displayed small-world effects and the power law distribution,
which are more similar to many cellular networks (15) such as
protein-protein interaction networks, gene expression networks,
and some metabolic networks. Further studies are needed to un-
derstand the unique characteristics, origins, evolutionary mecha-
nisms, and dynamics of MENs.

Modularity is an inherent characteristic of many large complex
systems, including many technological, biological (e.g., protein-
protein interaction networks, gene expression), and social net-
works (15, 24, 26, 28, 36). In cellular networks, modularity is an
evolved property that could enhance the flexibility of generation
of various phenotypes during development (28). Modularity of
gene regulation is essential to handle diverse and complex stimuli
and responses. In ecology, a module is a group of species that
interact strongly among themselves but little with species in other
modules (known as compartmentalization) (37). Modularity in
an ecological community may reflect habitat heterogeneity, phys-
ical contact, functional association, divergent selection, and/or
phylogenetic clustering of closely related species (36). Modules
with their component species may even be the key units of coevo-
lution. Food webs are traditionally considered representative ex-
amples of ecological modularity. Recently, it was shown that all
larger pollination networks are modular (36). Similar to food
webs and pollination networks, our results showed that functional
MENs are also modular. The presence of genes in the same mod-
ules could signify that the microorganisms carrying these genes
have similar ecological niches. In addition, many different func-
tional genes, such as nifH, belong to different modules and serve as
hubs in different modules. This could be a unique predominant
feature in ecological networks due to the existence of many redun-
dant populations.

The fMENs identified possess the general features of many cel-
lular networks with the hierarchical, modular, small-world, or
scale-free network architecture, which could have important im-
plications for the robustness and functional stability of ecosystems
(15, 28). A small-world pattern facilitates efficient, rapid commu-
nication among different members within a system so the system

can make quick responses to environmental changes such as ele-
vated atmospheric CO2. On the other hand, the short path length
will allow the local perturbations to reach the whole network
quickly so that that network structure, as well as the functions,
could be altered. However, the characteristics of modularity will
help to minimize the effects of local perturbations on the system as
a whole by containing perturbations and damage at a local level
(28), whereas the hierarchical organization of various modules
ensures that communication between modules and network hubs
is relatively quick. Also, while a scale-free network is unperturbed
by the random loss of nodes, it is vulnerable to attacks to network
hubs (15). However, such vulnerability can be reduced or im-
proved by the nonrandom organization of similar functional
genes as hubs in multiple modules. As a result, a loss of one mod-
ule hub will not have too much of an impact on the functional
stability of the system as a whole. Therefore, as a whole, the overall
microbial community could rapidly respond to environmental
changes and remain robust in the face of random and specific
perturbations via the balance of the advantages and disadvantages
of various network topological characteristics for system func-
tional stability.

Understanding the responses of biological communities to en-
vironmental change, especially anthropogenic change, is a central
issue in ecology and evolution and for society. Due to the in-
creased input of C into soil and associated chemistry under eCO2,
it is also expected that the composition and structure of microbial
communities will be markedly altered under eCO2, as demon-
strated by our previous study (29). Although it is known that
environmental changes such as acidification, habitat modifica-
tion, and hydrological disturbance have profound effects on eco-
logical networks (38), this has not yet been explored in microbial
communities due to the lack of appropriate technologies. The
MENs developed in this study provide an appropriate framework
in which to explore the possible effects of environmental changes
on microbial community structure. Also, our results indicated
that under eCO2, the network interactions for most of the func-
tional gene groups become more complex than those under aCO2.
This is consistent with our previous results showing that both the
functional and phylogenetic structures of microbial communities
were dramatically altered by eCO2 (29). Besides, such a shift in
network structure is significantly correlated with soil geochemical
variables. These results, along with those of our previous studies
(29), suggested that global climate change factors such as eCO2

have a significant impact on not only the functional structure of
grassland microbial communities but also their network interac-
tions.

