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Phylogenetic Molecular Ecological Network of Soil Microbial
Communities in Response to Elevated CO2

Jizhong Zhou,a,b,c Ye Deng,b,d Feng Luo,e Zhili He,b and Yunfeng Yanga

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, Chinaa; Institute for Environmental
Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USAb; Earth Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California, USAc; Glomics, Inc., Norman, Oklahoma, USAd; and School of Computing, Clemson University, Clemson, South Carolina, USAe

ABSTRACT Understanding the interactions among different species and their responses to environmental changes, such as ele-
vated atmospheric concentrations of CO2, is a central goal in ecology but is poorly understood in microbial ecology. Here we
describe a novel random matrix theory (RMT)-based conceptual framework to discern phylogenetic molecular ecological net-
works using metagenomic sequencing data of 16S rRNA genes from grassland soil microbial communities, which were sampled
from a long-term free-air CO2 enrichment experimental facility at the Cedar Creek Ecosystem Science Reserve in Minnesota.
Our experimental results demonstrated that an RMT-based network approach is very useful in delineating phylogenetic molecu-
lar ecological networks of microbial communities based on high-throughput metagenomic sequencing data. The structure of the
identified networks under ambient and elevated CO2 levels was substantially different in terms of overall network topology, net-
work composition, node overlap, module preservation, module-based higher-order organization, topological roles of individual
nodes, and network hubs, suggesting that the network interactions among different phylogenetic groups/populations were
markedly changed. Also, the changes in network structure were significantly correlated with soil carbon and nitrogen contents,
indicating the potential importance of network interactions in ecosystem functioning. In addition, based on network topology,
microbial populations potentially most important to community structure and ecosystem functioning can be discerned. The
novel approach described in this study is important not only for research on biodiversity, microbial ecology, and systems micro-
biology but also for microbial community studies in human health, global change, and environmental management.

IMPORTANCE The interactions among different microbial populations in a community play critical roles in determining ecosys-
tem functioning, but very little is known about the network interactions in a microbial community, owing to the lack of appro-
priate experimental data and computational analytic tools. High-throughput metagenomic technologies can rapidly produce a
massive amount of data, but one of the greatest difficulties is deciding how to extract, analyze, synthesize, and transform such a
vast amount of information into biological knowledge. This study provides a novel conceptual framework to identify microbial
interactions and key populations based on high-throughput metagenomic sequencing data. This study is among the first to doc-
ument that the network interactions among different phylogenetic populations in soil microbial communities were substantially
changed by a global change such as an elevated CO2 level. The framework developed will allow microbiologists to address re-
search questions which could not be approached previously, and hence, it could represent a new direction in microbial ecology
research.
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The global atmospheric concentration of CO2 has increased by
more than 30% since the industrial revolution due to fossil

fuel combustion and land use changes (1). Many previous studies
demonstrated that elevated CO2 (eCO2) stimulates plant growth
and primary productivity (2–4), but the influences of eCO2 on
belowground microbial communities are poorly understood and
controversial (5–8). It is expected that eCO2 will alter microbial
community composition and structure by increasing soil carbon
input from plants and modifying soil chemical compositions (9).
Recently, using metagenomic technologies, including high-

throughput sequencing, functional gene microarrays, and 16S
rRNA gene-based phylogenetic arrays, we found that the phylo-
genetic and functional structure of soil microbial communities
was substantially altered by eCO2 (10). However, it is less clear
whether eCO2 also alters interactions among different microbial
phylogenetic groups/populations.