In summary, the analytical approaches and results presented
here are important for studies on ecology, global change biology,
and microbiology. First, traditionally, most biodiversity studies of
microbial communities have just used information on the num-
ber of species and the abundance of each species, but no sufficient
experimental data with many genes/populations across different
samples were available for characterizing the interactions among
different microorganisms. This study provides a novel conceptual
framework for studying network interactions among different mi-
crobial populations, which is an essential component of biodiver-
sity studies. Also, understanding the responses and mechanisms of
biological communities to global change is a central goal for ecol-
ogists (39, 40). As demonstrated by this study, the network inter-
actions for most of the functional gene groups become more com-
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plex under eCO2 than under aCO2. Thus, it is apparent that global
climate change factors such as eCO2 could have a fundamental
impact on network interactions at the levels of entire communi-
ties, individual functional gene categories/groups, and functional
genes/sequences. To our knowledge, this is the first study to dem-
onstrate the changes in the network interactions of microbial
communities in response to eCO2. In addition, metagenomics has
emerged as a cutting-edge 21st-century science but one of the
greatest challenges is how to use such information to understand
community-level functional processes. This study provides
unique tools for discerning network interactions based on met-
agenomic data. Thus, in short, the MEN framework developed
should have a profound impact on the study of biodiversity, global
change biology, ecosystem ecology, and systems microbiology.

MATERIALS AND METHODS
Sampling site and GeoChip data collection. Network analysis was con-
ducted with the microbial communities of the soil samples from the Bio-
con experiment located at the Cedar Creek Ecosystem Science Reserve in
Minnesota (45°N, 93°W). Plots were established in 1997 on a secondary
successional grassland on a sandy outwash soil after removing the previ-
ous vegetation (41). The main Biocon field experiment has 296 (of a total
of 371) evenly distributed plots (2 by 2 m) in six 20-meter-diameter rings,
three for an aCO2 concentration of 368 �mol/mol and three for an eCO2

concentration of 560 �mol/mol using a FACE system (42). In this study,
24 plots (12 for aCO2 and 12 for eCO2, all with 16 species and no addi-
tional N supply) were used. The experimental analyses of these plots (e.g.,
soil chemistry, plants, GeoChip hybridization, and data preprocessing)
are described elsewhere (29). Since this study focused on the impact of
eCO2 on ecosystem functional processes, only the genes involved in the
cycling of nutrient such as carbon (C), nitrogen (N), phosphorus (P), and
sulfur (S) were used for network analysis. Because we are more interested
in the network interactions among different microbial functional groups,
only the representative commonly used signature genes for various func-
tional gene groups were selected for the network analysis. In most cases,
only those genes detected in half or more than half of the total samples
(majority rule) were kept for subsequent network constructions.

Network construction. Two MENs were constructed. The experi-
mental data used for constructing fMENs were generated by GeoChip-
based microarray analysis (29). The GeoChip hybridization intensity data
were log transformed before the construction of a Pearson correlation
matrix, which is commonly used for constructing gene expression net-
works (30). Logarithmic transformation improves data statistical proper-
ties by stabilizing the variations in signal intensity. The correlation matrix
was then converted to a similarity matrix, which measures the degree of
concordance between the abundance profiles of genes across different
samples by taking the absolute values of the correlation matrix (30, 43).
Subsequently, an adjacency matrix, which encodes the connection
strength between each pair of nodes, was derived from the similarity ma-
trix by applying an appropriate threshold, st, which was defined using the
RMT-based network approach as previously described (16, 17).

Network characterization. The Cytoscape 2.6.0 (44) software was
used to visualize the network graphs. Other information about genes, e.g.,
taxonomy, relative abundance, and edge information, e.g., weights and
positive and negative correlations, was also imported into the software
and visualized in the network figures. Since we are interested in the impact
of eCO2 on network interactions, the fMENs were constructed separately
under aCO2 and eCO2.

Various indexes, including average degree (connectivity) (45), be-
tweenness (46), stress and eigenvector centrality (46), average clustering
coefficient (47, 48), vulnerability (49), average geodesic distance (45),
geodesic efficiency and harmonic geodesic distance (50), density and tran-
sitivity (51), and connectedness (52), were used to describe the properties
of individual nodes in the network and the overall topologies or structures

of the different networks. In general, the network index, connectivity (ki),
is calculated by summing the strengths of the connections (i.e., links) of
each gene (i.e., node) with all of the other connected genes in the network.
Connectivity represents how strongly a gene is connected to other genes
and is one of the most commonly used network indexes. The definitions
and calculations of other indexes are provided in Table S1 in the supple-
mental material. Most calculations were accomplished through the sna
and igraph packages in the R project (53, 54). Those overall topological
indexes in part II (see Table S1 in the supplemental material) describe the
overall network topology from different angles, and thus they are useful in
characterizing various fMENs identified under different conditions.