Biodiversity includes not only the number of species and their
abundance but also the complex interactions among different spe-
cies (11). Within habitats, various biological species/populations
interact with each other through the flow of energy, matter, and
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information to form large, complex ecological networks (12). Ex-
plaining and predicting such interactive network structures, dy-
namics, and the underlying mechanisms are essential parts of any
study of biodiversity, and hence, ecological networks of biological
communities have received great attention in plant and animal
ecology (12–15) but only very recently in microbial ecology (16,
17). However, determining network structures and their relation-
ships to environmental changes in microbial communities is a
significant challenge (18). The availability of massive,
community-wide, replicated metagenomic data under different
environmental conditions provides an unprecedented opportu-
nity to analyze the network interactions in a microbial community
(17). Recently, we developed the random matrix theory (RMT)-
based approach to delineate the network interactions among dif-
ferent microbial functional groups/populations based on
GeoChip hybridization data (18). Our results indicated that the
RMT-based network approach is very useful in defining the net-
work interactions among different functional groups/populations
with GeoChip hybridization data. Our results also revealed that
eCO2 has significant impacts on network interactions among dif-
ferent microbial functional groups/populations (18). However, its
suitability for dealing with next-generation sequencing data re-
mains unclear.

The objective of this study is to develop a novel RMT-based
bioinformatic approach to define and characterize ecological net-
works in microbial communities based on high-throughput met-
agenomic sequencing data. We will focus on the following two
questions. (i) How are phylogenetic ecological networks in micro-
bial communities determined based on metagenomic sequencing
data, and (ii) do human-induced factors, such as eCO2, have an
impact on the network structure of different phylogenetic groups
in microbial communities? We hypothesize that the RMT-based
network approach will be powerful in delineating phylogenetic
molecular ecological networks (pMENs) in microbial communi-
ties using high-throughput sequencing data and that eCO2 will
dramatically alter the network interactions among different phy-
logenetic groups/populations. We tested these hypotheses with
the experimental data from microbial communities under both
ambient CO2 (aCO2) and eCO2 in a long-term free-air carbon
dioxide enrichment experimental facility at the Cedar Creek Eco-
system Science Reserve in Minnesota (4, 19). This facility was
designed to examine the interactive effects of multiple climate
factors, e.g., biodiversity, CO2, and nitrogen deposition (Biocon),
on grassland ecosystems.

RESULTS
pMENs. An ecological network is a representation of various bi-
ological interactions (e.g., predation, competition, and mutual-
isms) in an ecosystem in which species (nodes) are connected by
pairwise interactions (links) (12, 20–23). Since microorganisms
are invisible to the naked eye and the majority of them are not yet
cultivated, their detection often relies on molecular markers, in-
cluding rRNA genes, various functional genes (e.g., nifH, amoA,
nirS, and dsrA), and intergenic regions. The abundance of each
gene marker in a sample is often determined based on the number
of sequences, hybridization signal intensity, or PCR amplification
band intensity. The gene richness and abundance determined are
then used to describe the compositions and structures of micro-
bial communities of interest. Based on such experimental data, a
network graph can be constructed to illustrate the ecological in-

teractions (edges) of different gene markers/populations (nodes)
in a microbial community (16). We refer to such a network graph
as an ecological network in general. As a result, an ecological net-
work generated from a microbial community is actually based on
individual genes rather than individual species. As previously de-
scribed, we refer to such molecule-based ecological networks in
microbial communities as molecular ecological networks (MENs)
(18) in which different nodes are linked by lines (i.e., interactions)
and to the MENs derived from phylogenetic gene markers as
pMENs (18).

RMT-based approach for pMEN construction. Based on a
modification of the previous procedure for constructing func-
tional MENs (fMENs) (18), the framework for constructing
pMENs can be divided into nine key steps, which include metag-
enomic sequence collection, data standardization, Pearson corre-
lation estimation, adjacency matrix determination by an RMT-
based approach, network characterization, module detection,
eigengene network analysis, network comparison, and association
of network properties with ecological functional traits (18). Eigen-
gene analysis is important for revealing higher-order organization
and identifying key populations based on network topology (24–
26).

Based on the adjacency matrix, a network graph is constructed
to represent positive or negative interactions among different op-
erational taxonomic units (OTUs). Since the pairwise correlations
of OTU abundance across different samples are used to define the
adjacency matrix, the pMENs constructed here, in fact, describe
the co-occurrence of OTUs across different samples. Thus, posi-
tive interactions (positive correlations) indicate that the abun-
dance of OTUs changes along the same trend, whereas negative
interactions (negative correlations) signify that the abundance of
OTUs changes in the opposite direction.

pMENs in grassland soil microbial communities. We ana-
lyzed the phylogenetic diversity data of grassland soil microbial
communities under aCO2 and eCO2 (10) using the RMT-based
network method. The phylogenetic diversity of these communi-
ties (12 replicate samples each from aCO2 and eCO2, respectively)
was determined by barcode-based amplicon pyrosequencing of
16S rRNA genes (10). After data preprocessing, 343 and 358 OTUs
remained in the eCO2 and aCO2 data sets, respectively (Table 1).
Following the RMT-based network analysis outlined above, very
close similarity thresholds (st) were obtained for eCO2 (0.78) and
aCO2 (0.77) (Table 1). Applying these thresholds, two networks of
similar sizes for eCO2 (263 nodes) and aCO2 (292 nodes) were
constructed (Table 1).

General features of many complex networks are scale free,
small world, modular, and hierarchical (27–29). Four commonly
used complementary network indexes can be used to describe net-
work difference: (i) connectivity or degree of distribution, which
is the number of links of a node to other nodes; (ii) geodesic
distance or path length, which is the shortest path between two
nodes; (iii) the clustering coefficient, which describes how well a
node is connected with its neighbors; and (iv) modularity, which
measures the degree to which the network was organized into
clearly delimited modules. For the first three indexes, the means
over a number of nodes can be calculated to describe the overall
features of the entire network.

The degrees of distribution (i.e., connectivity) in all of the con-
structed pMENs were fitted with three models: (i) power law
(scale free), (ii) truncated power law (broad scale), and (iii) expo-
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nential distributions (i.e., faster-decaying functions) (30). Al-
though the degrees of distribution fit well with all three models,
truncated power law had the best fit, with determinant coefficients
of 0.97 and 0.98 for eCO2 and aCO2, respectively (see Fig. S1 in the
supplemental material), which are consistent with many mutual-
istic ecological networks (30). Also, significant differences be-
tween these two pMENs and their corresponding random net-
works with identical network sizes and average numbers of links
were observed in terms of the average geodesic distance, average
clustering coefficient, and modularity (Table 1). These network
properties were comparable to those of other networks displaying
small-world behavior (31), indicating that the pMENs obtained
possessed typical small-world characteristics. All of the above re-
sults suggest that, similar to other complex systems, the con-
structed pMENs appeared to be, at least approximately, scale free,
small world, and modular.

The overall network structure of pMENs is not preserved un-
der aCO2 and eCO2. Although the network sizes of the pMENs
obtained were very similar under eCO2 and aCO2, substantial dif-
ferences were observed in terms of network composition. These
two pMENs shared 44.5% (171) of their nodes, but all of the
shared OTUs showed no significant correlations of the connectiv-
ity values (r � 0.123, P � 0.109). In addition, the average geodesic
distance, average clustering coefficient, and modularity (as well as
many other network parameters) of these pMENs were signifi-
cantly different between aCO2 and eCO2 (Table 1). These results
indicated that the network composition and structure were not
conserved between eCO2 and aCO2.

The majority of the nodes in these two networks belonged to 10
phyla, but their distribution varied substantially among different
phylogenetic groups (see Fig. S2 in the supplemental material).
Among them, Actinobacteria, Alphaproteobacteria, and Acidobac-
teria were more dominant (Table S1; Fig. S2). Also, for most phy-
logenetic groups, the relative proportions of OTUs were not ob-
viously different under eCO2 and aCO2. However, under eCO2 the
relative proportions of Acidobacteria in the network decreased
considerably, while the percentages of Alphaproteobacteria, Beta-
proteobacteria, and Bacteriodetes increased substantially (Fig. S2).
In addition, eCO2 had differential impacts on the network struc-
tures of different phylogenetic groups. Two typical examples are
related to Actinobacteria and Verrucomicrobia, the former of
which plays an important role in the decomposition of organic
materials and the production of secondary metabolites with very
diverse physiology, but the physiological and ecological roles of
the latter are not well known. The top 10 Actinobacteria OTUs
under eCO2 (Fig. 1A) had more complex interactions than their

corresponding OTUs under aCO2 (Fig. 1B), while Verrucomicro-
bia had much less complex interactions under eCO2 (see Fig. S3B
in the supplemental material) than under aCO2 (Fig. S3A). It ap-
pears that eCO2 selected for Actinobacteria but against Verrucomi-
crobia. Altogether, the above results suggested that the interac-
tions among different microbial taxa in the grassland microbial
communities were substantially changed by eCO2. However, such
impacts varied considerably among different microbial groups.