To characterize the modularity property of fMENs, each network was
separated into modules, which were usually considered functional units in
biological systems (36, 55). Modularity (M) measures the extent to which
nodes have more links within their own modules than expected if linkage
were random. The modules were detected by the modularity detection
method as described previously (56). After scanning all of the branches of
the hierarchical tree of a graph, the level with the maximum modularity
score was used to separate the graph into multiple dense subgraphs. The
modularity of each network (M) was calculated as previously described
(56).

Random network construction and network comparison. Since only
a single data point of each overall network index was available for each
network parameter, standard statistical analysis could not be performed
to assess their statistical significance. Thus, random networks were gener-
ated using the Maslov-Sneppen procedure (57). This method keeps the
numbers of nodes and links unchanged but rewires all of the links’ posi-
tions in the fMENs so the sizes of networks are the same and the random
rewired networks are comparable to the original ones. For each network
identified in this study, a total of 100 randomly rewired networks were
generated and all of the network indexes were calculated individually.
Then, the average and standard deviation for each index of all of the
random networks were obtained. The statistical Z test was used to test the
differences between the indexes of the fMEN and random networks.
Meanwhile, for comparisons of the network indexes under different con-
ditions, the Student t test was employed using the standard deviations
derived from corresponding random networks.

Gene significance based on a sample trait. In gene expression net-
work analyses, gene significance (GSil) is the correlation between the ex-
pression profile of the ith gene and the lth sample trait, Tl (30). The higher
the GSil value, the more biologically significant is gene i with respect to
sample trait l. In this study, gene significance was defined as follows:

GSil � [cor(xi,Tl)]2

where xi is the ith gene signal intensities i � {1, ..., n} and Tl is the lth
sample trait (e.g., soil pH, N content, total plant biomass) [l � {1, ..., q}].
Since the measurement units for different traits vary, all of the trait data
were standardized before statistical analysis.

Massive soil and plant trait data from this long-term experimental site
are available (20, 29, 41) as described above, and they were used for esti-
mating gene significance. The coefficient of correlation between each gene
and each soil or plant variable was calculated across 12 replicate samples
under both eCO2 and aCO2, respectively. Thus, the gene significance ma-
trix, GSnxq, was obtained.

Relationships of microbial interaction networks with soil and plant
variables. To discern the relationships between the fMENs and soil prop-
erties and plant variables, Mantel tests were performed. Since many un-
related individual variables could mask the signature of any significant
variables, a common subset of soil or plant variables were selected for
Mantel tests as follows. First, the correlations between the gene signifi-
cance of the lth soil or plant variable (GSil) and the connectivity of indi-
vidual genes (ki) were calculated across all of the genes detected. The
statistical significances of these correlations were estimated based on P
values. Second, all of the soil or plant variables with significant r values (P
� 0.1) under either eCO2 or aCO2 were selected and combined as a com-
mon set of soil or plant variables for Mantel tests. The following soil
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variables were selected: the percentages of C or N at depths of 0 to 10, 10 to
20, 20 to 40, and 40 to 60 cm; the proportions of soil moisture at depths of
0 to 17, 42 to 59, and 83 to 100 cm; and soil pH. The following plant
variables were also selected: total root biomass, percent belowground C,
aboveground total biomass, aboveground N, aboveground C/N ratio,
coarse roots 0 to 20 (g/m2), annual root ingrowth fine roots (g/m2), forb
biomass, and biomass for four plant species, Amorpha canescens (legume),
Andropogon gerardii (C4), Lespedeza capitata (legume), and Sorghastrum
nutans (C4). In addition, simple or partial Mantel tests were performed
for the connectivity of all of the genes detected and all of the selected soil
or plant variables to examine the relationships between network structure
(i.e., connectivity) and soil or plant variables. Mantel tests were performed
using the programs available in the R vegan package (58).
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