Modules of the pMENs under aCO2 and eCO2 are even less
preserved. In the pMENs examined here, a module is a group of
OTUs which are well connected among themselves but are less
linked with OTUs belonging to other modules. A module in a
pMEN could indicate that the microbial populations within it
may have similar ecological niches. In this study, modules were
detected by fast greedy modularity optimization (32). While a
total of 11 modules with �5 nodes were obtained for the networks
under eCO2, the pMEN under aCO2 had 14 modules with �5
nodes (see Fig. S4A and C in the supplemental material). The
module sizes varied considerably, ranging from 5 to 39 nodes
(Fig. S4B and D).

Distinct individual modules were observed for the pMENs un-
der eCO2 (Fig. S4A) and aCO2 (Fig. S4C). It appears that the
relationships between phylogenetic relatedness and ecological re-
latedness are complicated, depending on individual microbial
groups, as well as environmental conditions (16). For instance,
most of the members of Verrucomicrobia, a recently described
phylum of abundant soil bacteria with a few described species,
were found to be in the same module (9 of 12 OTUs) under aCO2

(module A13, orange, Fig. S4C) and 7 of 9 were found to be in the
same module under eCO2 (module E9, orange, Fig. S4A). Also, the
interactions among them (26 and 13 links for aCO2 and eCO2) in
this network were far more significant (P � 0.01) than those (14
and 5 links) predicted by chance based on their corresponding
random networks. These results suggested that these Verrucomi-
crobia might have similar ecological niches. However, the Actino-
bacteria under both aCO2 (81 nodes) and eCO2 (76 nodes) were
spread over all major modules (Fig. S4A and C, green), consistent
with the fact that this group of bacteria has very diverse physiology
and could occupy different ecological niches. Furthermore, many
of the actinobacterial OTUs are very closely related phylogeneti-
cally, each with unique combinations of relationships to other
microorganisms and network parameters (data not shown), indi-
cating that they could represent different “ecological species” or
ecotypes (16) at this site.

Since the node composition is substantially different among
different modules under eCO2 and aCO2, Fisher’s exact test was

TABLE 1 Topological properties of the empirical pMENs of microbial communities under eCO2 and aCO2 and their associated random pMENs

Condition

Empirical networks Random networksc

No. of
original
OTUsa st

Network
sizeb

Avg
connectivity

Avg
geodesic
distance

Avg
clustering
coefficient

Modularity
(no. of
modules)

Avg
geodesic
distance
� SD

Avg
clustering
coefficient
� SD

Avg
modularity
� SD

eCO2 343 0.78 263 3.10 3.95d 0.25d 0.81d (34) 3.98 � 0.22 0.015 � 0.006 0.61 � 0.02
aCO2 358 0.77 292 3.06 4.26d 0.27d 0.85d (36) 4.10 � 0.20 0.017 � 0.005 0.59 � 0.01
a The number of OTUs was originally used for network construction by the RMT-based network approach.
b The number of OTUs (i.e., nodes) in a network.
c The random networks were generated by rewiring all of the links of a pMEN with the identical numbers of nodes and links to the corresponding empirical pMEN.
d Significant difference (P � 0.001) between aCO2 and eCO2 values.
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used to statistically pair various modules between eCO2 and aCO2.
A total of 5 module pairs (40%) were obtained from these two
networks (see Table S2 in the supplemental material), but the
majority of the modules (60%) could not be paired together.
These paired modules contained 37% of the total nodes in these
two networks. Within the paired modules, only 12.2% (25/205) of
the total nodes shared between these two networks were identical.
These results indicated that these two networks are poorly con-
served at the modular level.

Eigengene network analysis reveals dramatic impacts of
eCO2 on the higher-order network structure. To reveal the
higher-order organization of the constructed pMENs, eigengene
network analysis (24–26) was performed. In this analysis, each
module is summarized through singular value decomposition
analysis with a single representative abundance profile, which is
referred to as the module eigengene. A conceptual example of
eigengene network analysis for a module is illustrated in Fig. 2.
Eigengene network analysis comprises several key components:
(i) a heat map showing the relative abundances of individual
OTUs within a module; (ii) eigengene, showing a representation
of the abundance profile; (iii) module membership, showing key
OTUs within a module; (iv) module visualization, showing the
interactions among different OTUs; and (v) a phylogenetic tree
showing relationships among the different OTUs within a mod-
ule.

In this study, the module eigengenes explained 35 to 79% of the
variations in relative OTU abundance across different samples
under eCO2 and 43 to 79% of that under aCO2 (Fig. 2, module E9;
see the supplemental material for the others). Most of the eigen-
genes (18/25) explained more than 50% of the variations ob-
served, similar to observations from human eigengene network

analysis (33). These results suggest that
these eigengenes relatively well represent
the changes in OTUs across different
samples in individual modules.

Eigengenes from different modules of-
ten showed considerable correlations,
and such correlations (Pearson) were
used to define the eigengene network
(25). The relationships among eigengenes
are usually visualized by average-linkage
hierarchical analysis as a clustering den-
drogram (25). Groups of eigengenes in
this dendrogram are referred to as meta-
modules in an eigengene network, which
describes a higher-order structure of the
constructed network. In this study, the
eigengenes from many modules showed
significant correlations. A total of 4 meta-
modules were clustered for both aCO2

and eCO2 networks (see Fig. S5 in the
supplemental material). However, the
eigengenes from the four paired modules
were clustered differently with other
eigengenes (Fig. S5), indicating that the
higher-order organization of the paired
modules was not preserved between eCO2

and aCO2 either.
To determine the extent to which an

OTU is associated with a module, module
membership was evaluated, which is the square of the Pearson
correlation between the abundance profile of a given OTU and a
given module eigengene (25). Most of the OTUs had significant
module memberships with their respective modules (Fig. 2, mod-
ule E9; see the supplemental material for the others). However, for
the conserved nodes, divergent patterns of module memberships
were observed among these four paired modules (see Fig. S6 in the
supplemental material). While module pairs 1, 4, and 5 had sig-
nificantly positive relationships (rho � 0.18 to 0.39, P � 0.001),
two other module pairs (pairs 2 and 3) had no correlations on
module memberships (Fig. S6). These results indicated that eCO2

also significantly altered the topological positions of individual
OTUs.

Visualization of topological roles of individual nodes reveals
differential impacts of eCO2 on key microbial populations. To-
pologically, different OTUs (nodes) play distinct roles in the net-
work (34). The topological roles of different OTUs can be de-
scribed by two parameters. One is within-module connectivity
(Zi), which describes how well a node is connected to other nodes
within its own module. The other is connectivity among modules
(Pi), which reflects how well a node connects to different modules.
According to the simplified classification used in pollination net-
works (11), the nodes in a network are divided into the following
four subcategories: (i) peripheral nodes, which have low Z and
P values (i.e., they have only a few links and almost always to the
species within their modules); (ii) connectors, which have a low Z
but a high P value (i.e., these nodes are highly linked to several
modules); (iii) module hubs, which have a high Z but a low P value
(i.e., they are highly connected to many species in their own mod-
ules); and (iv) network hubs, which have high Z and P values (i.e.,
they act as both module hubs and connectors). From an ecological

FIG 1 Effects of eCO2 on the network interactions of Actinobacteria. (A) Network interactions of the
top 10 OTUs of Actinobacteria with the highest connectivities under eCO2. (B) Network interactions of
the corresponding OTUs of Actinobacteria under aCO2. (C) Summary of several key parameters of
network topology. Since many Actinobacteria were observed, only the top 10 OTUs of this group under
eCO2 are presented here. Two of these OTUs (FR385 and FR4675) were not observed under aCO2. GD,
geodesic distance.
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FIG 2 Conceptual example of eigengene network analysis with module E9 under eCO2. (I) Heat map of the standardized relative abundance (SRA) of OTUs
across different samples. Rows correspond to individual OTUs in the module, whereas columns are the samples. The number above each column is the
experimental plot number in the Biocon experiment. Red corresponds to the OTUs whose SRAs are �0, and green signifies those whose SRAs are �0. (II) SRA
of the corresponding eigengene (y axis) across the samples (x axis). The parameter � indicates the percentage of the total variance explained by the eigengene.
(III) Module memberships identify groups of OTUs that consistently coexist in these microbial communities. Only 5 OTUs with signifcant module memberships
are shown here, where the y axis is SRAs and the x axis is individual samples. The values in parentheses are module memberships. (IV) Module visualization
showing the interactions among different OTUs within the module. Blue line, positive interactive (positive correlation); red line, negative interaction (negative
correlation). The different colors of the shading of nodes represent different phylogenetic groups. (V) Phylogenetic tree showing the relationships of the OTUs
observed in the corresponding modules. The tree was constructed by the neighbor-joining approach with 1,000 bootstrap values. Due to space limitation,
bootstrap percentages are not shown on the tree. The symbols before individual OTUs signify different features of nodes in the module. The symbol Œ indicates
that the OTU exists in both aCO2 and eCO2 networks with significant module memberships, � indicates that the OTU has significant module membership but
is not shared by the corresponding network under aCO2, � indicates that the OTU is shared but without significant module membership, while � indicates that
the OTU is not shared and has no significant module membership. The eigengene analysis figures of all other modules under aCO2 and eCO2 and a detailed
description of each module can be downloaded through http://ieg.ou.edu/4download/.
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perspective, peripheral nodes represent specialists whereas mod-
ule hubs and connectors are similar to generalists. Network hubs
are supergeneralists (11).

The topological roles of the OTUs identified in these two net-
works are shown as a Z-P plot in Fig. 3. The majority (97.5%) of
the OTUs were peripherals with most of their links inside their
modules. Among these peripherals, 89% even had no links at all
outside their own modules (i.e., Pi � 0). About 2.5% of the OTUs
were generalists, including 1.6% that were module hubs and 0.9%
that were connectors. However, no network hubs (supergeneral-
ists) were observed in these two networks. Two (OTUs FR765 and
FR1506) of the nine module hubs under eCO2 belonged to Acti-
nobacteria (Fig. 3) that are closely related to Ferrithrix thermotol-
erans and Ilumatobacter fluminis, respectively. Two module hubs
(OTUs R2577 and F2923) could be assigned to Bacteroidetes, while
the others belonged to different major taxa (i.e., Alpha-,and Beta-
proteobacteria, Firmicutes, Chloroflexi, and Acidobacteria). All
module hubs were from different modules and had significant
module memberships with their respective module eigengenes.
Interestingly, four of the five connector OTUs (FR383, FR11588,
FR106, and FR125) were Actinobacteria that are closely related to
Streptosporangium roseum, Ferrithrix thermotolerans, Friedmann-
iella lacustris, and Rubrobacter sp., respectively. The other connec-
tor (OTU R2156) was derived from Acidobacteria close to Edapho-
bacter modestus. In addition, for the shared OTUs, no significant
relationships were observed for Z values (r � 0.06, P � 0.44)
under eCO2 and aCO2. These results also suggested that eCO2

greatly altered the network structure and topological roles of in-
dividual OTUs and key microbial populations.

Association of network structure with environmental char-
acteristics. Similar to our previous network study based on

GeoChip hybridization data (18), the relationships between mi-
crobial network interactions and soil properties were established
with Mantel tests. We used the trait-based OTU significance mea-
sure (24), which is referred to as the square of the correlation
between the signal intensity of an OTU and each soil variable, to
determine a common subgroup of soil properties important to
network interactions. Under eCO2, very strong correlations were
observed between the connectivity and the OTU significance of
the selected soil variables based on all detected OTUs (P � 0.001)
or several phylogenetic groups such as Actinobacteria (P � 0.001),
Bacteroidetes (P � 0.012), Alphaproteobacteria (P � 0.001), and
Betaproteobacteria (P � 0.044) under eCO2 (see Table S3 in the
supplemental material). Under aCO2, the connectivities of Acti-
nobacteria (P � 0.05) were also significantly correlated with the
OTU significance of the selected soil variables. All of the results
together suggested that the network interactions among different
phylogenetic groups/populations were dramatically shifted by
eCO2 and that such changes in network interactions are signifi-
cantly related to soil properties.

DISCUSSION

Metagenomics is a rapidly developing emerging scientific field
which generates tremendous amounts of experimental data via
high-throughput sequencing technologies. However, it comes
with the two-part challenge of how to handle these vast quantities
of data and how to use such information to further address bio-
logical questions, aiming to understand community level func-
tional processes. In this study, we describe a novel framework and
approach for discerning network interactions using high-
throughput sequencing-based metagenomic data. The approach
developed would allow microbiologists to address research ques-
tions (network interactions) which could not be approached pre-
viously and thus should represent a research paradigm shift in
metagenomic analysis.

In this study, the pairwise correlations of relative OTU abun-
dance across different samples were used to delineate an adjacency
matrix for network construction. Based on this adjacency matrix,
a network graph was constructed to represent positive or negative
interactions among different OTUs. Thus, a network connection
between two OTUs in fact describes the co-occurrence of these
two OTUs across different samples but not necessarily their phys-
ical interactions. In other words, both OTUs might be responding
to a common environmental parameter rather than interacting
directly.

Compared to other Pearson correlation-based relevance net-
work approaches (35–37), the network approach described here
has several advantages (18, 38). First, this approach was developed
based on the two universal laws of RMT, and thus, it should be
suitable for various biological systems (e.g., cells, populations,
communities, and ecosystems). Theoretically, the results obtained
with an RMT approach should be more robust and consistent and
should more accurately reflect the nature of the complex systems
under study. Second, the majority of relevance network analysis
methods define the adjacency matrix for network construction
using arbitrary thresholds based on known biological information
(28, 35–37, 39). As a result, the networks obtained vary with the
thresholds selected. However, it is a great challenge in selecting an
appropriate threshold for network construction, especially for
poorly studied organisms and/or microbial communities. In con-
trast, the novel RMT-based approach developed here automati-

FIG 3 Z-P plot showing the distribution of OTUs based on their topological
roles. Each symbol represents an OTU under eCO2 (red) or aCO2 (blue). The
topological role of each OTU was determined according to the scatter plot of
within-module connectivity (Zi) and among-module connectivity (Pi) (11,
34). The module hubs and connectors are labeled with OTU numbers. In
parentheses are the module number, module membership, and phylogenetic
associations.
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cally defines thresholds for network construction and hence no
ambiguity exists for the networks constructed. Moreover, RMT is
useful in removing noise from nonrandom, system-specific fea-
tures, and hence the networks identified should be more accurate
and reliable (18, 38). This is particularly important for dealing
with high-throughput metagenomic data because such data gen-
erally have an inherently high noise level.

The identification and characterization of OTU co-occurrence
modules represent a new approach for detecting the interactions
of microbial populations in a community. Based on the oft-
invoked principle of guilt by association (26), the abundance
changes in the microbial populations with strong module mem-
berships are probably driven by the same underlying factors.
Thus, it is reasonable to hypothesize that the microbial popula-
tions with strong module memberships are physically and/or
functionally associated in a microbial community. This hypothe-
sis has important implications not only for our understanding of
the interactions and ecological functions of the known cultivated
microorganisms but also for predicting the potential ecological
roles of as-yet-uncultivated microorganisms. As shown in this
study, the modularity, module memberships, topological roles,
interaction patterns (positive, zero, or negative), and phylogenetic
relationships of individual OTUs are rich sources of new hypoth-
eses for identifying key microbial populations and for under-
standing their interactions and ecological roles in grassland mi-
crobial communities.

Identification of keystone populations is a critical issue in ecol-
ogy, but it is very difficult to achieve, especially in microbial com-
munities given their extreme complexity, high diversity, and un-
cultivated status. As demonstrated in this study, key populations
could be identified based on network topology, module member-
ships, and/or their relationships to ecosystem functional traits.
The conceptual framework developed in this study could provide
important information on candidate genes/populations most im-
portant to certain ecosystem processes and functioning. This
could be particularly important in ecosystem modeling studies in
which microbial community structure must be appropriately sim-
plified prior to their incorporation into ecosystem models.

Knowledge of the responses of biological communities to eCO2

and their mechanisms is critical for projecting future climate
change (6, 8). In this study, we demonstrated the impacts of eCO2

on the network interactions among different phylogenetic groups/
populations based high-throughput metagenomic sequencing
data and the relationships between network structure and soil
properties. It is obvious that the network interactions among dif-
ferent microbial phylogenetic groups/populations are greatly af-
fected by eCO2 in this grassland ecosystem. These results are con-
sistent with our previous study of fMENs (18) and other studies of
macroecology (40). To the best of our knowledge, this is the first
study to document the changes in network interactions among
different phylogenetic groups/populations of microbial commu-
nities in response to eCO2.

The relationship between biodiversity and ecosystem func-
tioning has emerged as a central issue in ecological and environ-
mental sciences (41–47) and is one of the great challenges of the
21st century’s sciences (48). Traditionally, almost all biodiversity
studies in microbial ecology consider just species richness and
abundance and ignore the interactions among different microor-
ganisms. However, network interactions could be more impor-
tant to ecosystem processes and functions than species diversity

(parts list). In this study, we developed a novel conceptual frame-
work for determining network interactions among different phy-
logenetic groups/populations in microbial communities based on
high-throughput metagenomic sequencing data. This novel
framework will allow microbial ecologists to examine research
issues beyond microbial species richness and abundance. The de-
veloped pMEN framework and information on the responses of
network structure to eCO2 should have a profound impact on the
study of biodiversity, ecosystem ecology, systems microbiology,
and climate change.

MATERIALS AND METHODS

In this study, 24 soil samples used for network analysis of micro-
bial communities were collected from the Biocon (biodiversity,
CO2, and N) experimental site located at the Cedar Creek Ecosys-
tem Science Reserve in Minnesota (45°N, 93°W). Of these 24 sam-
ples, 12 were from aCO2 replicate plots and 12 were from eCO2

replicate plots. All of the plots contained 16 species without addi-
tional N supply. The soil samples were collected in July 2007, and
each sample was a composite of five soil cores from depths of 0 to
15 cm (10).

Two MENs were constructed with the following steps. First,
the experimental data used for constructing pMENs were gener-
ated by pyrosequencing of 16S rRNA genes (10). Since the se-
quence numbers of individual OTUs obtained varied significantly
among different samples, the relative proportions of sequence
numbers were used for subsequent Pearson correlation analysis.
Second, a similarity matrix was obtained by taking the absolute
values of the correlation matrix. This similarity matrix measures
the degree of concordance between the abundance profiles of in-
dividual OTUs across different samples. Third, an appropriate
threshold for defining network structure, st, is defined using the
RMT-based network approach (38, 49) to obtain an adjacency
matrix, which encodes the strength of the connection between
each pair of nodes. Fourth, the submodules within a large module
were detected by fast greedy modularity optimization (32). In ad-
dition, for network comparison, random networks corresponding
to all pMENs were generated using the Maslov-Sneppen proce-
dure (50) and keeping the numbers of nodes and links constant
but rewiring all of the links’ positions in the pMENs. A standard Z
or t test was employed to determine the significance of network
indexes between the pMENs and random networks and across
different experimental conditions. Finally, sample trait-based sig-
nificance (24) was defined and a Mantel test was used to examine
the relationships between the trait-based gene significance and
soil variables for understanding the importance of network inter-
actions in ecosystem functioning. More detailed information
about the Materials and Methods used in this study is provided in
the supplemental material.
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